Skip to main content
Log in

Characteristics of Zn Content and Localization, Cu–Zn SOD, and MT Levels in the Tissues of Marginally Zn-Deficient Mice

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Zinc (Zn) is an important trace element in the human body, and Zn deficiency affects the Zn content of major tissues. Marginal Zn deficiency is more common than severe Zn deficiency in humans. The objective of the present study was to compare the content and distribution of Zn and the change in the copper (Cu)–Zn superoxide dismutase (SOD) and metallothionein (MT) levels of soft tissues. Mice were fed with 30 mg/kg (control) or 10 mg/kg (marginally Zn-deficient, MZD) Zn diet for 35 days. We observed that only the Zn contents of serum, bones, and muscles in the control group were higher than those in the MZD group. Autometallography (AMG) was used as a method for staining Zn ions, and the semi-quantitative result indicated that the AMG products of the liver, duodenum, heart, lung, testes, and epididymis in the control group were higher than those in the MZD group. Furthermore, the contents of MT and the activities of Cu–Zn SOD in the testes, brain, duodenum, and liver were higher in the control group than those in the MZD group. However, the AMG products and the activities of Cu–Zn SOD of the kidney in the MZD group were more/higher than those in the control group. These results indicated that a change in the total Zn content of soft tissues may be not obvious and insensitive, and thus, more attention should be given to the distribution and localization of Zn ions. The functional indicators, MT and Cu–Zn SOD, are suitable biomarkers for evaluating zinc nutritional status. The brain, testes, duodenum, and liver are susceptive organs to Zn deficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Baltaci AK, Yuce K, Mogulkoc R (2018) Zinc metabolism and metallothioneins. Biol Trace Elem Res 1831:22–31. https://doi.org/10.1007/s12011-017-1119-7

    Article  CAS  Google Scholar 

  2. Ugarte M, Osborne NN (2014) Recent advances in the understanding of the role of zinc in ocular tissues. Metallomics 62:189–200. https://doi.org/10.1039/c3mt00291h

    Article  CAS  Google Scholar 

  3. Prasad AS (2013) Discovery of human zinc deficiency: its impact on human health and disease. Adv Nutr 42:176–190. https://doi.org/10.3945/an.112.003210

    Article  CAS  Google Scholar 

  4. Omu AE, Al-Azemi MK, Al-Maghrebi M, Mathew CT, Omu FE, Kehinde EO, Anim JT, Oriowo MA, Memon A (2015) Molecular basis for the effects of zinc deficiency on spermatogenesis: An experimental study in the Sprague-dawley rat model. Indian J Urol 311:57–64. https://doi.org/10.4103/0970-1591.139570

    Article  Google Scholar 

  5. Chen Y, Yang J, Wang Y, Yang M, Guo M (2020) Zinc Deficiency promotes testicular cell apoptosis in mice. Biol Trace Elem Res 1951:142–149. https://doi.org/10.1007/s12011-019-01821-4

    Article  CAS  Google Scholar 

  6. Nuttall JR, Supasai S, Kha J, Vaeth BM, Mackenzie GG, Adamo AM, Oteiza PI (2015) Gestational marginal zinc deficiency impaired fetal neural progenitor cell proliferation by disrupting the ERK1/2 signaling pathway. J Nutr Biochem 2611:1116–1123. https://doi.org/10.1016/j.jnutbio.2015.05.007

    Article  CAS  Google Scholar 

  7. McCormick NH, King J, Krebs N, Soybel DI, Kelleher SL (2015) Redistribution of tissue zinc pools during lactation and dyshomeostasis during marginal zinc deficiency in mice. J Trace Elem Med Biol 29:170–175. https://doi.org/10.1016/j.jtemb.2014.06.002

    Article  CAS  Google Scholar 

  8. Jinno N, Nagata M, Takahashi T (2014) Marginal zinc deficiency negatively affects recovery from muscle injury in mice. Biol Trace Elem Res 1581:65–72. https://doi.org/10.1007/s12011-014-9901-2

    Article  CAS  Google Scholar 

  9. Xu R, Chen MY, Liang W, Chen Y, Guo MY (2021) Zinc deficiency aggravation of ROS and inflammatory injury leading to renal fibrosis in mice. Biol Trace Elem Res 1992:622–632. https://doi.org/10.1007/s12011-020-02184-x

    Article  CAS  Google Scholar 

  10. Cao JW, Duan SY, Zhang HX, Chen Y, Guo M (2020) Zinc deficiency promoted fibrosis via ROS and TIMP/MMPs in the myocardium of mice. Biol Trace Elem Res 1961:145–152. https://doi.org/10.1007/s12011-019-01902-4

    Article  CAS  Google Scholar 

  11. Doboszewska U, Sowa-Kucma M, Mlyniec K, Pochwat B, Holuj M, Ostachowicz B, Pilc A, Nowak G, Szewczyk B (2015) Zinc deficiency in rats is associated with up-regulation of hippocampal NMDA receptor. Prog Neuropsychopharmacol Biol Psychiatry 56:254–263. https://doi.org/10.1016/j.pnpbp.2014.09.013

    Article  CAS  Google Scholar 

  12. Romualdo GR, Goto RL, Henrique Fernandes AA, Cogliati B, Barbisan LF (2016) Dietary zinc deficiency predisposes mice to the development of preneoplastic lesions in chemically-induced hepatocarcinogenesis. Food Chem Toxicol 96:280–289. https://doi.org/10.1016/j.fct.2016.08.020

    Article  CAS  Google Scholar 

  13. Zieminska E, Ruszczynska A, Augustyniak J, Toczylowska B, Lazarewicz JW (2021) Zinc and copper brain levels and expression of neurotransmitter receptors in two rat ASD models. Front Mol Neurosci 14:656740. https://doi.org/10.3389/fnmol.2021.656740

    Article  CAS  Google Scholar 

  14. Staniek H (2019) The combined effects of Cr(III) propionate complex supplementation and iron excess on copper and zinc status in rats. J Trace Elem Med Biol 53:49–54. https://doi.org/10.1016/j.jtemb.2019.01.011

    Article  CAS  Google Scholar 

  15. Kheirouri S, Alizadeh M (2014) Decreased serum and mucosa immunoglobulin A levels in vitamin A and zinc-deficient mice. Cent Eur J Immunol 392:165–169. https://doi.org/10.5114/ceji.2014.43716

    Article  CAS  Google Scholar 

  16. Moran VH, Skinner AL, Medina MW, Patel S, Dykes F, Souverein OW, Dullemeijer C, Lowe NM (2012) The relationship between zinc intake and serum/plasma zinc concentration in pregnant and lactating women: a systematic review with dose-response meta-analyses. J Trace Elem Med Biol 262–3:74–79. https://doi.org/10.1016/j.jtemb.2012.04.003

    Article  CAS  Google Scholar 

  17. Sirisena D, Gayashani Sandamalika WM, Neranjan Tharuka MD, Madusanka RK, Jeong JB, Lee J (2021) A copper-zinc-superoxide dismutase (CuZnSOD) from redlip mullet, Liza haematocheila: insights to its structural characteristics, immune responses, antioxidant activity, and potent antibacterial properties. Dev Comp Immunol 123:104165. https://doi.org/10.1016/j.dci.2021.104165

    Article  CAS  Google Scholar 

  18. Tarhan C, Pekmez M, Karaer S, Arda N, Sarikaya AT (2007) The effect of superoxide dismutase deficiency on zinc toxicity in Schizosaccharomyces pombe. J Basic Microbiol 47:506–512. https://doi.org/10.1002/jobm.200700220

  19. Chen H, Yoshioka H, Kim GS, Jung JE, Okami N, Sakata H, Maier CM, Narasimhan P, Goeders CE, Chan PH (2011) Oxidative stress in ischemic brain damage: mechanisms of cell death and potential molecular targets for neuroprotection 14:1505–1517. https://doi.org/10.1089/ars.2010.3576

  20. Sun JY, Jing MY, Weng XY, Fu LJ, Xu ZR, Zi NT, Wang JF (2004) Effects of dietary zinc levels on the activities of enzymes, weights of organs, and the concentrations of zinc and copper in growing rats. Biol Trace Elem Res 1072:153–165

    Google Scholar 

  21. Huang D, Hu Q, Fang S, Feng J (2016) Dosage effect of zinc glycine chelate on zinc metabolism and gene expression of zinc transporter in intestinal segments on rat. Biol Trace Elem Res 1712:363–370. https://doi.org/10.1007/s12011-015-0535-9

    Article  CAS  Google Scholar 

  22. Kotani M, Kim KH, Ishizaki N, Funaba M, Matsui T (2013) Magnesium and calcium deficiencies additively increase zinc concentrations and metallothionein expression in the rat liver. Br J Nutr 1093:425–432. https://doi.org/10.1017/S0007114512001195

    Article  CAS  Google Scholar 

  23. Calvo J, Jung H, Meloni G (2017) Copper metallothioneins. IUBMB Life 694:236–245. https://doi.org/10.1002/iub.1618

    Article  CAS  Google Scholar 

  24. Kang YJ, Jiang Y, Saari JT (2007) Changes in copper and zinc status and response to dietary copper deficiency in metallothionein-overexpressing transgenic mouse heart. J Nutr Biochem 1811:714–718. https://doi.org/10.1016/j.jnutbio.2006.10.009

    Article  CAS  Google Scholar 

  25. Brugger D, Windisch WM (2017) Short-term subclinical zinc deficiency in weaned piglets affects cardiac redox metabolism and zinc concentration. J Nutr 1474:521–527. https://doi.org/10.3945/jn.116.240804

    Article  CAS  Google Scholar 

  26. Mocchegiani E, Costarelli L, Giacconi R, Piacenza F, Basso A, Malavolta M (2011) Zinc, metallothioneins and immunosenescence: effect of zinc supply as nutrigenomic approach. Biogerontology 125:455–465. https://doi.org/10.1007/s10522-011-9337-4

    Article  CAS  Google Scholar 

  27. Wang X, Wang ZY, Gao HL, Danscher G, Huang L (2006) Localization of ZnT7 and zinc ions in mouse retina–immunohistochemistry and selenium autometallography. Brain Res Bull 711–3:91–96. https://doi.org/10.1016/j.brainresbull.2006.08.002

    Article  CAS  Google Scholar 

  28. Zhang LH, Wang X, Stoltenberg M, Danscher G, Huang L, Wang ZY (2008) Abundant expression of zinc transporters in the amyloid plaques of Alzheimer’s disease brain. Brain Res Bull 771:55–60. https://doi.org/10.1016/j.brainresbull.2008.03.014

    Article  CAS  Google Scholar 

  29. Zhong M-L, Guo C, Chi Z-H, Shan Z-Y, Teng W-P and Wang Z-Y (2013) Distribution of zinc and zinc transporters in the mouse ovarian follicles and corpus luteum. Histology and Histopathology :1517–1527. https://doi.org/10.14670/HH-28.1517

  30. Goldschmidt J, Wanger T, Engelhorn A, Friedrich H, Happel M, Ilango A, Engelmann M, Stuermer IW, Ohl FW, Scheich H (2010) High-resolution mapping of neuronal activity using the lipophilic thallium chelate complex TlDDC: protocol and validation of the method. Neuroimage 491:303–315. https://doi.org/10.1016/j.neuroimage.2009.08.012

    Article  CAS  Google Scholar 

  31. Yokokawa H, Fukuda H, Saita M, Miyagami T, Takahashi Y, Hisaoka T, Naito T (2020) Serum zinc concentrations and characteristics of zinc deficiency/marginal deficiency among Japanese subjects. J Gen Fam Med 216:248–255. https://doi.org/10.1002/jgf2.377

    Article  Google Scholar 

  32. Iwaya H, Kashiwaya M, Shinoki A, Lee JS, Hayashi K, Hara H, Ishizuka S (2011) Marginal zinc deficiency exacerbates experimental colitis induced by dextran sulfate sodium in rats. J Nutr 1416:1077–1082. https://doi.org/10.3945/jn.111.138180

    Article  CAS  Google Scholar 

  33. Adamo AM, Liu X, Mathieu P, Nuttall JR, Supasai S, Oteiza PI (2019) Early developmental marginal zinc deficiency affects neurogenesis decreasing neuronal number and altering neuronal specification in the adult rat brain. Front Cell Neurosci 13:62. https://doi.org/10.3389/fncel.2019.00062

    Article  CAS  Google Scholar 

  34. Croxford TP, McCormick NH, Kelleher SL (2011) Moderate zinc deficiency reduces testicular Zip6 and Zip10 abundance and impairs spermatogenesis in mice. J Nutr 1413:359–365. https://doi.org/10.3945/jn.110.131318

    Article  CAS  Google Scholar 

  35. Gupta S, Brazier AKM, Lowe NM (2020) Zinc deficiency in low- and middle-income countries: prevalence and approaches for mitigation. J Hum Nutr Diet 335:624–643. https://doi.org/10.1111/jhn.12791

    Article  Google Scholar 

  36. Ozeki I, Arakawa T, Suii H, Tatsumi R, Yamaguchi M, Nakajima T, Kuwata Y, Toyota J (2020) Zinc deficiency in patients with chronic liver disease in Japan. Hepatol Res 503:396–401. https://doi.org/10.1111/hepr.13465

    Article  CAS  Google Scholar 

  37. Maruyama Y, Nakashima A, Fukui A, Yokoo T (2021) Zinc deficiency: its prevalence and relationship to renal function in Japan. Clin Exp Nephrol 257:771–778. https://doi.org/10.1007/s10157-021-02046-3

    Article  CAS  Google Scholar 

  38. Jing MY, Sun JY, Wang JF (2008) The effect of peripheral administration of zinc on food intake in rats fed Zn-adequate or Zn-deficient diets. Biol Trace Elem Res 1242:144–156. https://doi.org/10.1007/s12011-008-8132-9

    Article  CAS  Google Scholar 

  39. Kambe T, Hashimoto A, Fujimoto S (2014) Current understanding of ZIP and ZnT zinc transporters in human health and diseases. Cell Mol Life Sci 7117:3281–3295. https://doi.org/10.1007/s00018-014-1617-0

    Article  CAS  Google Scholar 

  40. Kumari D, Nair N, Bedwal RS (2011) Effect of dietary zinc deficiency on testes of Wistar rats: morphometric and cell quantification studies. J Trace Elem Med Biol 251:47–53. https://doi.org/10.1016/j.jtemb.2010.11.002

    Article  CAS  Google Scholar 

  41. Madej D, Pietruszka B, Kaluza J (2021) The effect of iron and/or zinc diet supplementation and termination of this practice on the antioxidant status of the reproductive tissues and sperm viability in rats. J Trace Elem Med Biol 64:126689. https://doi.org/10.1016/j.jtemb.2020.126689

    Article  CAS  Google Scholar 

  42. Tubek S (2007) Zinc supplementation or regulation of its homeostasis: advantages and threats. Biol Trace Elem Res 1191:1–9. https://doi.org/10.1007/s12011-007-0043-7

    Article  CAS  Google Scholar 

  43. Maret W (2015) Analyzing free zinc(II) ion concentrations in cell biology with fluorescent chelating molecules. Metallomics 72:202–211. https://doi.org/10.1039/c4mt00230j

    Article  Google Scholar 

  44. Danscher G, Stoltenberg M (2006) Silver enhancement of quantum dots resulting from (1) metabolism of toxic metals in animals and humans, (2) in vivo, in vitro and immersion created zinc-sulphur/zinc-selenium nanocrystals, (3) metal ions liberated from metal implants and particles. Prog Histochem Cytochem 412:57–139. https://doi.org/10.1016/j.proghi.2006.06.001

    Article  CAS  Google Scholar 

  45. Davis S R and Cousin R J (2000) Metallothionein expression in animals: a physiological perspective on function. American society for nutritional sciences : 1085-1088. https://doi.org/10.1093/jn/130.5.1085.

  46. K E J, J.Q C, F G J and P R D (1996) Metallothionein I and II protect against zinc deficiency and zinc toxicity in mice. Am Inst Nutr 1782-1790. https://doi.org/10.1093/jn/126.7.1782

  47. Liu C, He X, Hong X, Kang F, Chen S, Wang Q, Chen X, Hu D, Sun Q (2014) Suppression of placental metallothionein 1 and zinc transporter 1 mRNA expressions contributes to fetal heart malformations caused by maternal zinc deficiency. Cardiovasc Toxicol 144:329–338. https://doi.org/10.1007/s12012-014-9256-0

    Article  CAS  Google Scholar 

  48. Szczurek E I, Bjornsson C S and Taylor C G (2001) Dietary zinc deficiency and repletion modulate metallothionein immunolocalization and concentration in small intestine and liver of rats1,2. Nutr Metabol 2132-2138. https://doi.org/10.1093/jn/131.8.2132

  49. Beckman JS, Estévez AG, Crow JP, Barbeito L (2001) Superoxide dismutase and the death of motoneurons in ALS. A Trends Guide to Neurodegenerative Disease and Repair 24:S15–S20. https://doi.org/10.1016/s0166-2236(00)01981-0

    Article  CAS  Google Scholar 

  50. Ermilova IP, Ermilov VB, Levy M, Ho E, Pereira C, Beckman JS (2005) Protection by dietary zinc in ALS mutant G93A SOD transgenic mice. Neurosci Lett 3791:42–46. https://doi.org/10.1016/j.neulet.2004.12.045

    Article  CAS  Google Scholar 

  51. Yin LL, Zhang Y, Guo DM, An K, Yin MS, Cui X (2013) Effects of zinc on interleukins and antioxidant enzyme values in psoriasis-induced mice. Biol Trace Elem Res 1553:411–415. https://doi.org/10.1007/s12011-013-9799-0

    Article  CAS  Google Scholar 

  52. Deng B, Zhou X, Wu J, Long C, Yao Y, Peng H, Wan D, Wu X (2017) Effects of dietary supplementation with tribasic zinc sulfate or zinc sulfate on growth performance, zinc content and expression of zinc transporters in young pigs. Anim Sci J 8810:1556–1560. https://doi.org/10.1111/asj.12788

    Article  CAS  Google Scholar 

  53. Cao Y, Li YS, Li ZJ, Wang F, Li CM (2015) Dietary zinc may attenuate heat-induced testicular oxidative stress in mice via up-regulation of Cu-Zn SOD. Genet Mol Res 144:16616–16626. https://doi.org/10.4238/2015.December.11.9

    Article  CAS  Google Scholar 

  54. Gowanlock DW, Mahan DC, Jolliff JS, GM H, (2015) Evaluating the influence of National Research Council levels of copper, iron, manganese, and zinc using organic (Bioplex) minerals on resulting tissue mineral concentrations, metallothionein, and liver antioxidant enzymes in grower-finisher swine diets. J Anim Sci 93(3):1149–1156. https://doi.org/10.2527/jas2014-8173

    Article  CAS  Google Scholar 

  55. Mattei D, Pietrobelli A (2019) Micronutrients and brain development. Curr Nutr Rep 82:99–107. https://doi.org/10.1007/s13668-019-0268-z

    Article  CAS  Google Scholar 

  56. Elgazar V, Razanov V, Stoltenberg M, Hershfinkel M, Huleihel M, Nitzan YB, Lunenfeld E, Sekler I, Silverman WF (2005) Zinc-regulating proteins, ZnT-1, and metallothionein I/II are present in different cell populations in the mouse testis. J Histochem Cytochem 537:905–912. https://doi.org/10.1369/jhc.4A6482.2005

    Article  CAS  Google Scholar 

  57. Hennigar SR, Olson CI, Kelley AM, McClung JP (2021) Slc39a4 in the small intestine predicts zinc absorption and utilization: a comprehensive analysis of zinc transporter expression in response to diets of varied zinc content in young mice. J Nutr Biochem 101:108927. https://doi.org/10.1016/j.jnutbio.2021.108927

    Article  CAS  Google Scholar 

  58. Tapiero H, Tew KD (2003) Trace elements in human physiology and pathology: zinc and metallothioneins. Biomed Pharmacother 579:399–411. https://doi.org/10.1016/s0753-3322(03)00081-7

    Article  Google Scholar 

Download references

Acknowledgements

Thanks to all members of Professor Wang CH’s lab at the School of Public Health, Wuhan University for their generous help. We would like to thank the animal facilities of Wuhan University Animal Experiment Center for the maintenance of the mouse population.

Funding

This study was supported by grants from Angel Nutritech Nutrition Fund (Grant NO. AF2019004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunhong Wang.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Peng, C., Zhang, Y. et al. Characteristics of Zn Content and Localization, Cu–Zn SOD, and MT Levels in the Tissues of Marginally Zn-Deficient Mice. Biol Trace Elem Res 201, 262–271 (2023). https://doi.org/10.1007/s12011-022-03119-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-022-03119-4

Keywords

Navigation