Skip to main content
Log in

Conivaptan and Boric Acid Treatments in Acute Kidney Injury: Is This Combination Effective and Safe?

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Acute kidney injury is still a worldwide clinic problem that affects kidney function and associated with high mortality risk. Unfortunately, approximately 1.7 million people are thought to die from acute kidney injury each year. Boron element is defined as an “essential trace element” for plants and thought to have a widespread role in living organisms. Boric acid, which is one of the important forms of boron, has been extensively discussed for both medicinal and nonmedicinal purposes. However, there is a lack of data in the literature to examine the relationship between boric acid and antidiuretic hormone (ADH) antagonism in kidney injury. Thus, we aimed to investigate the effects of conivaptan as an ADH antagonist and boric acid as an antioxidant agent on the post-ischemic renal injury process. In this study, the unilateral ischemia–reperfusion (I/R) injury rat model with contralateral nephrectomy was performed and blood/kidney tissue samples were taken at 6th hours of reperfusion. The effects of 10 mg/mL/kg conivaptan and 50 mg/kg boric acid were examined with the help of some biochemical and histological analyses. We observed that conivaptan generally alleviated the destructive effects of I/R and has therapeutic effects. Also of note is that conivaptan and boric acid combination tended to show negative effects on kidney function, considering the highest BUN (78.46 ± 3.88 mg/dL) and creatinine levels (1.561 ± 0.1018 mg/dL), suggesting possibly drug-drug interaction. Although it has reported that conivaptan can interact with other active substances, no experimental/clinical data on the possible interaction with boric acid have reported so far.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. Khan KNM, Hard GC, Alden CL (2013) Chapter 47 - Kidney. In: Haschek WM, Rousseaux CG, Wallig MA (eds) Haschek and Rousseaux’s Handbook of Toxicologic Pathology, 3rd edn. Academic Press, Boston, pp 1667–1773

    Chapter  Google Scholar 

  2. Jager KJ, Kovesdy C, Langham R, Rosenberg M, Jha V, Zoccali C (2019) A single number for advocacy and communication-worldwide more than 850 million individuals have kidney diseases. Nephrol Dial Transplant 34:1803–1805. https://doi.org/10.1093/ndt/gfz174

    Article  PubMed  Google Scholar 

  3. Gueguen Y, Rouas C, Leblond FA (2012) Kidney injury biomarkers. Nephrologie & Therapeutique 8(3):146–155. https://doi.org/10.1016/j.nephro.2012.02.004

    Article  Google Scholar 

  4. Luyckx VA, Tonelli M, Stanifer JW (2018) The global burden of kidney disease and the sustainable development goals. Bull World Health Organ 96(6):414-422D. https://doi.org/10.2471/BLT.17.206441

    Article  PubMed  PubMed Central  Google Scholar 

  5. KDIGO clinical practice Guideline for acute kidney injury (2012). Chapter 21: definition and classification of AKI. Kidney Int 2(Suppl 1):19–22

  6. Lewington AJP, Cerdá J, Mehta RL (2013) Raising awareness of acute kidney injury: a global perspective of a silent killer. Kidney Int 84(3):457–467. https://doi.org/10.1038/ki.2013.153

    Article  PubMed  PubMed Central  Google Scholar 

  7. Murugan R, Kellum JA (2011) Acute kidney injury: what’s the prognosis? Nat Rev Nephrol 7(4):209–217. https://doi.org/10.1038/nrneph.2011.13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fung A, Zhao H, Yang B, Lian Q, Ma D (2016) Ischaemic and inflammatory injury in renal graft from brain death donation: an update review. J Anesth 30(2):307–316. https://doi.org/10.1007/s00540-015-2120-y

    Article  PubMed  Google Scholar 

  9. Zuk A, Bonventre JV (2016) Acute Kidney Injury. Annu Rev Med 67(1):293–307. https://doi.org/10.1146/annurev-med-050214-013407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Myers BD (1990) Nature of postischaemic renal ınjury following aortic or cardiac surgery. In: Bihari D., Neild G. (eds) Acute Renal Failure in the Intensive Therapy Unit. Current Concepts in Critical Care. Springer, London. https://doi.org/10.1007/978-1-4471-1750-6_15

  11. Mir MC, Pavan N, Parekh DJ (2016) Current paradigm for ıschemia in kidney surgery. J Urol 195(6):1655–1663. https://doi.org/10.1016/j.juro.2015.09.099

    Article  PubMed  Google Scholar 

  12. Chatterjee PK (2007) Novel pharmacological approaches to the treatment of renal ischemia-reperfusion injury: a comprehensive review. Naunyn-Schmied Arch Pharmacol 376:1–43. https://doi.org/10.1007/s00210-007-0183-5

    Article  CAS  Google Scholar 

  13. Koshimizu TA, Nakamura K, Egashira N, Hiroyama M, Nonoguchi H, Tanoue A (2012) Vasopressin V1a and V1b receptors: from molecules to physiological systems. Physiol Rev 92(4):1813–1864. https://doi.org/10.1152/physrev.00035.2011

    Article  CAS  PubMed  Google Scholar 

  14. Can B, Alataş Ö (2018) Cerebral edema and antidiuretic hormone antagonism. In CURRENT ACADEMIC STUDIES IN HEALTH SCIENCES- Volume II (First Edition) (pp. 39–56). Ivpe: Cetinje, Montenegro. ISBN 978–9940–540–53–1

  15. Meijer E, Boertien WE, Zietse R, Gansevoort RT (2011) Potential deleterious effects of vasopressin in chronic kidney disease and particularly autosomal dominant polycystic kidney disease. Kidney Blood Press Res 34(4):235–244. https://doi.org/10.1159/000326902

    Article  CAS  PubMed  Google Scholar 

  16. Amro OW, Paulus JK, Noubary F, Perrone RD (2016) Low-osmolar diet and adjusted water ıntake for vasopressin reduction in autosomal dominant polycystic kidney disease: a pilot randomized controlled trial. Am J Kidney Dis 68(6):882–891. https://doi.org/10.1053/j.ajkd.2016.07.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Palmer BF (2015) Vasopressin receptor antagonists. Curr Hypertens Rep 17(1):510. https://doi.org/10.1007/s11906-014-0510-4

    Article  CAS  PubMed  Google Scholar 

  18. Tahara A, Tomura Y, Wada KI, Kusayama T, Tsukada J, Takanashi M, Yatsu T, Uchida W, Tanaka A (1997) Pharmacological profile of YM087, a novel potent nonpeptide vasopressin V1A and V2 receptor antagonist, in vitro and in vivo. J Pharmacol Exp Ther 282(1):301–308

    CAS  PubMed  Google Scholar 

  19. Wada K, Tahara A, Arai Y, Aoki M, Tomura Y, Tsukada J, Yatsu T (2002) Effect of the vasopressin receptor antagonist conivaptan in rats with heart failure following myocardial infarction. Eur J Pharmacol 450(2):169–177. https://doi.org/10.1016/S0014-2999(02)02101-5

    Article  CAS  PubMed  Google Scholar 

  20. Uluisik I, Karakaya HC, Koc A (2018) The importance of boron in biological systems. J Trace Elem Med Biol 45:156–162. https://doi.org/10.1016/j.jtemb.2017.10.008

    Article  CAS  PubMed  Google Scholar 

  21. Kar F, Hacioglu C, Senturk H et al (2020) The role of oxidative stress, renal inflammation, and apoptosis in post ischemic reperfusion injury of kidney tissue: the protective effect of dose-dependent boric acid administration. Biol Trace Elem Res 195:150–158. https://doi.org/10.1007/s12011-019-01824-1

    Article  CAS  PubMed  Google Scholar 

  22. Naghii MR, Mofid M, Asgari AR, Hedayati M, Daneshpour MS (2011) Comparative effects of daily and weekly boron supplementation on plasma steroid hormones and proinflammatory cytokines. Journal of Trace Elements in Medicine and Biology: Organ of the Society for Minerals and Trace Elements (GMS) 25(1):54–58. https://doi.org/10.1016/j.jtemb.2010.10.001

    Article  CAS  Google Scholar 

  23. Devirian TA, Volpe SL (2003) The physiological effects of dietary boron. Crit Rev Food Sci Nutr 43(2):219–231. https://doi.org/10.1080/10408690390826491

    Article  CAS  PubMed  Google Scholar 

  24. Dinh AQ, Naeem A, Sagervanshi A, Wimmer MA, Mühling KH (2021) Boron uptake and distribution by oilseed rape (Brassica napus L.) as affected by different nitrogen forms under low and high boron supply. Plant Physiol Biochem 161:156–165. https://doi.org/10.1016/j.plaphy.2021.02.009

    Article  CAS  PubMed  Google Scholar 

  25. Pizzorno L (2015) Nothing Boring About Boron. Integrative medicine 14(4):35–48

  26. Rondanelli M, Faliva MA, Peroni G, Infantino V, Gasparri C, Iannello G et al (2020) Pivotal role of boron supplementation on bone health: a narrative review. J Trace Elem Med Biol 62:126577. https://doi.org/10.1016/j.jtemb.2020.126577

    Article  CAS  PubMed  Google Scholar 

  27. Lopalco A, Lopedota AA, Laquintana V, Denora N, Stella VJ (2020) Boric acid, a Lewis acid with unique and unusual properties: formulation ımplications. J Pharm Sci 109(8):2375–2386. https://doi.org/10.1016/j.xphs.2020.04.015

    Article  CAS  PubMed  Google Scholar 

  28. Can B, Oz S, Sahinturk V, Musmul A, Alatas İO (2019) Effects of conivaptan versus mannitol on post-ıschemic brain ınjury and edema. The Eurasian journal of medicine 51(1):42–48. https://doi.org/10.5152/eurasianjmed.2019.18368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Senturk H, Kabay S, Bayramoglu G et al (2008) Silymarin attenuates the renal ischemia/reperfusion injury-induced morphological changes in the rat kidney. World J Urol 26:401–407. https://doi.org/10.1007/s00345-008-0256-1

    Article  CAS  PubMed  Google Scholar 

  30. Waynforth HB, Flecknell PA (1994) Experimental and surgical technique in the rat, 2nd edn. Academic Press Limited, London

    Google Scholar 

  31. Morgenthaler NG, Struck J, Jochberger S, Dunser MW (2008) Copeptin: clinical use of a new biomarker. Trends Endocrinol Metab 19(2):43–49. https://doi.org/10.1016/j.tem.2007.11.001

    Article  CAS  PubMed  Google Scholar 

  32. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95(2):351–358. https://doi.org/10.1016/0003-2697(79)90738-3

    Article  CAS  PubMed  Google Scholar 

  33. Beutler E, Duron O, Kelly BM (1963) Improved method for the determination of blood glutathione. J Lab Clin Med 61:882–888

    CAS  PubMed  Google Scholar 

  34. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126. https://doi.org/10.1016/s0076-6879(84)05016-3

    Article  CAS  PubMed  Google Scholar 

  35. Cohen G, Dembiec D, Marcus J (1970) Measurement of catalase activity in tissue extracts. Anal Biochem 34:30–38. https://doi.org/10.1016/0003-2697(70)90083-7

    Article  CAS  PubMed  Google Scholar 

  36. Suzuki K, Ota H, Sasagawa S, Sakatani T, Fujikura T (1983) Assay method for myeloperoxidase in human polymorphonuclear leukocytes. Anal Biochem 132(2):345–352. https://doi.org/10.1016/0003-2697(83)90019-2

    Article  CAS  PubMed  Google Scholar 

  37. Gornall AG, Bardawill CJ, David MM (1949) Determination of serum proteins by means of the biuret reaction. J Biol Chem 177(2):751–766

    Article  CAS  Google Scholar 

  38. Shiva N, Sharma N, Kulkarni YA, Mulay SR, Gaikwad AB (2020) Renal ischemia/reperfusion injury: an insight on in vitro and in vivo models. Life Sci 256:117860. https://doi.org/10.1016/j.lfs.2020.117860

    Article  CAS  PubMed  Google Scholar 

  39. Yang L, Besschetnova TY, Brooks CR, Shah JV, Bonventre JV (2010) Epithelial cell cycle arrest in G2/M mediates kidney fibrosis after injury. Nat Med 16(5):535–543. https://doi.org/10.1038/nm.2144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. sFu Y, Tang C, Cai J, Chen G, Zhang D, Dong Z, (2018) Rodent models of AKI-CKD transition. Am J Physiol Renal Physiol 315(4):F1098–F1106. https://doi.org/10.1152/ajprenal.00199.2018

    Article  CAS  Google Scholar 

  41. Finn WF, Fernandez-Repollet E, Goldfarb D, Iaina A, Eliahou HE (1984) Attenuation of injury due to unilateral renal ischemia: delayed effects of contralateral nephrectomy. J Lab Clin Med 103(2):193–203

    CAS  PubMed  Google Scholar 

  42. Varga G, Ghanem S, Szabo B, Nagy K, Pal N, Tanczos B, Somogyi V, Barath B, Deak A, Peto K, Nemeth N (2019) Renal ischemia-reperfusion-induced metabolic and micro-rheological alterations and their modulation by remote organ ischemic preconditioning protocols in the rat. Clin Hemorheol Microcirc 71(2):225–236. https://doi.org/10.3233/CH-189414

    Article  CAS  PubMed  Google Scholar 

  43. Bonventre JV, Yang L (2011) Cellular pathophysiology of ischemic acute kidney injury. J Clin Investig 121(11):4210–4221. https://doi.org/10.1172/JCI45161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Meurer M, Höcherl K (2019) Renal ischemia-reperfusion injury impairs renal calcium, magnesium, and phosphate handling in mice. Pflugers Arch 471(6):901–914. https://doi.org/10.1007/s00424-019-02255-6

    Article  CAS  PubMed  Google Scholar 

  45. Vaprisol (conivaptan hydrochloride) package insert 2006 Deerfield, IL: Astellas Pharma US, Inc

  46. Walter KA (2007) Conivaptan: New treatment for hyponatremia. Am J Health Syst Pharm 64(13):1385–1395. https://doi.org/10.2146/ajhp060383

    Article  CAS  PubMed  Google Scholar 

  47. Ock S, Jo S, Lee JB, Jin Y, Jeong T, Yoon J, Park B (2016) Comprehensive interpretation of hyperglycemia and hyperosmolality on the clinical outcomes among ischemic stroke patients. Am J Emerg Med 34(12):2343–2350. https://doi.org/10.1016/j.ajem.2016.08.046

    Article  PubMed  Google Scholar 

  48. Green DR, Llambi F. (2015). Cell Death Signaling. Cold Spring Harb Perspect Biol 1;7(12):a006080. https://doi.org/10.1101/cshperspect.a006080

  49. Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35(4):495–516. https://doi.org/10.1080/01926230701320337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hongmei Z (2012) Extrinsic and ıntrinsic apoptosis signal pathway review. Apoptosis and Medicine. IntechOpen

  51. Riedl SJ, Shi Y (2004) Molecular mechanisms of caspase regulation during apoptosis. Nat Rev Mol Cell Biol 5(11):897–907. https://doi.org/10.1038/nrm1496

    Article  CAS  PubMed  Google Scholar 

  52. Porter AG, Jänicke RU (1999) Emerging roles of caspase-3 in apoptosis. Cell Death Differ 6(2):99–104. https://doi.org/10.1038/sj.cdd.4400476

    Article  CAS  PubMed  Google Scholar 

  53. Robertson JD, Orrenius S (2000) Molecular mechanisms of apoptosis induced by cytotoxic chemicals. Crit Rev Toxicol 30(5):609–627. https://doi.org/10.1080/10408440008951122

    Article  CAS  PubMed  Google Scholar 

  54. Ortiz A, Justo P, Catalán MP, Sanz AB, Lorz C, Egido J (2002) Apoptotic cell death in renal injury: the rationale for intervention. Curr Drug Targets Immune Endocr Metabol Disord 2(2):181–192

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Director and workers of the Medical and Surgical Experimental Research Center of the University for their kind cooperation during the animal care.

Funding

This research was financially supported by the Scientific Research Projects Commission of the Eskisehir Osmangazi University (Eskişehir, Turkey) (Project #202011011).

Author information

Authors and Affiliations

Authors

Contributions

B.C., F.K., and H.Ş. designed the study. H.Ş., B.C., F.K., E.K., and M.Ö. performed surgical operations. B.C., F.K., E.K., M.Ö., G.K., and İ.Ö.A. analyzed biochemical experiments. D.B.D. performed histological analyses. F.K. and M.Ö. helped interpret the statistical data. B.C. wrote the paper and interpreted the data. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Betül Can.

Ethics declarations

Ethics Approval

All animal research protocols in this study were approved by the Institutional Ethics Committee (HADYEK, Protocol #772/2019).

Consent for Publication

All authors have given consent for the manuscript to be published by the corresponding author.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Can, B., Kar, F., Kar, E. et al. Conivaptan and Boric Acid Treatments in Acute Kidney Injury: Is This Combination Effective and Safe?. Biol Trace Elem Res 200, 3723–3737 (2022). https://doi.org/10.1007/s12011-021-02977-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-021-02977-8

Keywords

Navigation