Skip to main content

Advertisement

Log in

Novel pharmacological approaches to the treatment of renal ischemia-reperfusion injury: a comprehensive review

  • Review
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Renal ischemia-reperfusion (I-R) contributes to the development of ischemic acute renal failure (ARF). Multi-factorial processes are involved in the development and progression of renal I-R injury with the generation of reactive oxygen species, nitric oxide and peroxynitrite, and the decline of antioxidant protection playing major roles, leading to dysfunction, injury, and death of the cells of the kidney. Renal inflammation, involving cytokine/adhesion molecule cascades with recruitment, activation, and diapedesis of circulating leukocytes is also implicated. Clinically, renal I-R occurs in a variety of medical and surgical settings and is responsible for the development of acute tubular necrosis (a characteristic feature of ischemic ARF), e.g., in renal transplantation where I-R of the kidney directly influences graft and patient survival. The cellular mechanisms involved in the development of renal I-R injury have been targeted by several pharmacological interventions. However, although showing promise in experimental models of renal I-R injury and ischemic ARF, they have not proved successful in the clinical setting (e.g., atrial natriuretic peptide, low-dose dopamine). This review highlights recent pharmacological developments, which have shown particular promise against experimental renal I-R injury and ischemic ARF, including novel antioxidants and antioxidant enzyme mimetics, nitric oxide and nitric oxide synthase inhibitors, erythropoietin, peroxisome-proliferator-activated receptor agonists, inhibitors of poly(ADP-ribose) polymerase, carbon monoxide-releasing molecules, statins, and adenosine. Novel approaches such as recent research involving combination therapies and the potential of non-pharmacological strategies are also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abdelkarim GE, Gertz K, Harms C, Katchanov J, Dirnagl U, Szabó C, Endres M (2001) Protective effects of PJ34, a novel, potent inhibitor of poly(ADP-ribose) polymerase (PARP) in in vitro and in vivo models of stroke. Int J Mol Med 7:255–260

    PubMed  CAS  Google Scholar 

  • Abdelrahman M, Sivarajah A, Thiemermann C (2005) Beneficial effects of PPAR-gamma ligands in ischemia-reperfusion injury, inflammation and shock. Cardiovasc Res 65:772–781

    Article  PubMed  CAS  Google Scholar 

  • Abizaid AS, Clark CE, Mintz GS, Dosa S, Popma JJ, Pichard AD, Satler LF, Harvey M, Kent KM, Leon MB (1999) Effects of dopamine and aminophylline on contrast-induced acute renal failure after coronary angioplasty in patients with preexisting renal insufficiency. Am J Cardiol 83:260–263

    Article  PubMed  CAS  Google Scholar 

  • Abraham NG, Kappas A (2005) Heme oxygenase and the cardiovascular-renal system. Free Radic Biol Med 39:1–25

    Article  PubMed  CAS  Google Scholar 

  • Adin CA, Croker BP, Agarwal A (2005) Protective effects of exogenous bilirubin on ischemia-reperfusion injury in the isolated, perfused rat kidney. Am J Physiol Renal Physiol 288:F778–F784

    Article  PubMed  CAS  Google Scholar 

  • Agmon Y, Dinour D, Brezis M (1993) Disparate effects of adenosine A1- and A2-receptor agonists on intrarenal blood flow. Am J Physiol Renal Physiol 265:F802–F806

    CAS  Google Scholar 

  • Albrecht EW, van Goor H, Tiebosch AT, Moshage H, Tegzess AM, Stegeman CA (2000) Nitric oxide production and nitric oxide synthase expression in acute human renal allograft rejection. Transplantation 70:1610–1616

    Article  PubMed  CAS  Google Scholar 

  • Akbulut G, Dilek ON, Kahraman A, Koken T, Serteser M (2005) The correlation between renal tissue oxidative stress parameters and TNF-α levels in an experimental model of ischemia-reperfusion injury in mice. Ulus Travma Acil Cerrahi Derg 11:11–16

    PubMed  Google Scholar 

  • Aksoy Y, Yapanoglu T, Aksou H, Yildirim AK (2004) The effect of dehydroepiandrosterone on renal ischemia-reperfusion-induced oxidative stress in rabbits. Urol Res 32:93–96

    Article  PubMed  CAS  Google Scholar 

  • Alano CC, Kauppinen TM, Valls AV, Swanson RA (2006) Minocycline inhibits poly(ADP-ribose) polymerase-1 at nanomolar concentrations. Proc Natl Acad Sci USA 103:9685–9690

    Article  PubMed  CAS  Google Scholar 

  • Altunoluk B, Soylemez H, Oguz F, Turkmen E, Fadillioglu E (2006) An angiotensin-converting enzyme inhibitor, zofenopril, prevents renal ischemia/reperfusion injury in rats. Ann Clin Lab Sci 36:326–332

    PubMed  CAS  Google Scholar 

  • Aluclu MU, Acar A, Guzel A, Bahceci S, Yaldiz M (2007) Evaluation of erythropoietin effects on cerebral ischemia in rats. Neuro Endocrinol Lett 28: Epub ahead of print

  • Ame JC, Spenlehauer C, de Murcia G (2004) The PARP superfamily. Bioessays 26:882–893

    Article  PubMed  CAS  Google Scholar 

  • Anas C, Ozaki T, Maruyama S, Yamamoto T, Zu Gotoh M, Ono Y, Matsuo S (2007) Effects of olprinone, a phosphodiesterase III inhibitor, on ischemic acute renal failure. Int J Urol 14:219–225

    Article  PubMed  CAS  Google Scholar 

  • Anaya-Prado R, Toledo-Pereyra LH, Lentsch AB, Ward PA (2002) Ischemia/reperfusion injury. J Surg Res 105:248–258

    Article  PubMed  Google Scholar 

  • Araujo M, Welch WJ (2006) Oxidative stress and nitric oxide in kidney function. Curr Opin Nephrol Hypertens 15:72–77

    Article  PubMed  CAS  Google Scholar 

  • Aravindan N, Natarajan M, Shaw AD (2006a) Fenoldopam inhibits nuclear translocation of nuclear factor kappa B in a rat model of surgical ischemic acute renal failure. J Cardiothorac Vasc Anesth 20:179–186

    Article  PubMed  CAS  Google Scholar 

  • Aravindan N, Samuels J, Riedel B, Shaw A (2006b) Fenoldopam improves corticomedullary oxygen delivery and attenuates angiogenesis gene expression in acute ischemic renal injury. Kidney Blood Press Res 29:165–174

    Article  PubMed  CAS  Google Scholar 

  • Arend LJ, Bakris GL, Burnett JC Jr, Megerian C, Spielman WS (1987) Role for intrarenal adenosine in the renal hemodynamic response to contrast media. J Lab Clin Med 110:406–411

    PubMed  CAS  Google Scholar 

  • Aronowski J, Strong R, Shirzadi A, Grotta JC (2003) Ethanol plus caffeine (caffeinol) for treatment of ischemic stroke: preclinical experience. Stroke 34:1246–1251

    Article  PubMed  CAS  Google Scholar 

  • Aronson S, Blumenthal R (1998) Perioperative renal dysfunction and cardiovascular anesthesia: concerns and controversies. J Cardiothorac Vasc Anesth 12:567–586

    Article  PubMed  CAS  Google Scholar 

  • Ar’Rajab A, Dawidson I, Fabia R (1996) Reperfusion injury. New Horiz 4:224–234

    PubMed  CAS  Google Scholar 

  • Ashwood-Smith MJ (1967) Radioprotective and cryoprotective properties of dimethyl sulfoxide in cellular systems. Ann N Y Acad Sci 141:45–62

    Article  PubMed  CAS  Google Scholar 

  • Awad AS, Okusa MD (2007) Distant organ injury following acute kidney injury. Am J Physiol Renal Physiol; Epub ahead of print

  • Awad AS, Ye H, Huang L, Li L, Foss FW Jr, Macdonald TL, Lynch KR, Okusa MD (2006) Selective sphingosine 1-phosphate 1 receptor activation reduces ischemia-reperfusion injury in mouse kidney. Am J Physiol Renal Physiol 290:F1516–F1524

    Article  PubMed  CAS  Google Scholar 

  • Bahlmann FH, Song R, Boehm SM, Mengel M, von Wasielewski R, Lindschau C, Kirsch T, de Groot K, Laudeley R, Niemczyk E, Guler F, Menne J, Haller H, Fliser D (2004) Low-dose therapy with the long-acting erythropoietin analogue darbepoetin alpha persistently activates endothelial Akt and attenuates progressive organ failure. Circulation 110:1006–1012

    Article  PubMed  CAS  Google Scholar 

  • Baker GL, Corry RJ, Autor AP (1985) Oxygen free radical induced damage in kidneys subjected to warm ischemia and reperfusion. Protective effect of superoxide dismutase. Ann Surg 202:628–641

    Article  PubMed  CAS  Google Scholar 

  • Baliga R, Ueda N, Walker PD, Shah SV (1999) Oxidant mechanisms in toxic acute renal failure. Drug Metab Rev 31:971–997

    Article  PubMed  CAS  Google Scholar 

  • Banasik M, Ueda K (1999) Dual inhibitory effects of dimethyl sulfoxide on poly(ADP-ribose) synthetase. J Enzyme Inhib 14:239–250

    PubMed  CAS  Google Scholar 

  • Banasik M, Komura H, Shimoyama M, Ueda K (1992) Specific inhibitors of poly(ADP-ribose) synthetase and mono(ADP-ribosyl) transferase. J Biol Chem 267:1569–1575

    PubMed  CAS  Google Scholar 

  • Bartosikova L, Necas J, Suchy V, Janostikova E, Bartosik T, Jurica J, Florian T, Klusakova J, Frydrych M (2006) Protective effects of osajin in ischemia-reperfusion of laboratory rat kidney. Pharmazie 61:552–555

    PubMed  CAS  Google Scholar 

  • Basireddy M, Isbell TS, Teng X, Patel RP, Agarwal A (2006) Effects of sodium nitrite on ischemia-reperfusion injury in the rat kidney. Am J Physiol Renal Physiol 290:F779–F786

    Article  PubMed  CAS  Google Scholar 

  • Bates CM, Lin F (2005) Future strategies in the treatment of acute renal failure: growth factors, stem cells, and other novel therapies. Curr Opin Pediatr 17:215–220

    Article  PubMed  Google Scholar 

  • Battistini B, Dussault P (1998) The many aspects of endothelins in ischemia-reperfusion injury: emergence of a key mediator. J Invest Surg 11:297–313

    Article  PubMed  CAS  Google Scholar 

  • Bayati A, Kallskog O, Odlind B, Wolgast M (1988) Plasma elimination kinetics and renal handling of copper/zinc superoxide dismutase in the rat. Acta Physiol Scand 134:65–74

    PubMed  CAS  Google Scholar 

  • Beckman JS, Beckman TW, Chen J, Marshalland PA, Freeman BA (1990) Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA 87:1620–1624

    Article  PubMed  CAS  Google Scholar 

  • Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P, Acute Dialysis Quality Initiative Workgroup (2004) Acute renal failure—definition, outcome measures, animal models, fluid therapy and information technology needs: Second International Consensus Conference of the Acute Dialysis Quality Initiative Group. Crit Care 8:R204–R212

    Article  PubMed  Google Scholar 

  • Bellosta S, Bernini F, Ferri N, Quarato P, Canavesi M, Arnaboldi L, Fumagalli R, Paoletti R, Corsini A (1998) Direct vascular effects of HMG-CoA reductase inhibitors. Atherosclerosis 137:S101–S109

    Article  PubMed  CAS  Google Scholar 

  • Berger NA (1985) Poly(ADP-ribose) in the cell response to DNA damage. Radiat Res 101:4–15

    Article  PubMed  CAS  Google Scholar 

  • Bernhardt WM, Campean V, Kany S, Jurgensen JS, Weidemann A, Warnecke C, Arend M, Klaus S, Gunzler V, Amann K, Willam C, Wiesener MS, Eckardt KU (2006) Preconditional activation of hypoxia-inducible factors ameliorates ischemic acute renal failure. J Am Soc Nephrol 17:1970–1978

    Article  PubMed  CAS  Google Scholar 

  • Bishop-Bailey D, Wray J (2003) Peroxisome proliferator-activated receptors: a critical review on endogenous pathways for ligand generation. Prostaglandins Other Lipid Mediat 71:1–22

    Article  PubMed  CAS  Google Scholar 

  • Blantz RC, Munger K (2002) Role of nitric oxide in inflammatory conditions. Nephron 90:373–378

    Article  PubMed  Google Scholar 

  • Bodwell W (1989) Ischemia, reperfusion and reperfusion injury: role of oxygen free radicals and oxygen free radical scavengers. J Cardiovasc Nurs 4:25–32

    PubMed  CAS  Google Scholar 

  • Bonetti PO, Lerman LO, Napoli C, Lerman A (2003) Statin effects beyond lipid lowering -are they clinically relevant? Eur Heart J 24:225–248

    Article  PubMed  CAS  Google Scholar 

  • Bonventre JV (1993) Mechanisms of ischemic acute renal failure. Kidney Int 43:1160–1178

    Article  PubMed  CAS  Google Scholar 

  • Bonventre JV (2002) Kidney ischemic preconditioning. Curr Opin Nephrol Hypertens 11:43–48

    Article  PubMed  Google Scholar 

  • Bonventre JV (2007) Pathophysiology of acute kidney injury: roles of potential inhibitors of inflammation. Contrib Nephrol 156:39–46

    PubMed  CAS  Google Scholar 

  • Bonventre JV, Weinberg JM (2003) Recent advances in the pathophysiology of ischemic acute renal failure. J Am Soc Nephrol 14:2199–2210

    Article  PubMed  Google Scholar 

  • Bonventre JV, Zuk A (2004) Ischemic acute renal failure: an inflammatory disease? Kidney Int 66:480–485

    Article  PubMed  CAS  Google Scholar 

  • Boros P, Bromberg JS (2006) New cellular and molecular immune pathways in ischemia/reperfusion injury. Am J Transplant 6:652–658

    Article  PubMed  CAS  Google Scholar 

  • Bowie A, O’Neill LA (2000) Oxidative stress and NF-κB activation: a reassessment of the evidence in the light of recent discoveries. Biochem Pharmacol 59:13–23

    Article  PubMed  CAS  Google Scholar 

  • Bozlu M, Eskandari G, Cayan S, Canpolat B, Akbay E, Atik U (2003) The effect of poly (adenosine diphosphate-ribose) polymerase inhibitors on biochemical changes in testicular ischemia-reperfusion injury. J Urol 169:1870–1873

    Article  PubMed  CAS  Google Scholar 

  • Braissant O, Foufelle F, Scotto C, Dauca M, Wahli W (1996) Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-α, -β, and -γ in the adult rat. Endocrinology 137:354–366

    Article  PubMed  CAS  Google Scholar 

  • Brenner RM, Chertow GM (1997) The rise and fall of atrial natriuretic peptide for acute renal failure. Curr Opin Nephrol Hypertens 6:474–476

    PubMed  CAS  Google Scholar 

  • Brines M, Cerami A (2006) Discovering erythropoietin’s extra-hematopoietic functions: biology and clinical promise. Kidney Int 70:246–250

    Article  PubMed  CAS  Google Scholar 

  • Burdick AD, Kim DJ, Peraza MA, Gonzalez FJ, Peters JM (2006) The role of peroxisome proliferator-activated receptor-beta/delta in epithelial cell growth and differentiation. Cell Signal 18:9–20

    Article  PubMed  CAS  Google Scholar 

  • Burne-Taney MJ, Rabb H (2003) The role of adhesion molecules and T cells in ischemic renal injury. Curr Opin Nephrol Hypertens 12:85–90

    Article  PubMed  CAS  Google Scholar 

  • Burns AT, Davies DR, McLaren AJ, Cerundolo L, Morris PJ, Fuggle SV (1998) Apoptosis in ischemia/reperfusion injury of human renal allografts. Transplantation 66:872–876

    Article  PubMed  CAS  Google Scholar 

  • Burns KE, Chu MW, Novick RJ, Fox SA, Gallo K, Martin CM, Stitt LW, Heidenheim AP, Myers ML, Moist L (2005) Perioperative N-acetylcysteine to prevent renal dysfunction in high risk patients undergoing CABG surgery: a randomised controlled trial. JAMA 294:342–350

    Article  PubMed  CAS  Google Scholar 

  • Burton CJ, Tomson CR (1999) Can the use of low-dose dopamine for treatment of acute renal failure be justified? Postgrad Med J 75:269–274

    PubMed  CAS  Google Scholar 

  • Cagnoli CM, Atabay C, Kharlamova E, Manev H (1995) Melatonin protects neurons from singlet oxygen-induced apoptosis. J Pineal Res 18:222–226

    Article  PubMed  CAS  Google Scholar 

  • Cakmak A, Yemisci M, Koksoy C, Yazgan U, Dincer D, Dalkara T (2007) Statin pre-treatment protects brain against focal cerebral ischemia in diabetic mice. J Surg Res 138:254–258

    Article  PubMed  CAS  Google Scholar 

  • Campese VM, Hadaya B, Chiu J (2005) HMG-CoA reductase inhibitors and the kidney. Curr Hypertens Rep 7:337–342

    Article  PubMed  CAS  Google Scholar 

  • Cao CC, Ding XQ, Ou ZL, Liu CF, Li P, Wang L, Zhu CF (2004) In vivo transfection of NF-kappaB decoy oligodeoxynucleotides attenuate renal ischemia/reperfusion injury in rats. Kidney Int 65:834–845

    Article  PubMed  CAS  Google Scholar 

  • Casey PJ, Black JH, Szabó C, Frosch M, Albadawi H, Chen M, Cambria RP, Watkins MT (2005) Poly(adenosine diphosphate ribose) polymerase inhibition modulates spinal cord dysfunction after thoracoabdominal aortic ischemia-reperfusion. J Vasc Surg 41:99–107

    Article  PubMed  Google Scholar 

  • Cecka JM, Cho YW, Terasaki PI (1992) Analyses of the UNOS scientific renal transplant registry at 3 years—Early events affecting transplant success. Transplantation 53:59–64

    Article  PubMed  CAS  Google Scholar 

  • Cerqueira MD (2006) Advances in pharmacologic agents in imaging: new A2A receptor agonists. Curr Cardiol Rep 8:119–122

    Article  PubMed  Google Scholar 

  • Chade AR, Zhu X, Mushin OP, Napoli C, Lerman A, Lerman LO (2006) Simvastatin promotes angiogenesis and prevents microvascular remodeling in chronic renal ischemia. FASEB J 20:1706–1708

    Article  PubMed  CAS  Google Scholar 

  • Chambon P, Weill JD, Mandel P (1963) Nicotinamide mononucleotide activation of new DNA-dependent polyadenylic acid synthesizing nuclear enzyme. Biochem Biophys Res Commun 11:39–43

    Article  PubMed  CAS  Google Scholar 

  • Chander V, Chopra K (2005a) Renal protective effect of molsidomine and L-arginine in ischemia-reperfusion induced injury in rats. J Surg Res 128:132–139

    PubMed  CAS  Google Scholar 

  • Chander V, Chopra K (2005b) Role of nitric oxide in resveratrol-induced renal protective effects of ischemic preconditioning. J Vasc Surg 42:1198–1205

    Article  PubMed  Google Scholar 

  • Chander V, Chopra K (2006) Protective effect of nitric oxide pathway in resveratrol renal ischemia-reperfusion injury in rats. Arch Med Res 37:19–26

    Article  PubMed  CAS  Google Scholar 

  • Chatterjee PK (2004) Water-soluble carbon monoxide-releasing molecules: helping to elucidate the vascular activity of the ‘silent killer’. Br J Pharmacol 142:391–393

    Article  PubMed  CAS  Google Scholar 

  • Chatterjee PK (2005) Pleiotropic renal actions of erythropoietin. Lancet 365:1890–1892

    Article  PubMed  CAS  Google Scholar 

  • Chatterjee PK (2006) On the road to discovering protective endogenous peroxisome proliferator-activator receptor-gamma ligands for endotoxemia: are we there yet? Crit Care Med 34:1277–1279

    Article  PubMed  Google Scholar 

  • Chatterjee PK (2007) Physiological activities of carbon monoxide-releasing molecules: Ça ira. Br J Pharmacol 150:961–962

    Article  PubMed  CAS  Google Scholar 

  • Chatterjee PK, Thiemermann C (1998) Inhibitors of poly (ADP-ribose) synthetase protect rat renal proximal tubular cells against oxidant stress. Biochem Soc Trans 26:S318

    PubMed  CAS  Google Scholar 

  • Chatterjee PK, Thiemermann C (2003) Emerging drugs for renal failure. Expert Opin Emerg Drugs 8:389–435

    Article  PubMed  CAS  Google Scholar 

  • Chatterjee PK, Cuzzocrea S, Thiemermann C (1999a) Inhibitors of poly(ADP-ribose) synthetase protect rat proximal tubular cells against oxidant stress. Kidney Int 56:973–984

    Article  PubMed  CAS  Google Scholar 

  • Chatterjee PK, Hawksworth GM, McLay JS (1999b) Cytokine-stimulated nitric oxide production in human renal proximal tubule and its modulation by natriuretic peptides: a novel immunomodulatory mechanism? Exp Nephrol 7:438–448

    Article  PubMed  CAS  Google Scholar 

  • Chatterjee PK, Cuzzocrea S, Brown PAJ, Zacharowski K, Stewart KN, Mota-Filipe H, Thiemermann C (2000a) Tempol, a membrane-permeable radical scavenger, reduces oxidant stress-mediated renal dysfunction and injury in the rat. Kidney Int 58:658–673

    Article  PubMed  CAS  Google Scholar 

  • Chatterjee PK, Zacharowski K, Cuzzocrea S, Otto M, Thiemermann C (2000b) Inhibitors of poly (ADP-ribose) synthetase reduce renal ischemia-reperfusion injury in the anesthetized rat in vivo. FASEB J 14:641–651

    PubMed  CAS  Google Scholar 

  • Chatterjee PK, Patel NSA, Kvale EO, Cuzzocrea S, Brown PAJ, Stewart KN, Mota-Filipe H, Thiemermann C (2002a) Inhibition of inducible nitric oxide synthase reduces renal ischemia reperfusion injury. Kidney Int 61:862–871

    Article  PubMed  CAS  Google Scholar 

  • Chatterjee PK, Zacharowski K, Cuzzocrea S, Brown PA, Stewart KN, Mota-Filipe H, Thiemermann C (2002b) Lipoteichoic acid from Staphylococcus aureus reduces renal ischemia reperfusion injury. Kidney Int 62:1249–1263

    Article  PubMed  CAS  Google Scholar 

  • Chatterjee PK, di Villa Bianca RD, Sivarajah A, McDonald MC, Cuzzocrea S, Thiemermann C (2003a) Pyrrolidine dithiocarbamate reduces renal dysfunction and injury caused by ischemia/reperfusion of the rat kidney. Eur J Pharmacol 482:271–280

    Article  PubMed  CAS  Google Scholar 

  • Chatterjee PK, Kvale EO, Patel NS, Thiemermann C (2003b) GW274150 inhibits nitric oxide production by rat proximal tubular cells. Med Sci Monit 9:BR357–BR362

    PubMed  CAS  Google Scholar 

  • Chatterjee PK, Patel NSA, Sivarajah A, Kvale EO, Dugo L, Cuzzocrea S, Brown PAJ, Stewart KN, Mota-Filipe H, Britti D, Yaqoob MM, Thiemermann C (2003c) GW274150, a novel, potent and highly selective inhibitor of iNOS, reduces experimental renal ischemia reperfusion injury. Kidney Int 63:853–865

    Article  PubMed  CAS  Google Scholar 

  • Chatterjee PK, Chatterjee BE, Pedersen H, Sivarajah A, McDonald MC, Mota-Filipe H, Brown PA, Stewart KN, Cuzzocrea S, Threadgill MD, Thiemermann C (2004a) 5-Aminoisoquinolinone reduces renal injury and dysfunction caused by experimental ischemia/reperfusion. Kidney Int 65:499–509

    Article  PubMed  CAS  Google Scholar 

  • Chatterjee PK, Patel NSA, Cuzzocrea S, Brown PA, Stewart KN, Mota-Filipe H, Britti D, Eberhardt W, Pfeilschifter J, Thiemermann C (2004b) The cyclopentenone prostaglandin 15-deoxy-Δ12,14-prostaglandin J2 ameliorates ischemic acute renal failure. Cardiovasc Res 61:630–643

    Article  PubMed  CAS  Google Scholar 

  • Chatterjee PK, Patel NSA, Kvale EO, Brown PAJ, Stewart KN, Mota-Filipe H, Sharpe MA, Di Paola R, Cuzzocrea S, Thiemermann C (2004c) EUK-134 reduces renal injury caused by oxidative and nitrosative stress of the kidney. Am J Nephrol 24:165–177

    Article  PubMed  CAS  Google Scholar 

  • Chatterjee PK, Todorovic Z, Sivarajah A, Mota-Filipe H, Brown PA, Stewart KN, Cuzzocrea S, Thiemermann C (2004d) Differential effects of caspase inhibitors on the renal dysfunction and injury caused by ischemia-reperfusion of the rat kidney. Eur J Pharmacol 503:173–183

    Article  PubMed  CAS  Google Scholar 

  • Chatterjee PK, Todorovic Z, Sivarajah A, Mota-Filipe H, Brown PA, Stewart KN, Mazzon E, Cuzzocrea S, Thiemermann C (2005) Inhibitors of calpain activation (PD150606 and E-64) and renal ischemia-reperfusion injury. Biochem Pharmacol 69:1121–1131

    Article  PubMed  CAS  Google Scholar 

  • Chawla A, Barak Y, Nagy L, Liao D, Tontonoz P, Evans RM (2001) PPAR-γ dependent and independent effects on macrophage-gene expression in lipid metabolism and inflammation. Nat Med 7:48–52

    Article  PubMed  CAS  Google Scholar 

  • Chen CP, Lee YJ, Chiu ST, Shyu WC, Lee MY, Huang SP, Li H (2006) The application of stem cells in the treatment of ischemic diseases. Histol Histopathol 21:1209–1216

    PubMed  CAS  Google Scholar 

  • Chertow GM, Levy EM, Hammermeister KE, Grover F, Daley J (1998) Independent association between ARF and mortality following cardiac surgery. Am J Med 104:343–348

    Article  PubMed  CAS  Google Scholar 

  • Chiang WC, Chien CT, Lin WW, Lin SL, Chen YM, Lai CF, Wu KD, Chao J, Tsai TJ (2006) Early activation of bradykinin B2 receptor aggravates reactive oxygen species generation and renal damage in ischemia/reperfusion injury. Free Radic Biol Med 41:1304–1314

    Article  PubMed  CAS  Google Scholar 

  • Chiarugi A (2002) Poly(ADP-ribose) polymerase: killer or conspirator? The ‘suicide hypothesis’ revisited. Trends Pharmacol Sci 23:122–129

    Article  PubMed  CAS  Google Scholar 

  • Chida N, Hirasawa Y, Ohkawa T, Ishii Y, Sudo Y, Tamura K, Mutoh S (2005) Pharmacological profile of FR260330, a novel orally active inducible nitric oxide synthase inhibitor. Eur J Pharmacol 509:71–76

    Article  PubMed  CAS  Google Scholar 

  • Chintala MS, Chiu PJS, Vemulapalli S, Watkins RW, Sybertz EJ (1993) Inhibition of endothelial derived relaxing factor (EDRF) aggravates ischemic acute renal failure in anaesthetised rats. Naunyn-Schmiedeberg’s Arch Pharmacol 348:305–310

    CAS  Google Scholar 

  • Cho EJ, Yokozawa T, Rhee SH, Park KY (2004) The role of Coptidis Rhizoma extract in a renal ischemia-reperfusion model. Phytomedicine 11:576–584

    Article  PubMed  CAS  Google Scholar 

  • Chung BH, Lim SW, Ahn KO, Sugawara A, Ito S, Choi BS, Kim YS, Bang BK, Yang CW (2005) Protective effect of peroxisome proliferator activated receptor γ agonists on diabetic and non-diabetic renal diseases. Nephrology (Carlton) 10:S40–S43

    Article  CAS  Google Scholar 

  • Clark JE, Foresti R, Green CJ, Motterlini R (2000) Dynamics of haem oxygenase-1 expression and bilirubin production in cellular protection against oxidative stress. Biochem J 348:615–619

    Article  PubMed  CAS  Google Scholar 

  • Cochrane J, Williams BT, Banerjee A, Harken AH, Burke TJ, Cairns CB, Shapiro JI (1999) Ischemic preconditioning attenuates functional, metabolic, and morphologic injury from ischemic acute renal failure in the rat. Ren Fail 21:135–145

    PubMed  CAS  Google Scholar 

  • Collin M, Murch O, Thiemermann C (2006) PPAR-γ antagonists GW9662 and T0070907 reduce the protective effects of lipopolysaccharide preconditioning against organ failure caused by endotoxemia. Crit Care Med 34:1131–1138

    Article  PubMed  CAS  Google Scholar 

  • Collino M, Aragno M, Mastrocola R, Benetti E, Gallicchio M, Dianzani C, Danni O, Thiemermann C, Fantozzi R (2006a) Oxidative stress and inflammatory response evoked by transient cerebral ischemia/reperfusion: effects of the PPAR-α agonist WY14643. Free Radic Biol Med 41:579–589

    Article  PubMed  CAS  Google Scholar 

  • Collino M, Aragno M, Mastrocola R, Gallicchio M, Rosa AC, Dianzani C, Danni O, Thiemermann C, Fantozzi R (2006b) Modulation of the oxidative stress and inflammatory response by PPAR-γ agonists in the hippocampus of rats exposed to cerebral ischemia/reperfusion. Eur J Pharmacol 530:70–80

    Article  PubMed  CAS  Google Scholar 

  • Conger JD (1995) Interventions in clinical acute renal failure: what are the data? Am J Kidney Dis 26:565–576

    PubMed  CAS  Google Scholar 

  • Conti M, Eschwege P, Ahmed M, Paradis V, Droupy S, Loric S, Bedossa P, Charpentier B, Legrand A, Benoit G (2000) Antioxidant enzymatic activities and renal warm ischemia: correlation with the duration of ischemia. Transplant Proc 32:2740–2741

    Article  PubMed  CAS  Google Scholar 

  • Cortes U, Tong WM, Coyle DL, Meyer-Ficca ML, Meyer RG, Petrilli V, Herceg Z, Jacobson EL, Jacobson MK, Wang ZQ (2004) Depletion of the 110-kilodalton isoform of poly(ADP-ribose) glycohydrolase increases sensitivity to genotoxic and endotoxic stress in mice. Mol Cell Biol 24:7163–7178

    Article  PubMed  CAS  Google Scholar 

  • Cosi C (2002) New inhibitors of poly(ADP-ribose) polymerase and their potential therapeutic targets. Expert Opin Ther Pat 12:1047–1071

    Article  CAS  Google Scholar 

  • Cotgreave IA (1997) N-acetylcysteine: pharmacological considerations and experimental and clinical applications. Adv Pharmacol 38:205–227

    PubMed  CAS  Google Scholar 

  • Couser WG (1998) Pathogenesis of glomerular damage in glomerulonephritis. Nephrol Dial Transplant 13:10–15

    Article  PubMed  Google Scholar 

  • Cruthirds DL, Saba H, MacMillan-Crow LA (2005) Overexpression of manganese superoxide dismutase protects against ATP depletion-mediated cell death of proximal tubule cells. Arch Biochem Biophys 437:96–105

    Article  PubMed  CAS  Google Scholar 

  • Cuzzocrea S (2004) Peroxisome proliferator-activated receptors gamma ligands and ischemia and reperfusion injury. Vascul Pharmacol 41:187–195

    Article  CAS  Google Scholar 

  • Cuzzocrea S, Wang ZQ (2005) Role of poly(ADP-ribose) glycohydrolase (PARG) in shock, ischemia and reperfusion. Pharmacol Res 52:100–108

    Article  PubMed  CAS  Google Scholar 

  • Cuzzocrea S, Zingarelli B, Costantino G, Szabó A, Salzman AL, Caputi AP, Szabó C (1997) Beneficial effects of 3-aminobenzamide, an inhibitor of poly(ADP-ribose) synthetase in a rat model of splanchnic artery occlusion/reperfusion. Br J Pharmacol 121:1065–1074

    Article  PubMed  CAS  Google Scholar 

  • Cuzzocrea S, Mazzon E, De Sarro A, Caputi AP (2000) Role of free radicals and poly(ADP-ribose) synthetase in intestinal tight junction permeability. Mol Med 6:766–778

    PubMed  CAS  Google Scholar 

  • Cuzzocrea S, Mazzon E, Dugo L, Serraino I, Di Paola R, Britti D, De Sarro A, Pierpaoli S, Caputi A, Masini E, Salvemini D (2002a) A role for superoxide in gentamicin-mediated nephropathy in rats. Eur J Pharmacol 450:67–76

    Article  PubMed  CAS  Google Scholar 

  • Cuzzocrea S, McDonald MC, Mazzon E, Dugo L, Serraino I, Threadgill M, Caputi AP, Thiemermann C (2002b) Effects of 5-aminoisoquinolinone, a water-soluble, potent inhibitor of the activity of poly (ADP-ribose) polymerase, in a rodent model of lung injury. Biochem Pharmacol 63:293–304

    Article  PubMed  CAS  Google Scholar 

  • Cuzzocrea S, Pisano B, Dugo L, Ianaro A, Patel NS, Di Paola R, Genovese T, Chatterjee PK, Di Rosa M, Caputi AP, Thiemermann C (2003) Rosiglitazone and 15-deoxy-Δ12,14-prostaglandin J2, ligands of the peroxisome proliferator-activated receptor-γ (PPAR-γ), reduce ischaemia/reperfusion injury of the gut. Br J Pharmacol 140:366–376

    Article  PubMed  CAS  Google Scholar 

  • Cuzzocrea S, Di Paola R, Mazzon E, Cortes U, Genovese T, Muia C, Li W, Xu W, Li JH, Zhang J, Wang ZQ (2005) PARG activity mediates intestinal injury induced by splanchnic artery occlusion and reperfusion. FASEB J 19:558–566

    Article  PubMed  CAS  Google Scholar 

  • Daha MR, van Kooten C (2000) Is the proximal tubular cell a proinflammatory cell? Nephrol Dial Transplant 15:41–43

    Article  PubMed  Google Scholar 

  • Das DK, Maulik N (1994) Antioxidant effectiveness in ischemia-reperfusion tissue injury. Methods Enzymol 233:601–610

    PubMed  CAS  Google Scholar 

  • Davies SJ, Reichardt-Pascal SY, Vaughan D, Russell GI (1995) Differential effect of ischaemia-reperfusion injury on anti-oxidant enzyme activity in the rat kidney. Exp Nephrol 3:348–354

    PubMed  CAS  Google Scholar 

  • Davignon J, Leiter LA (2005) Ongoing clinical trials of the pleiotropic effects of statins. Vasc Health Risk Manag 1:29–40

    Article  PubMed  CAS  Google Scholar 

  • de Araujo M, Andrade L, Coimbra TM, Rodrigues AC Jr, Seguro AC (2005) Magnesium supplementation combined with N-acetylcysteine protects against post-ischemic acute renal failure. J Am Soc Nephrol 16:3339–3349

    Article  PubMed  CAS  Google Scholar 

  • Delagrange P, Boutin JA (2006) Therapeutic potential of melatonin ligands. Chronobiol Int 23:413–418

    Article  PubMed  CAS  Google Scholar 

  • Demirbilek S, Karaman A, Baykarabulut A, Akin M, Gurunluoglu K, Turkmen E, Tas E, Aksoy RT, Edali MN (2006) Polyenylphosphatidylcholine pretreatment ameliorates ischemic\acute renal injury in rats. Int J Urol 13:747–753

    Article  PubMed  CAS  Google Scholar 

  • Demirogullari B, Ekingen G, Guz G, Bukan N, Erdem O, Ozen IO, Memis L, Sert S (2006) A comparative study of the effects of hemin and bilirubin on bilateral renal ischemia reperfusion injury. Nephron Exp Nephrol 103:e1–e5

    Article  PubMed  CAS  Google Scholar 

  • Deneke SM (2000) Thiol-based antioxidants. Curr Top Cell Regul 36:151–180

    PubMed  CAS  Google Scholar 

  • Deniz E, Colakoglu N, Sari A, Sonmez MF, Tugrul I, Oktar S, Ilhan S, Sahna E (2006) Melatonin attenuates renal ischemia-reperfusion injury in nitric oxide synthase inhibited rats. Acta Histochem 108:303–309

    Article  PubMed  CAS  Google Scholar 

  • Desvergne B, Wahli W (1999) Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr Rev 20:649–688

    Article  PubMed  CAS  Google Scholar 

  • Desvergne B, Michalik L, Wahli W (2004) Be fit or be sick: peroxisome proliferator-activated receptors are down the road. Mol Endocrinol 18:1321–1332

    Article  PubMed  CAS  Google Scholar 

  • Devarajan P, Mishra J, Supavekin S, Patterson LT, Steven Potter S (2003) Gene expression in early ischemic renal injury: clues towards pathogenesis, biomarker discovery, and novel therapeutics. Mol Genet Metab 80:365–376

    Article  PubMed  CAS  Google Scholar 

  • de Vries B, Matthijsen RA, van Bijnen AA, Wolfs TG, Buurman WA (2003) Lysophosphatidic acid prevents renal ischemia-reperfusion injury by inhibition of apoptosis and complement activation. Am J Pathol 163:47–56

    PubMed  Google Scholar 

  • Di Giorno C, Pinheiro HS, Heinke T, Franco MF, Galante NZ, Pacheco-Silva A, Camara NO (2006) Beneficial effect of N-acetyl-cysteine on renal injury triggered by ischemia and reperfusion. Transplant Proc 38:2774–2776

    Article  PubMed  CAS  Google Scholar 

  • Di Mari J, Megyesi J, Udvarhelyi N, Price P, Davis R, Safirstein R (1997) N-acetyl cysteine ameliorates ischemic renal failure. Am J Physiol 272:F292–F298

    Google Scholar 

  • Di Napoli P, Antonio Taccardi A, Grilli A, Spina R, Felaco M, Barsotti A, De Caterina R (2001) Simvastatin reduces reperfusion injury by modulating nitric oxide synthase expression: an ex vivo study in isolated working rat hearts. Cardiovasc Res 51:283–293

    Article  PubMed  Google Scholar 

  • Di Napoli P, Taccardi AA, Grilli A, De Lutiis MA, Barsotti A, Felaco M, De Caterina R (2005) Chronic treatment with rosuvastatin modulates nitric oxide synthase expression and reduces ischemia-reperfusion injury in rat hearts. Cardiovasc Res 66:462–471

    Article  PubMed  CAS  Google Scholar 

  • Ding G, Cheng L, Qin Q, Frontin S, Yang Q (2006) PPARδ modulates lipopolysaccharide-induced TNFα inflammation signalling in cultured cardiomyocytes. J Mol Cell Cardiol 40:821–828

    Article  PubMed  CAS  Google Scholar 

  • Di Paola R, Cuzzocrea S (2007) Peroxisome proliferator-activated receptors ligands and ischemia-reperfusion injury. Naunyn Schmiedebergs Arch Pharmacol 375:157–175

    Article  PubMed  CAS  Google Scholar 

  • Dishart MK, Kellum JA (2000) An evaluation of pharmacological strategies for the prevention and treatment of acute renal failure. Drugs 59:79–91

    Article  PubMed  CAS  Google Scholar 

  • Dobashi K, Singh I, Orak JK, Asayama K, Singh AK (2002) Combination therapy of N-acetylcysteine, sodium nitroprusside and phosphoramidon attenuates ischemia-reperfusion injury in rat kidney. Mol Cell Biochem 240:9–17

    Article  PubMed  CAS  Google Scholar 

  • Doi K, Suzuki Y, Nakao A, Fujita T, Noiri E (2004) Radical scavenger edaravone developed for clinical use ameliorates ischemia/reperfusion injury in rat kidney. Kidney Int 65:1714–1723

    Article  PubMed  CAS  Google Scholar 

  • Doi S, Masaki T, Arakawa T, Takahashi S, Kawai T, Nakashima A, Nobooki K, Yarioka N (2006) Peroxisome proliferators-activated receptor gamma ligand inhibits apoptotic cell death and increases HGF expression in rat kidneys with ischemia-reperfusion injury (Abstract SA-PO504). J Am Soc Nephrol 17:682A

    Article  CAS  Google Scholar 

  • Domanski L, Sulikowski T, Safranow K, Pawlik A, Olszewska M, Chlubek D, Urasinska E, Ciechanowski K (2006) Effect of trimetzidine on the nucleotide profile in rat kidney with ischemia-reperfusion injury. Eur J Pharm Sci 27:320–327

    Article  PubMed  CAS  Google Scholar 

  • Dong X, Swaminathan S, Bachman LA, Croatt AJ, Nath KA, Griffin MD (2007) Resident dendritic cells are the predominant TNF-secreting cell in early renal ischemia-reperfusion injury. Kidney Int 71:619–628

    Article  PubMed  CAS  Google Scholar 

  • Du C, Guan Q, Diao H, Yin Z, Jevnikar AM (2006) Nitric oxide induces apoptosis in renal tubular epithelial cells through activation of caspase-8. Am J Physiol Renal Physiol 290:F1044–F1054

    Article  PubMed  CAS  Google Scholar 

  • Duffield JS, Hong S, Vaidya VS, Lu Y, Fredman G, Serhan CN, Bonventre JV (2006) Resolvin D series and protectin D1 mitigate acute kidney injury. J Immunol 177:5902–5911

    PubMed  CAS  Google Scholar 

  • Duranski MR, Greer JJ, Dejam A, Jaganmohan S, Hogg N, Langston W, Patel RP, Yet SF, Wang X, Kevil CG, Gladwin MT, Lefer DJ (2005) Cytoprotective effects of nitrite during in vivo ischemia-reperfusion of the heart and liver. J Clin Invest 115:1232–1240

    Article  PubMed  CAS  Google Scholar 

  • Eckardt KU (2000) Acute renal failure—more than kidney ischemia? Wien Klin Wochenschr 112:145–148

    PubMed  CAS  Google Scholar 

  • Edelstein CL, Ling H, Wansiripaisan A, Schrier RW (1997) Emerging therapies for acute renal failure. Am J Kidney Dis 30:S89–S95

    PubMed  CAS  Google Scholar 

  • Eisen A, Fisman EZ, Rubenfire M, Freimark D, McKechnie R, Tenenbaum A, Motro M, Adler Y (2004) Ischemic preconditioning: nearly two decades of research. A comprehensive review. Atherosclerosis 172:201–210

    Article  PubMed  CAS  Google Scholar 

  • Eliasson MJ, Sampei K, Mandir AS, Hurn PD, Traystman RJ, Bao J, Pieper A, Wang ZQ, Dawson TM, Snyder SH, Dawson VL (1997) Poly(ADP-ribose) polymerase gene disruption renders mice resistant to cerebral ischemia. Nat Med 3:1089–1095

    Article  PubMed  CAS  Google Scholar 

  • El Nahas AM, Bello AK (2005) Chronic kidney disease: the global challenge. Lancet 365:331–340

    Google Scholar 

  • Endres M, Laufs U, Huang Z, Nakamura T, Huang P, Moskowitz MA, Liao JK (1998) Stroke protection by 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase inhibitors mediated by endothelial nitric oxide synthase. Proc Natl Acad Sci USA 95:8880–8885

    Article  PubMed  CAS  Google Scholar 

  • Epstein M, Campese VM (2005) Pleiotropic effects of 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitors on renal function. Am J Kidney Dis 45:2–14

    Article  PubMed  CAS  Google Scholar 

  • Erbas H, Aydogdu N, Kaymak K (2004) Effects of N-acetylcysteine on arginase, ornithine and nitric oxide in renal ischemia-reperfusion injury. Pharmacol Res 50:523–527

    Article  PubMed  CAS  Google Scholar 

  • Erbayraktar S, Grasso G, Sfacteria A, Xie QW, Coleman T, Kreilgaard M, Torup L, Sager T, Erbayraktar Z, Gokmen N, Yilmaz O, Ghezzi P, Villa P, Fratelli M, Casagrande S, Leist M, Helboe L, Gerwein J, Christensen S, Geist MA, Pedersen LO, Cerami-Hand C, Wuerth JP, Cerami A, Brines M (2003) Asialoerythropoietin is a nonerythropoietic cytokine with broad neuroprotective activity in vivo. Proc Natl Acad Sci USA 100:6741–6746

    Article  PubMed  CAS  Google Scholar 

  • Erdogan H, Fadillioglu E, Emre MH (2006a) Protection from renal ischemia reperfusion injury by an endothelin-A receptor antagonist BQ-123 in relation to nitric oxide production. Toxicology 228:219–228

    Article  PubMed  CAS  Google Scholar 

  • Erdogan H, Fadillioglu E, Yagmurca M, Ucar M, Irmak MK (2006b) Protein oxidation and lipid peroxidation after renal ischemia-reperfusion injury: protective effects of erdosteine and N-acetylcysteine. Urol Res 34:41–46

    Article  PubMed  CAS  Google Scholar 

  • Evans RM (1988) Steroid and thyroid hormone receptor superfamily. Science 240:889–895

    Article  PubMed  CAS  Google Scholar 

  • Evans P, Halliwell B (2001) Micronutrients: oxidant/antioxidant status. Br J Nutr 85:S67–S74

    PubMed  CAS  Google Scholar 

  • Farivar AS, Woolley SM, Fraga CH, Thomas R, Salzman AL, Szabó C, Mulligan MS (2004) Intratracheal poly (ADP) ribose synthetase inhibition ameliorates lung ischemia reperfusion injury. Ann Thorac Surg 77:1938–1943

    Article  PubMed  Google Scholar 

  • Faro R, Toyoda Y, McCully JD, Jagtap P, Szabó E, Virag L, Bianchi C, Levitsky S, Szabó C, Sellke FW (2002) Myocardial protection by PJ34, a novel potent poly (ADP-ribose) synthetase inhibitor. Ann Thorac Surg 73:575–581

    Article  PubMed  Google Scholar 

  • Feitoza CQ, Goncalves GM, Bertocchi AP, Wang PW, Damiao MJ, Cenedeze MA, Teixeira VP, Dos Reis MA, Pacheco-Silva A, Camara NO (2007) A role for HO-1 in renal function impairment in animals subjected to ischemic and reperfusion injury and treated with immunosuppressive drugs. Transplant Proc 39:424–426

    Article  PubMed  CAS  Google Scholar 

  • Filipovic DM, Meng X, Reeves WB (1999) Inhibition of PARP prevents oxidant-induced necrosis but not apoptosis in LLC-PK1 cells. Am J Physiol 277:F428–F436

    PubMed  CAS  Google Scholar 

  • Fiorillo C, Ponziani V, Giannini L, Cecchi C, Celli A, Nassi N, Lanzilao L, Caporale R, Nassi P (2006) Protective effects of the PARP-1 inhibitor PJ34 in hypoxic-reoxygenated cardiomyoblasts. Cell Mol Life Sci 63:3061–3071

    Article  PubMed  CAS  Google Scholar 

  • Fliser D, Bahlmann FH, deGroot K, Haller H (2006a) Mechanisms of disease: erythropoietin—an old hormone with a new mission? Nat Clin Pract Cardiovasc Med 3:563–572

    Article  PubMed  CAS  Google Scholar 

  • Fliser D, Bahlmann FH, Haller H (2006b) EPO: renoprotection beyond anemia correction. Pediatr Nephrol 21:1785–1789

    Article  PubMed  Google Scholar 

  • Fliser D, Novak J, Thongboonkerd V, Argiles A, Jankowski V, Girolami MA, Jankowski J, Mischak H (2007) Advances in urinary proteome analysis and biomarker discovery. J Am Soc Nephrol 18:1057–1071

    Article  PubMed  CAS  Google Scholar 

  • Fontana I, Germi MR, Beatini M, Fontana S, Bertocchi M, Porcile E, Saltalamacchia L, Ornis S, Ghinolfi D, Bonifazio L, Valente U (2005) Dopamine “renal dose” versus fenoldopam mesylate to prevent ischemia-reperfusion injury in renal transplantation. Transplant Proc 37:2474–2475

    Article  PubMed  CAS  Google Scholar 

  • Forman CJ, Johnson DW, Nicol DL (2007) Erythropoietin administration protects against functional impairment and cell death after ischaemic renal injury in pigs. BJU Int 99:162–165

    Article  PubMed  CAS  Google Scholar 

  • Fredenrich A, Grimaldi PA (2005) PPAR delta: an uncompletely known nuclear receptor. Diabetes Metab 31:23–27

    Article  PubMed  CAS  Google Scholar 

  • Frega NS, Di Bona DR, Guertler B, Leaf A (1976) Ischemic renal injury. Kidney Int 10:S17–S25

    Google Scholar 

  • Fridovich I (1995) Superoxide radical and dismutases. Annu Rev Biochem 64:97–112

    Article  PubMed  CAS  Google Scholar 

  • Fried LF, Orchard TJ, Kasiske BL (2001) Effect of lipid reduction on the progression of renal disease: a meta-analysis. Kidney Int 59:260–269

    Article  PubMed  CAS  Google Scholar 

  • Fruchart JC (2001) Peroxisome proliferator-activated receptor-alpha activation and high-density lipoprotein metabolism. Am J Cardiol 88:24N–29N

    Article  PubMed  CAS  Google Scholar 

  • Fujii T, Takaoka M, Ohkita M, Matsumura Y (2005) Tempol protects against ischemic acute renal failure by inhibiting renal noradrenaline overflow and endothelin-1 overproduction. Biol Pharm Bull 28:641–645

    Article  PubMed  CAS  Google Scholar 

  • Fuller TF, Serkova N, Niemann CU, Freise CE (2004) Influence of donor pretreatment with N-acetylcysteine on ischemia/reperfusion injury in rat kidney grafts. J Urol 171:1296–1300

    Article  PubMed  CAS  Google Scholar 

  • Gagné JP, Hendzel MJ, Droit A, Poirier GG (2006) The expanding role of poly(ADP-ribose) metabolism: current challenges and new perspectives. Curr Opin Cell Biol 18:145–151

    Article  PubMed  CAS  Google Scholar 

  • Gamelin LM, Zager RA (1988) Evidence against oxidant injury as a critical mediator of postischemic acute renal failure. Am J Physiol Renal Physiol 255:F450–F460

    CAS  Google Scholar 

  • Garcia JJ, Reiter RJ, Ortiz GG, Oh CS, Tang L, Yu BP, Escames G (1998) Melatonin enhances tamoxifen’s ability to prevent the reduction in microsomal membrane fluidity induced by lipid peroxidation. J Membr Biol 162:59–65

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Criado FJ, Eleno N, Santos-Benito F, Valdunciel JJ, Reverte M, Lozano-Sanchez FS, Ludena MD, Gomez-Alonso A, Lopez-Novoa JM (1998) Protective effect of exogenous nitric oxide on the renal function and inflammatory response in a model of ischemia-reperfusion. Transplantation 66:982–990

    Article  PubMed  CAS  Google Scholar 

  • Genovese T, Di Paola R, Catalano P, Li JH, Xu W, Massuda E, Caputi AP, Zhang J, Cuzzocrea S (2004) Treatment with a novel poly(ADP-ribose) glycohydrolase inhibitor reduces development of septic shock-like syndrome induced by zymosan in mice. Crit Care Med 32:1365–1374

    Article  PubMed  CAS  Google Scholar 

  • Gilbert RE, Kelly DJ, Atkins RC (2001) Novel approaches to the treatment of progressive renal disease. Curr Opin Pharmacol 1:183–189

    Article  PubMed  CAS  Google Scholar 

  • Giraldez RR, Panda A, Xia Y, Sanders SP, Zweier JL (1997) Decreased nitric-oxide synthase activity causes impaired endothelium-dependent relaxation in the postischemic heart. J Biol Chem 272:21420–21426

    Article  PubMed  CAS  Google Scholar 

  • Glantzounis GK, Salacinski HJ, Yang W, Davidson BR, Seifalian AM (2005) The contemporary role of antioxidant therapy in attenuating liver ischemia-reperfusion injury: a review. Liver Transpl 11:1031–1047

    Article  PubMed  Google Scholar 

  • Glover DK, Riou LM, Ruiz M, Sullivan GW, Linden J, Rieger JM, Macdonald TL, Watson DD, Beller GA (2005) Reduction of infarct size and postischemic inflammation from ATL-146e, a highly selective adenosine A2A receptor agonist, in reperfused canine myocardium. Am J Physiol Heart Circ Physiol 288:H1851–H1858

    Article  PubMed  CAS  Google Scholar 

  • Goekjian PG, Jirousek MR (1999) Protein kinase C in the treatment of disease: signal transduction pathways, inhibitors, and agents in development. Curr Med Chem 6:877–903

    PubMed  CAS  Google Scholar 

  • Goligorsky MS, Brodsky SV, Noiri E (2002) Nitric oxide in acute renal failure: NOS versus NOS. Kidney Int 61:855–861

    Article  PubMed  CAS  Google Scholar 

  • Goligorsky MS, Brodsky SV, Noiri E (2004) NO bioavailability, endothelial dysfunction, and acute renal failure: new insights into pathophysiology. Semin Nephrol 24:316–323

    Article  PubMed  CAS  Google Scholar 

  • Gomes MD, Cancherini DV, Moreira MA, Reboucas NA (2003) Ischemic preconditioning of renal tissue: identification of early up-regulated genes. Nephron Exp Nephrol 93:e107–e116

    Article  PubMed  CAS  Google Scholar 

  • Goncalves GM, Cenedeze MA, Feitoza CQ, de Paula CB, Marques GD, Pinheiro HS, de Paula Antunes Teixeira V, Antonia dos Reis M, Pacheco-Silva A, Camara NO (2007) The role of immunosuppressive drugs in aggravating renal ischemia and reperfusion injury. Transplant Proc 39:417–420

    Article  PubMed  CAS  Google Scholar 

  • Gong H, Wang W, Kwon TH, Jonassen T, Li C, Ring T, Frokiaer J, Nielsen S (2004) EPO and alpha-MSH prevent ischemia/reperfusion-induced down-regulation of AQPs and sodium transporters in rat kidney. Kidney Int 66:683–695

    Article  PubMed  CAS  Google Scholar 

  • Goor Y, Goor O, Wollman Y, Chernichovski T, Schwartz D, Cabili S, Iaina A (2006) Fucoidin, an inhibitor of leukocyte adhesion, exacerbates acute ischemic renal failure and stimulates nitric oxide synthesis. Scand J Urol Nephrol 40:57–62

    Article  PubMed  CAS  Google Scholar 

  • Gori T, Forconi S (2005) The role of reactive free radicals in ischemic preconditioning-clinical and evolutionary implications. Clin Hemorheol Microcirc 33:19–28

    PubMed  CAS  Google Scholar 

  • Görür S, Bağdatoğlu ÖT, Polat G (2005) Protective effect of L-carnitine on renal ischaemia-reperfusion injury in the rat. Cell Biochem Funct 23:151–155

    Article  PubMed  Google Scholar 

  • Gottmann U, Mueller-Falcke A, Schnuelle P, Birck R, Nickeleit V, van der Woude FJ, Yard BA, Braun C (2007) Influence of hypersulfated and low molecular weight heparins on ischemia/reperfusion: injury and allograft rejection in rat kidneys. Transpl Int 20:542–549

    Article  PubMed  CAS  Google Scholar 

  • Grace PA (1994) Ischaemia-reperfusion injury. Br J Surg 81:637–647

    Article  PubMed  CAS  Google Scholar 

  • Granger DN, Hollwarth MA, McCord JM (1986) Ischemia reperfusion injury: role of oxygen-derived free radicals. Acta Physiol Scand 548:47–63

    CAS  Google Scholar 

  • Green CJ, Healing G, Simpkin S, Fuller BJ, Lunec J (1986a) Reduced susceptibility to lipid peroxidation in cold ischemic rabbit kidneys after addition of desferrioxamine, mannitol or uric acid to the flush solution. Cryobiology 23:358–365

    Article  PubMed  CAS  Google Scholar 

  • Green CJ, Healing G, Simpkin S, Lunec J, Fuller BJ (1986b) Desferrioxamine reduces susceptibility to lipid peroxidation in rabbit kidneys subjected to warm ischaemia and reperfusion. Comp Biochem Physiol 85:113–117

    Article  CAS  Google Scholar 

  • Green CJ, Healing G, Simpkin S, Gower J, Fuller BJ (1989) Allopurinol inhibits lipid peroxidation in warm ischemic and reperfused rabbit kidneys. Free Rad Res Comm 6:329–337

    Article  CAS  Google Scholar 

  • Greene EL, Paller MS (1991) Oxygen free radicals in acute renal failure. Miner Electrolyte Metab 17:124–132

    PubMed  CAS  Google Scholar 

  • Grenz A, Zhang H, Eckle T, Mittelbronn M, Wehrmann M, Kohle C, Kloor D, Thompson LF, Osswald H, Eltzschig HK (2007a) Protective role of ecto-5′-nucleotidase (CD73) in renal ischemia. J Am Soc Nephrol 18:833–845

    Article  PubMed  CAS  Google Scholar 

  • Grenz A, Zhang H, Hermes M, Eckle T, Klingel K, Huang DY, Muller CE, Robson SC, Osswald H, Eltzschig HK (2007b) Contribution of E-NTPDase1 (CD39) to renal protection from ischemia-reperfusion injury. FASEB J; Epub ahead of print

  • Grupp IL, Jackson TM, Hake P, Grupp G, Szabó C (1999) Protection against hypoxia-reoxygenation in the absence of poly (ADP-ribose) synthetase in isolated working hearts. J Mol Cell Cardiol 31:297–303

    Article  PubMed  CAS  Google Scholar 

  • Gruppo Italiano di Studi Epidemiologici in Nefrologia (The GISEN Group) (1997) Randomised placebo-controlled trial of effect of ramipril on decline in glomerular filtration rate and risk of terminal renal failure in proteinuric, non-diabetic nephropathy. Lancet 349:1857–1863

    Article  Google Scholar 

  • Gryglewski RJ, Palmer RM, Moncada S (1986) Superoxide anion is involved in the breakdown of endothelium-derived vascular relaxing factor. Nature 320:454–456

    Article  PubMed  CAS  Google Scholar 

  • Guan Y (2004) Peroxisome proliferator-activated receptor family and its relationship to renal complications of the metabolic syndrome. J Am Soc Nephrol 15:2801–2815

    Article  PubMed  CAS  Google Scholar 

  • Gueler F, Rong S, Park JK, Fiebeler A, Menne J, Elger M, Mueller DN, Hampich F, Dechend R, Kunter U, Luft FC, Haller H (2002) Postischemic acute renal failure is reduced by short-term statin treatment in a rat model. J Am Soc Nephrol 13:2288–2298

    Article  PubMed  CAS  Google Scholar 

  • Gueler F, Park JK, Rong S, Kirsch T, Lindschau C, Zheng W, Elger M, Fiebeler A, Fliser D, Luft FC, Haller H (2007) Statins attenuate ischemia-reperfusion injury by inducing heme oxygenase-1 in infiltrating macrophages. Am J Pathol 170:1192–1199

    Article  PubMed  CAS  Google Scholar 

  • Guijarro C, Egido J (2001) Transcription factor-kappa B (NF-kappa B) and renal disease. Kidney Int 59:415–424

    Article  PubMed  CAS  Google Scholar 

  • Gurel A, Armutcu F, Cihan A, Numanoglu KV, Unalacak M (2004) Erdosteine improves oxidative damage in a rat model of renal ischemia-reperfusion injury. Eur Surg Res 36:206–209

    Article  PubMed  CAS  Google Scholar 

  • Gurnell M (2003) PPARγ and metabolism: insights from the study of human genetic variants. Clin Endocrinol (Oxf) 59:267–277

    Article  CAS  Google Scholar 

  • Guz G, Oz E, Lortlar N, Ulusu NN, Nurlu N, Demirogullari B, Omeroglu S, Sert S, Karasu C (2006) The effect of taurine on renal ischemia/reperfusion injury. Amino Acids; Epub ahead of print

  • Guz G, Demirogullari B, Ulusu NN, Dogu C, Demirtola A, Kavutcu M, Omeroglu S, Stefek M, Karasu C (2007) Stobadine protects rat kidney against ischaemia/reperfusion injury. Clin Exp Pharmacol Physiol 34:210–216

    Article  PubMed  CAS  Google Scholar 

  • Hankey GJ (2006) Statins after transient ischaemic attack and ischaemic stroke. Lancet Neurol 5:810–812

    Article  PubMed  CAS  Google Scholar 

  • Hardeland R (2005) Antioxidative protection by melatonin: multiplicity of mechanisms from radical detoxification to radical avoidance. Endocrine 27:119–130

    Article  PubMed  CAS  Google Scholar 

  • Harris KP, Purkerson ML, Yates J, Klahr S (1990) Lovastatin ameliorates the development of glomerulosclerosis and uremia in experimental nephrotic syndrome. Am J Kidney Dis 15:16–23

    PubMed  CAS  Google Scholar 

  • Hassoun H, Grigoryev DN, Lie M, Liu M, Cheadle C, Tuder RM, Rabb H (2007) Ischemic acute kidney injury induces a distant organ functional and genomic response distinguishable from bilateral nephrectomy. Am J Physiol Renal Physiol; Epub ahead of print

  • Hattori R, Otani H, Maulik N, Das DK (2002) Pharmacological preconditioning with resveratrol: role of nitric oxide. Am J Physiol Heart Circ Physiol 282:H1988–H1995

    PubMed  CAS  Google Scholar 

  • Hayashidani S, Tsutsui H, Shiomi T, Suematsu N, Kinugawa S, Ide T, Wen J, Takeshita A (2002) Fluvastatin, a 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitor, attenuates left ventricular remodeling and failure after experimental myocardial infarction. Circulation 105:868–873

    Article  PubMed  CAS  Google Scholar 

  • Heemann U, Szabó A, Hamar P, Muller V, Witzke O, Lutz J, Philipp T (2000) Lipopolysaccharide pretreatment protects from renal ischemia/reperfusion injury: possible connection to an interleukin-6-dependent pathway. Am J Pathol 156:287–293

    PubMed  CAS  Google Scholar 

  • Hellemans K, Michalik L, Dittie A, Knorr A, Rombouts K, De Jong J, Heirman C, Quartier E, Schuit F, Wahli W, Geerts A (2003) Peroxisome proliferator-activated receptor-beta signaling contributes to enhanced proliferation of hepatic stellate cells. Gastroenterology 124:184–201

    Article  PubMed  CAS  Google Scholar 

  • Hentschel DM, Bonventre JV (2005) Novel non-rodent models of kidney disease. Curr Mol Med 5:537–546

    Article  PubMed  CAS  Google Scholar 

  • Hentschel DM, Park KM, Cilenti L, Zervos AS, Drummond I, Bonventre JV (2005) Acute renal failure in zebrafish: a novel system to study a complex disease. Am J Physiol Renal Physiol 288:F923–F929

    Article  PubMed  CAS  Google Scholar 

  • Hestin D, Johns EJ (1999) The influence of allopurinol on kidney haemodynamic and excretory responses to renal ischaemia in anaesthetized rats. Br J Pharmacol 128:255–261

    Article  PubMed  CAS  Google Scholar 

  • Heyman SN, Lieberthal W, Rogiers P, Bonventre JV (2002) Animal models of acute tubular necrosis. Curr Opin Crit Care 8:526–534

    Article  PubMed  Google Scholar 

  • Hill-Kapturczak N, Agarwal A (2006) Carbon monoxide: from silent killer to potential remedy. Am J Physiol Renal Physiol 290:F787–F788

    Article  PubMed  CAS  Google Scholar 

  • Hill-Kapturczak N, Agarwal A (2007) Haem oxygenase-1—a culprit in vascular and renal damage? Nephrol Dial Transplant; Epub ahead of print

  • Hill-Kapturczak N, Kapturczak MH, Malinski T, Gross P (1995) Nitric oxide and nitric oxide synthase in the kidney: potential roles in normal renal function and in renal dysfunction. Endothelium 3:253–299

    Article  CAS  Google Scholar 

  • Hishikawa K, Fujita T (2006) Stem cells and kidney disease. Hypertens Res 29:745–749

    Article  PubMed  CAS  Google Scholar 

  • Hochegger K, Koppelstaetter C, Tagwerker A, Huber JM, Heininger D, Mayer G, Rosenkranz AR (2007) p21 and mTERT are novel markers for determining different ischemic time periods in renal ischemia-reperfusion injury. Am J Physiol Renal Physiol 292:F762–F768

    Article  PubMed  CAS  Google Scholar 

  • Hoke TS, Douglas IS, Klein CL, He Z, Fang W, Thurman JM, Tao Y, Dursun B, Voelkel NF, Edelstein CL, Faubel S (2007) Acute renal failure after bilateral nephrectomy is associated with cytokine-mediated pulmonary injury. J Am Soc Nephrol 18:155–164

    Article  PubMed  CAS  Google Scholar 

  • Homer-Vanniasinkam S, Crinnion JN, Gough MJ (1997) Post-ischaemic organ dysfunction: a review. Eur J Vasc Endovasc Surg 14:195–203

    Article  PubMed  CAS  Google Scholar 

  • Hosseinzadeh H, Sadeghnia HR, Ziaee T, Danaee A (2005) Protective effect of aqueous saffron extract (Crocus sativus L.) and crocin, its active constituent, on renal ischemia-reperfusion-induced oxidative damage in rats. J Pharm Sci 8:387–393

    CAS  Google Scholar 

  • Hoste EA, Kellum JA (2006) RIFLE criteria provide robust assessment of kidney dysfunction and correlate with hospital mortality. Crit Care Med 34:2016–2017

    Article  PubMed  Google Scholar 

  • Hua HT, Albadawi H, Entabi F, Conrad M, Stoner MC, Meriam BT, Sroufe R, Houser S, Lamuraglia GM, Watkins MT (2005) Polyadenosine diphosphate-ribose polymerase inhibition modulates skeletal muscle injury following ischemia reperfusion. Arch Surg 140:344–351

    Article  PubMed  CAS  Google Scholar 

  • Huang PL (2004) Nitric oxide and cerebral ischemic preconditioning. Cell Calcium 36:323–329

    Article  PubMed  CAS  Google Scholar 

  • Humphreys BD, Duffield JS, Bonventre JV (2006) Renal stem cells in recovery from acute kidney injury. Minerva Urol Nefrol 58:329–337

    PubMed  CAS  Google Scholar 

  • Hung CF, Chen JK, Liao MH, Lo HM, Fang JY (2006) Development and evaluation of emulsion-liposome blends for resveratrol delivery. J Nanosci Nanotechnol 6:2950–2958

    Article  PubMed  CAS  Google Scholar 

  • Ikai K, Ueda K (1983) Immunohistochemical demonstration of poly(adenosine diphosphate-ribose) synthetase in bovine tissues. J Histochem Cytochem 31:1261–1264

    PubMed  CAS  Google Scholar 

  • Ikeda K, Negishi H, Yamori Y (2003) Antioxidant nutrients and hypoxia/ischemia brain injury in rodents. Toxicology 189:55–61

    Article  PubMed  CAS  Google Scholar 

  • Ikeda M, Prachasilchai W, Burne-Taney MJ, Rabb H, Yokota-Ikeda N (2006) Ischemic acute tubular necrosis models and drug discovery: a focus on cellular inflammation. Drug Discov Today 11:364–370

    Article  PubMed  CAS  Google Scholar 

  • Imamura R, Isaka Y, Ichimaru N, Takahara S, Okuyama A (2007a) Carbamylated erythropoietin protects the kidneys from ischemia-reperfusion injury without stimulating erythropoiesis. Biochem Biophys Res Commun 353:786–792

    Article  PubMed  CAS  Google Scholar 

  • Imamura R, Moriyama T, Isaka Y, Namba Y, Ichimaru N, Takahara S, Okuyama A (2007b) Erythropoietin protects the kidneys against ischemia reperfusion injury by activating hypoxia inducible factor-1alpha. Transplantation 83:1371–1379

    Article  PubMed  CAS  Google Scholar 

  • Inman SR, Davis NA, Mazzone ME, Olson KM, Lukaszek VA, Yoder KN (2005) Simvastatin and L-arginine preserve renal function after ischemia/reperfusion injury. Am J Med Sci 329:13–17

    Article  PubMed  Google Scholar 

  • Inthorn D, Hoffmann JN (1996) Elimination of inflammatory mediators by hemofiltration. Int J Artif Organs 19:124–126

    PubMed  CAS  Google Scholar 

  • Ischiropoulos H, Zhu L, Chen J, Tsai M, Martin JC, Smith CD, Beckman JS (1992) Peroxynitrite-mediated tyrosine nitration catalysed by superoxide dismutase. Arch Biochem Biophys 298:431–437

    Article  PubMed  CAS  Google Scholar 

  • Islam CF, Mathie RT, Dinneen MD, Kiely EA, Peters AM, Grace PA (1997) Ischaemia-reperfusion injury in the rat kidney: the effect of preconditioning. Br J Urol 79:842–847

    PubMed  CAS  Google Scholar 

  • Ito K, Shimada J, Kato D, Toda S, Takagi T, Naito Y, Yoshikawa T, Kitamura N (2004) Protective effects of preischemic treatment with pioglitazone, a peroxisome proliferator-activated receptor-gamma ligand, on lung ischemia-reperfusion injury in rats. Eur J Cardiothorac Surg 25:530–536

    Article  PubMed  Google Scholar 

  • Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, Salic A, Asara JM, Lane WS, Kaelin WG Jr (2001) HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292:464–468

    Article  PubMed  CAS  Google Scholar 

  • Iwashita A, Tojo N, Matsuura S, Yamazaki S, Kamijo K, Ishida J, Yamamoto H, Hattori K, Matsuoka N, Mutoh S (2004) A novel and potent poly(ADP-ribose) polymerase-1 inhibitor, FR247304 (5-chloro-2-[3-(4-phenyl-3,6-dihydro-1(2H)-pyridinyl)propyl]-4(3H)-quinazolinone), attenuates neuronal damage in in vitro and in vivo models of cerebral ischemia. J Pharmacol Exp Ther 310:425–436

    Article  PubMed  CAS  Google Scholar 

  • Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ, Kriegsheim AV, Hebestreit HF, Mukherji M, Schofield CJ, Maxwell PH, Pugh CW, Ratcliffe PJ (2001) Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292:468–472

    Article  PubMed  CAS  Google Scholar 

  • Jang YH, Lee YC, Park NH, Shin HY, Mun KC, Choi MS, Lee MY, Kim AR, Kim JM, Lee SR, Park HR (2006) Polyphenol (−)-epigallocatechin gallate protection from ischemia/reperfusion-induced renal injury in normotensive and hypertensive rats. Transplant Proc 38:2190–2194

    Article  PubMed  CAS  Google Scholar 

  • Jayle C, Favreau F, Zhang K, Doucet C, Goujon JM, Hebrard W, Carretier M, Eugene M, Mauco G, Tillement JP, Hauet T (2007) Comparison of protective effects of trimetazidine against experimental warm ischemia of different durations: early and long-term effects in a pig kidney model. Am J Physiol Renal Physiol 292:F1082–F1093

    Article  PubMed  CAS  Google Scholar 

  • Jeong GY, Chung KY, Lee WJ, Kim YS, Sung SH (2004) The effect of a nitric oxide donor on endogenous endothelin-1 expression in renal ischemia/reperfusion injury. Transplant Proc 36:1943–1945

    Article  PubMed  CAS  Google Scholar 

  • Johansen D, Ytrehus K, Baxter GF (2006) Exogenous hydrogen sulfide (H2S) protects against regional myocardial ischemia-reperfusion injury—evidence for a role of K ATP channels. Basic Res Cardiol 101:53–60

    Article  PubMed  CAS  Google Scholar 

  • Johnson DW, Forman C, Vesey DA (2006a) Novel renoprotective actions of erythropoietin: new uses for an old hormone. Nephrology (Carlton) 11:306–312

    Article  CAS  Google Scholar 

  • Johnson DW, Pat B, Vesey DA, Guan Z, Endre Z, Gobe GC (2006b) Delayed administration of darbepoetin or erythropoietin protects against ischemic acute renal injury and failure. Kidney Int 69:1806–1813

    Article  PubMed  CAS  Google Scholar 

  • Johnston P, Agreda P, Liu M, Marbán E, Rabb H (2006) Isolating and expanding resident kidney stem cells to accelerate recovery from acute kidney injury (Abstract TH-PO1049). J Am Soc Nephrol 17:330A

    Google Scholar 

  • Joo JD, Kim M, D’Agati VD, Lee HT (2006) Ischemic preconditioning provides both acute and delayed protection against renal ischemia and reperfusion injury in mice. J Am Soc Nephrol 17:3115–3123

    Article  PubMed  CAS  Google Scholar 

  • Joyce M, Kelly CJ, Chen G, Bouchier-Hayes DJ (2001a) Pravastatin attenuates lower torso ischaemia-reperfusion-induced lung injury by upregulating constitutive endothelial nitric oxide synthase. Eur J Vasc Endovasc Surg 21:295–300

    Article  PubMed  CAS  Google Scholar 

  • Joyce M, Kelly C, Winter D, Chen G, Leahy A, Bouchier-Hayes D (2001b) Pravastatin, a 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, attenuates renal injury in an experimental model of ischemia-reperfusion. J Surg Res 101:79–84

    Article  PubMed  CAS  Google Scholar 

  • Kabasakal L, Sehirli O, Cetinal S, Cikler E, Gedik N, Sener G (2005) Protective effects of aqueous garlic extract against renal ischemia/reperfusion injury in rats. J Med Food 8:319–326

    Article  PubMed  CAS  Google Scholar 

  • Kakoki M, McGarrah RW, Kim HS, Smithies O (2007) Bradykinin B1 and B2 receptors both have protective roles in renal ischemia/reperfusion injury. Proc Natl Acad Sci USA 104:7576–7581

    Article  PubMed  CAS  Google Scholar 

  • Kale S, Karihaloo A, Clark PR, Kashgarian M, Krause DS, Cantley LG (2003) Bone marrow stem cells contribute to repair of the ischemically injured renal tubule. J Clin Invest 112:42–49

    Article  PubMed  CAS  Google Scholar 

  • Kang DG, Oh H, Sohn EJ, Hur TY, Lee KC, Kim KJ, Kim TY, Lee HS (2004) Lithospermic acid B isolated from Salvia miltiorrhiza ameliorates ischemia/reperfusion-induced renal injury in rats. Life Sci 75:1801–1816

    Article  PubMed  CAS  Google Scholar 

  • Kang DG, Sohn EJ, Moon MK, Lee YM, Lee HS (2005) Rehmannia glutinose ameliorates renal function in the ischemia/reperfusion-induced acute renal failure rats. Biol Pharm Bull 28:1662–1667

    Article  PubMed  CAS  Google Scholar 

  • Kang DG, Sohn EJ, Moon MK, Mun YJ, Woo WH, Kim MK, Lee HS (2006) Yukmijihwang-tang ameliorates ischemia/reperfusion-induced renal injury in rats. J Ethnopharmacol 104:47–53

    Article  PubMed  Google Scholar 

  • Kantor PF, Lucien A, Kozak R, Lopaschuk GD (2000) The antianginal drug trimetazidine shifts cardiac energy metabolism from fatty acid oxidation to glucose oxidation by inhibiting mitochondrial long-chain 3-ketoacyl coenzyme A thiolase. Circ Res 86:580–588

    PubMed  CAS  Google Scholar 

  • Karaman A, Turkmen E, Gursul C, Tas E, Fadillioglu E (2006) Prevention of renal ischemia/reperfusion-induced injury in rats by leflunomide. Int J Urol 13:1434–1441

    Article  PubMed  CAS  Google Scholar 

  • Karin M, Takahashi T, Kapahi P, Delhase M, Chen Y, Makris C, Rothwarf D, Baud V, Natoli G, Guido F, Li N (2001) Oxidative stress and gene expression: the AP-1 and NF-kappaB connections. Biofactors 15:87–89

    PubMed  CAS  Google Scholar 

  • Kasiske BL, O’Donnell MP, Cleary MP, Keane WF (1988a) Treatment of hyperlipidemia reduces glomerular injury in obese Zucker rats. Kidney Int 33:667–672

    Article  PubMed  CAS  Google Scholar 

  • Kasiske BL, O’Donnell MP, Garvis WJ, Keane WF (1988b) Pharmacologic treatment of hyperlipidemia reduces glomerular injury in rat 5/6 nephrectomy model of chronic renal failure. Circ Res 62:367–374

    PubMed  CAS  Google Scholar 

  • Kaudel CP, Schmiddem U, Frink M, Bergmann S, Pape HC, Krettek C, Klempnauer J, Winkler M (2006) FTY720 for treatment of ischemia-reperfusion injury following complete renal ischemia in C57/BL6 mice. Transplant Proc 38:679–681

    Article  PubMed  CAS  Google Scholar 

  • Kaudel CP, Frink M, Schmiddem U, Probst C, Bergmann S, Krettek C, Klempnauer J, van Griensven M, Winkler M (2007) FTY720 for treatment of ischemia-reperfusion injury following complete renal ischemia; impact on long-term survival and T-lymphocyte tissue infiltration. Transplant Proc 39:499–502

    Article  PubMed  CAS  Google Scholar 

  • Kaya K, Oguz M, Akar AR, Durdu S, Aslan A, Erturk S, Tasoz R, Ozyurda U (2007) The effect of sodium nitroprusside infusion on renal function during reperfusion period in patients undergoing coronary artery bypass grafting: a prospective randomized clinical trial. Eur J Cardiothorac Surg 31:290–297

    Article  PubMed  Google Scholar 

  • Kaysen GA (2000) Inflammation and oxidative stress in end-stage renal disease. Adv Nephrol Necker Hosp 30:201–214

    PubMed  CAS  Google Scholar 

  • Kelly KJ (2006) Acute renal failure: much more than a kidney disease. Semin Nephrol 26:105–113

    Article  PubMed  CAS  Google Scholar 

  • Kelly KJ, Molitoris BA (2000) Acute renal failure in the new millennium: time to consider combination therapy. Semin Nephrol 20:4–19

    PubMed  CAS  Google Scholar 

  • Kelly KJ, Sutton TA, Weathered N, Ray N, Caldwell EJ, Plotkin Z, Dagher PC (2004) Minocycline inhibits apoptosis and inflammation in a rat model of ischemic renal injury. Am J Physiol Renal Physiol 287:F760–F766

    Article  PubMed  CAS  Google Scholar 

  • Kick J, Hauser B, Bracht H, Albicini M, Oter S, Simon F, Ehrmann U, Garrel C, Strater J, Bruckner UB, Leverve XM, Schelzig H, Speit G, Radermacher P, Muth CM (2007) Effects of a cantaloupe melon extract/wheat gliadin biopolymer during aortic cross-clamping. Intensive Care Med 33:694–702

    Article  PubMed  CAS  Google Scholar 

  • Kim SY, Kim CH, Yoo HJ, Kim YK (1999) Effects of radical scavengers and antioxidant on ischemic acute renal failure in rabbits. Ren Fail 21:1–11

    PubMed  Google Scholar 

  • Kim J, Kil IS, Seok YM, Yang ES, Kim DK, Lim DG, Park JW, Bonventre JV, Park KM (2006a) Orchiectomy attenuates post-ischemic oxidative stress and ischemia/reperfusion injury in mice. A role for manganese superoxide dismutase. J Biol Chem 281:20349–20356

    Article  PubMed  CAS  Google Scholar 

  • Kim J, Kil IS, Seok YM, Yang ES, Kim DK, Lim DG, Park JW, Bonventre JV, Park KM (2006b) Orchiectomy attenuates post-ischemic oxidative stress and ischemia/reperfusion injury in mice. A role for manganese superoxide dismutase (Abstract SA-PO666). J Am Soc Nephrol 17:714A

    Google Scholar 

  • Kirkby K, Baylis C, Agarwal A, Croker B, Archer L, Adin C (2007) Intravenous bilirubin provides incomplete protection against renal ischemia-reperfusion injury in vivo. Am J Physiol Renal Physiol 292:F888–F894

    Article  PubMed  CAS  Google Scholar 

  • Kleinert H, Pautz A, Linker K, Schwarz PM (2004) Regulation of the expression of inducible nitric oxide synthase. Eur J Pharmacol 500:255–266

    Article  PubMed  CAS  Google Scholar 

  • Kloner RA, Przyklenk K, Whittaker P (1989) Deleterious effects of oxygen radicals in ischemia/reperfusion. Resolved and unresolved issues. Circulation 80:1115–1127

    PubMed  CAS  Google Scholar 

  • Knezl V, Sotnikova R, Okruhlicova L, Navarova J (1999) Effect of stobadine on cardiac injury induced by ischemia and reperfusion. Life Sci 65:1931–1933

    Article  PubMed  CAS  Google Scholar 

  • Knight S, Johns EJ (2005) Effect of COX inhibitors and NO on renal hemodynamics following ischemia-reperfusion injury in normotensive and hypertensive rats. Am J Physiol Renal Physiol 289:F1072–F1077

    Article  PubMed  CAS  Google Scholar 

  • Kojima I, Tanaka T, Inagi R, Kato H, Yamashita T, Sakiyama A, Ohneda O, Takeda N, Sata M, Miyata T, Fujita T, Nangaku M (2007) Protective role of hypoxia-inducible factor-2alpha against ischemic damage and oxidative stress in the kidney. J Am Soc Nephrol 18:1218–1226

    Article  PubMed  CAS  Google Scholar 

  • Kolonko A, Wiecek A, Kokot F (1998) The nonselective adenosine antagonist theophylline does prevent renal dysfunction induced by radiographic contrast agents. J Nephrol 11:151–156

    PubMed  CAS  Google Scholar 

  • Komjati K, Mabley JG, Virag L, Southan GJ, Salzman AL, Szabó C (2004) Poly(ADP-ribose) polymerase inhibition protect neurons and the white matter and regulates the translocation of apoptosis-inducing factor in stroke. Int J Mol Med 13:373–382

    PubMed  CAS  Google Scholar 

  • Kone BC (1997) Nitric oxide in renal health and disease. Am J Kidney Dis 30:311–333

    PubMed  CAS  Google Scholar 

  • Kone BC, Baylis C (1997) Biosynthesis and homeostatic roles of nitric oxide in the normal kidney. Am J Physiol 272:F561–F578

    PubMed  CAS  Google Scholar 

  • Koya D, Haneda M, Nakagawa H, Isshiki K, Sato H, Maeda S, Sugimoto T, Yasuda H, Kashiwagi A, Ways DK, King GL, Kikkawa R (2000) Amelioration of accelerated diabetic mesangial expansion by treatment with a PKC beta inhibitor in diabetic db/db mice, a rodent model for type 2 diabetes. FASEB J 14:439–447

    PubMed  CAS  Google Scholar 

  • Kreisberg MS, Silldorff EP, Pallone TL (1997) Localization of adenosine-receptor subtype mRNA in rat outer medullary descending vasa recta by RT-PCR. Am J Physiol 272:H1231–H1238

    PubMed  CAS  Google Scholar 

  • Kucuk HF, Kaptanoglu L, Ozalp F, Kurt N, Bingul S, Torlak OA, Colak E, Akyol H, Gul AE (2006) Role of glyceryl trinitrate, a nitric oxide donor, in the renal ischemia-reperfusion injury of rats. Eur Surg Res 38:431–437

    Article  PubMed  CAS  Google Scholar 

  • Kulah E, Tascilar O, Acikgoz S, Karadeniz G, Tekin IO, Can M, Gun B, Barut F, Comert M (2007) Oxidized LDL accumulation in experimental renal ischemia reperfusion injury model. Ren Fail 29:409–415

    Article  PubMed  CAS  Google Scholar 

  • Kurata H, Takaoka M, Kubo Y, Katayama T, Tsutsui H, Takayama J, Matsumura Y (2004) Nitric oxide protects against ischemic acute renal failure through the suppression of renal endothelin-1 overproduction. J Cardiovasc Pharmacol 44:S455–S458

    Article  PubMed  CAS  Google Scholar 

  • Kurata H, Takaoka M, Kubo Y, Katayama T, Tsutsui H, Takayama J, Ohkita M, Matsumura Y (2005) Protective effect of nitric oxide on ischemia/reperfusion-induced renal injury and endothelin-1 overproduction. Eur J Pharmacol 517:232–239

    Article  PubMed  CAS  Google Scholar 

  • Lai LW, Yong KC, Igarashi S, Lien YH (2006a) S1P1 agonist reduces cytokine gene expression and neutrophil/macrophage infiltrates in renal ischemia/reperfusion injury (Abstract TH-PO1027). J Am Soc Nephrol 17:325A

    Article  Google Scholar 

  • Lai LW, Yong KC, Igarashi S, Lien YH (2006b) S1P1 agonist reduces T cell infiltration in early phase of renal ischemia/reperfusion injury (Abstract TH-PO1028). J Am Soc Nephrol 17:326A

    Google Scholar 

  • Lai LW, Yong KC, Igarashi S, Lien YH (2007) A sphingosine-1-phosphate type 1 receptor agonist inhibits the early T-cell transient following renal ischemia-reperfusion injury. Kidney Int; Epub ahead of print

  • Lameire N, Vanholder R (2001) Pathophysiologic features and prevention of human and experimental acute tubular necrosis. J Am Soc Nephrol 12:S20–S32

    PubMed  Google Scholar 

  • Lameire N, Van Biesen W, Vanholder R (2005) Acute renal failure. Lancet 365:417–430

    PubMed  CAS  Google Scholar 

  • Lappas CM, Day YJ, Marshall MA, Engelhard VH, Linden J (2006) Adenosine A2A receptor activation reduces hepatic ischemia reperfusion injury by inhibiting CD1d-dependent NKT cell activation. J Exp Med 203:2639–2648

    Article  PubMed  CAS  Google Scholar 

  • Lee TM, Chou TF (2003) Troglitazone administration limits infarct size by reduced phosphorylation of canine myocardial connexin43 proteins. Am J Physiol Heart Circ Physiol 285:H1650–H1659

    PubMed  CAS  Google Scholar 

  • Lee HT, Emala CW (2000) Protective effects of renal ischemic preconditioning and adenosine pretreatment: role of A(1) and A(3) receptors. Am J Physiol Renal Physiol 278:F380–F387

    PubMed  CAS  Google Scholar 

  • Lee HT, Emala CW (2001) Systemic adenosine given after ischemia protects renal function via A(2a) adenosine receptor activation. Am J Kidney Dis 38:610–618

    PubMed  CAS  Google Scholar 

  • Lee HT, Gallos G, Nasr SH, Emala CW (2004a) A1 adenosine receptor activation inhibits inflammation, necrosis, and apoptosis after renal ischemia-reperfusion injury in mice. J Am Soc Nephrol 15:102–111

    Article  PubMed  CAS  Google Scholar 

  • Lee HT, Xu H, Nasr SH, Schnermann J, Emala CW (2004b) A1 adenosine receptor knockout mice exhibit increased renal injury following ischemia and reperfusion. Am J Physiol Renal Physiol 286:F298–F306

    Article  PubMed  CAS  Google Scholar 

  • Lee CC, Lee YY, Chang CK, Lin MT (2005a) Selective inhibition of inducible nitric oxide synthase attenuates renal ischemia and damage in experimental heatstroke. J Pharmacol Sci 99:68–76

    Article  PubMed  CAS  Google Scholar 

  • Lee IY, Lee CC, Chang CK, Chien CH, Lin MT (2005b) Sheng mai san, a Chinese herbal medicine, protects against renal ischaemic injury during heat stroke in the rat. Clin Exp Pharmacol Physiol 32:742–748

    Article  PubMed  CAS  Google Scholar 

  • Lee JI, Kim MJ, Park CS, Kim MC (2006a) Influence of ascorbic acid on BUN, creatinine, resistive index in canine renal ischemia-reperfusion injury. J Vet Sci 7:79–81

    PubMed  Google Scholar 

  • Lee JI, Son HY, Kim MC (2006b) Attenuation of ischemia-reperfusion injury by ascorbic acid in the canine transplantation. J Vet Sci 7:375–379

    PubMed  Google Scholar 

  • Leist M, Ghezzi P, Grasso G, Bianchi R, Villa P, Fratelli M, Savino C, Bianchi M, Nielsen J, Gerwien J, Kallunki P, Larsen AK, Helboe L, Christensen S, Pedersen LO, Nielsen M, Torup L, Sager T, Sfacteria A, Erbayraktar S, Erbayraktar Z, Gokmen N, Yilmaz O, Cerami-Hand C, Xie QW, Coleman T, Cerami A, Brines M (2004) Derivatives of erythropoietin that are tissue protective but not erythropoietic. Science 305:239–242

    Article  PubMed  CAS  Google Scholar 

  • Leonard MO, Kieran NE, Howell K, Burne MJ, Varadarajan R, Dhakshinamoorthy S, Porter AG, O’Farrelly C, Rabb H, Taylor CT (2006) Reoxygenation-specific activation of the antioxidant transcription factor Nrf2 mediates cytoprotective gene expression in ischemia-reperfusion injury. FASEB J 20:2624–2626

    Article  PubMed  CAS  Google Scholar 

  • Letavernier E, Perez J, Joye E, Bellocq A, Fouqueray B, Haymann JP, Heudes D, Wahli W, Desvergne B, Baud L (2005) Peroxisome proliferator-activated receptor beta/delta exerts a strong protection from ischemic acute renal failure. J Am Soc Nephrol 16:2395–2402

    Article  PubMed  CAS  Google Scholar 

  • Lewis EJ, Hunsicker LG, Bain RP, Rohde RD (1993) The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group. N Engl J Med 329:1456–1462

    Article  PubMed  CAS  Google Scholar 

  • Li N, Karin M (1999) Is NF-kappaB the sensor of oxidative stress? FASEB J 13:1137–1143

    PubMed  CAS  Google Scholar 

  • Li L, Okusa MD (2006) Blocking the immune response in ischemic acute kidney injury: the role of adenosine 2A agonists. Nat Clin Pract Nephrol 2:432–444

    Article  PubMed  CAS  Google Scholar 

  • Li S, Wu P, Yarlagadda P, Vadjunec NM, Proia AD, Harris RA, Portilla D (2004) PPARα ligand protects during cisplatin-induced acute renal failure by preventing inhibition of renal FAO and PDC activity. Am J Physiol Renal Physiol 286:F572–F580

    Article  PubMed  CAS  Google Scholar 

  • Li FZ, Kimura S, Nishiyama A, Rahman M, Zhang GX, Abe Y (2005a) Ischemic preconditioning protects post-ischemic renal function in anesthetized dogs: role of adenosine and adenine nucleotides. Acta Pharmacol Sin 26:851–859

    Article  PubMed  CAS  Google Scholar 

  • Li S, Gokden N, Okusa MD, Bhatt R, Portilla D (2005b) Anti-inflammatory effect of fibrate protects from cisplatin-induced ARF. Am J Physiol Renal Physiol 289:F469–F480

    Article  PubMed  CAS  Google Scholar 

  • Li L, Bhatia M, Moore PK (2006) Hydrogen sulphide—a novel mediator of inflammation? Curr Opin Pharmacol 6:125–129

    Article  PubMed  CAS  Google Scholar 

  • Li L, Huang L, Sung SS, Lobo PI, Brown MG, Gregg RK, Engelhard VH, Okusa MD (2007) NKT cell activation mediates neutrophil IFN-γ production and renal ischemia-reperfusion injury. J Immunol 178:5899–5911

    PubMed  CAS  Google Scholar 

  • Liang M, Knox FG (2000) Production and functional roles of nitric oxide in the proximal tubule. Am J Physiol 278:R1117–R1124

    CAS  Google Scholar 

  • Liaudet L, Szabó A, Soriano FG, Zingarelli B, Szabó C, Salzman AL (2000) Poly (ADP-ribose) synthetase mediates intestinal mucosal barrier dysfunction after mesenteric ischemia. Shock 14:134–141

    PubMed  CAS  Google Scholar 

  • Lieberthal W (1998) Biology of ischemic and toxic renal tubular injury: role of nitric oxide and the inflammatory response. Curr Opin Nephrol Hypertens 7:289–295

    PubMed  CAS  Google Scholar 

  • Lieberthal W, Levine JS (1996) Mechanisms of apoptosis and its potential role in renal tubular epithelial cell injury. Am J Physiol 271:F477–F488

    PubMed  CAS  Google Scholar 

  • Lieberthal W, Nigam SK (2000) Acute renal failure. II. Experimental models of acute renal failure: imperfect but indispensable. Am J Physiol Renal Physiol 278:F1–F12

    PubMed  CAS  Google Scholar 

  • Lien YH, Igarashi S, Yong K-C, Steinwinter EM, Lai L-W (2006a) Upregulation of sphingosine 1-phosphate kinase 1 by renal ischemia reperfusion injury (Abstract SA-PO507). J Am Soc Nephrol 17:682A

    Google Scholar 

  • Lien YH, Yong K-C, Cho C, Igarashi S, Lai L-W (2006b) S1P(1)-selective agonist, SEW2871, ameliorates ischemic acute renal failure. Kidney Int 69:1601–1608

    Article  PubMed  CAS  Google Scholar 

  • Lin A, Sekhon C, Sekhon B, Smith A, Chavin K, Orak J, Singh I, Singh A (2004) Attenuation of ischemia-reperfusion injury in a canine model of autologous renal transplantation. Transplantation 78:654–659

    Article  PubMed  Google Scholar 

  • Ling H, Gengaro PE, Edelstein CL, Martin PY, Wangsiripaisan A, Nemenoff R, Schrier RW (1998) Effect of hypoxia on proximal tubules isolated from nitric oxide synthase knockout mice. Kidney Int 53:1642–1646

    Article  PubMed  CAS  Google Scholar 

  • Ling H, Edelstein C, Gengaro P, Meng X, Lucia S, Knotek M, Wangsiripaisan A, Shi Y, Schrier R (1999) Attenuation of renal ischemia-reperfusion injury in inducible nitric oxide synthase knockout mice. Am J Physiol Renal Physiol 277:F383–F390

    CAS  Google Scholar 

  • Lipsic E, Schoemaker RG, van der Meer P, Voors AA, van Veldhuisen DJ, van Gilst WH (2006) Protective effects of erythropoietin in cardiac ischemia: from bench to bedside. J Am Coll Cardiol 48:2161–2167

    Article  PubMed  CAS  Google Scholar 

  • Liu M, Agreda P, Crow M, Reddy S, Rabb H (2006) Nrf2 transcription factor plays an important protective role in ischemic acute kidney injury (Abstract SA-PO640). J Am Soc Nephrol 17:709A

    Google Scholar 

  • Li Volti G, Rodella LF, Di Giacomo C, Rezzani R, Bianchi R, Borsani E, Gazzolo D, Motterlini R (2006) Role of carbon monoxide and biliverdin in renal ischemia/reperfusion injury. Nephron Exp Nephrol 104:e135–e139

    Article  CAS  Google Scholar 

  • Lloberas N, Torras J, Herrero-Fresneda I, Cruzado JM, Riera M, Hurtado I, Grinyo JM (2002) Postischemic renal oxidative stress induces inflammatory response through PAF and oxidized phospholipids. Prevention by antioxidant treatment. FASEB J 16:908–910

    PubMed  CAS  Google Scholar 

  • Loong CC, Chang YH, Wu TH, King KL, Yang WC, Wu CW, Lui WY (2004) Antioxidant supplementation may improve renal transplant function: a preliminary report. Transplant Proc 36:2438–2439

    Article  PubMed  CAS  Google Scholar 

  • Loukogeorgakis SP, Rees L, Dalton NR, MacAllister RJ, Deanfield JE (2006) Remote preconditioning protects against ischemia reperfusion injury in pediatric renal transplantation (Abstract SA-PO435). J Am Soc Nephrol 17:667A

    Google Scholar 

  • Lowicka E, Beltowski J (2007) Hydrogen sulfide (H2S) - the third gas of interest for pharmacologists. Pharmacol Rep 59:4–24

    PubMed  CAS  Google Scholar 

  • Lu CY, Hartono J, Senitko M, Chen J (2007) The inflammatory response to ischemic acute kidney injury: a result of the ‘right stuff’ in the ‘wrong place’? Curr Opin Nephrol Hypertens 16:83–89

    PubMed  Google Scholar 

  • Lucio FJ, Landazuri MO, Castellanos C, Del Peso L, Alcaide M, Conde I, Arenas I, Olmos G (2006) Hypoxia inducible factor-1α (HIF-1α) upregulation by 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) in human proximal tubular cells HK-2 (Abstract F-PO1019) J Am Soc Nephrol 17:550A

    Google Scholar 

  • Macedo E, Abdulkader R, Castro I, Sobrinho AC, Yu L, Vieira JM Jr (2006) Lack of protection of N-acetylcysteine (NAC) in acute renal failure related to elective aortic aneurysm repair—a randomized controlled trial. Nephrol Dial Transplant 21:1863–1869

    Article  PubMed  CAS  Google Scholar 

  • MacMillan-Crow LA, Crow J, Kerby J, Beckman JS, Thompson JA (1996) Nitration and inactivation of manganese superoxide dismutase in chronic rejection of human renal allografts. Proc Natl Acad Sci USA 93:11853–11858

    Article  PubMed  CAS  Google Scholar 

  • Mahmoud IM, Hussein Ael-A, Sarhan ME, Awad AA, El Desoky I (2007) Role of combined L-arginine and prostaglandin E1 in renal ischemia-reperfusion injury. Nephron Physiol 105:57–65

    Article  CAS  Google Scholar 

  • Maier C, Scheuerle A, Hauser B, Schelzig H, Szabó C, Radermacher P, Kick J (2007) The selective poly(ADP)ribose-polymerase 1 inhibitor INO1001 reduces spinal cord injury during porcine aortic cross-clamping-induced ischemia/reperfusion injury. Intensive Care Med Mar 15; Epub ahead of print

  • Maisonneuve P, Agodoa L, Gellert R, Stewart JH, Buccianti G, Lowenfels AB, Wolfe RA, Jones E, Disney AP, Briggs D, McCredie M, Boyle P (2000) Distribution of primary renal diseases leading to end-stage renal failure in the United States, Europe, and Australia/New Zealand: results from an international comparative study. Am J Kidney 35:157–165

    CAS  Google Scholar 

  • Mangino MJ, Ametani M, Szabó C, Southard JH (2004) Poly(ADP-ribose) polymerase and renal hypothermic preservation injury. Am J Physiol Renal Physiol 286:F838–F847

    Article  PubMed  CAS  Google Scholar 

  • Marenzi G, Assanelli E, Marana I, Lauri G, Campodonico J, Grazi M, De Metrio M, Galli S, Fabbiocchi F, Montorsi P, Veglia F, Bartorelli AL (2006) N-acetylcysteine and contrast-induced nephropathy in primary angioplasty. N Engl J Med 354:2773–2782

    Article  PubMed  CAS  Google Scholar 

  • Mark LA, Robinson AV, Schulak JA (2005) Inhibition of nitric oxide synthase reduces renal ischemia/reperfusion injury. J Surg Res 129:236–241

    Article  PubMed  CAS  Google Scholar 

  • Martin DR, Lewington AJ, Hammerman MR, Padanilam BJ (2000) Inhibition of poly(ADP-ribose) polymerase attenuates ischemic renal injury in rats. Am J Physiol Regul Integr Comp Physiol 279:R1834–R1840

    PubMed  CAS  Google Scholar 

  • Martinez-Castelao A, Grinyo JM, Gil-Vernet S, Seron D, Castineiras MJ, Ramos R, Alsina J (2002) Lipid-lowering long-term effects of six different statins in hypercholesterolemic renal transplant patients under cyclosporine immunosuppression. Transplant Proc 34:398–400

    Article  PubMed  CAS  Google Scholar 

  • Masztalerz M, Wlodarczyk Z, Czuczejko J, Slupski M, Kedziora J (2006) Superoxide anion as a marker of ischemia-reperfusion injury of the transplanted kidney. Transplant Proc 38:46–48

    Article  PubMed  CAS  Google Scholar 

  • Matsuyama M, Yoshimura R, Hase T, Uchida J, Tsuchida K, Takemoto Y, Kawahito Y, Sano H, Nakatani T (2005) Expression of peroxisome proliferator-activated receptor-γ in renal ischemia-reperfusion injury. Transplant Proc 37:1684–1685

    Article  PubMed  CAS  Google Scholar 

  • Matsuyama M, Hayama T, Funao K, Tsuchida K, Takemoto Y, Sugimura K, Kawahito Y, Sano H, Nakatani T, Yoshimura R (2006) Treatment with edavarone improves the survival rate in renal warm ischemia-reperfusion injury in a rat model. Transplant Proc 38:2190–2194

    Article  CAS  Google Scholar 

  • Mayer B, Hemmens B (1997) Biosynthesis and action of nitric oxide in mammalian cells. Trends Biochem Sci 22:477–481

    Article  PubMed  CAS  Google Scholar 

  • McCombs PR, Roberts B (1979) Acute renal failure following resection of abdominal aortic aneurysm. Surg Gynecol Obstet 148:175–178

    PubMed  CAS  Google Scholar 

  • McCord JM (1985) Oxygen-derived free radicals in post-ischemic tissue injury. N Engl J Med 312:159–163

    Article  PubMed  CAS  Google Scholar 

  • McCord JM, Edeas MA (2005) SOD, oxidative stress and human pathologies: a brief history and a future vision. Biomed Pharmacother 59:139–142

    Article  PubMed  CAS  Google Scholar 

  • McCormick J, Barry SP, Sivarajah A, Stefanutti G, Townsend PA, Lawrence KM, Eaton S, Knight RA, Thiemermann C, Latchman DS, Stephanou A (2006) Free radical scavenging inhibits STAT phosphorylation following in vivo ischemia/reperfusion injury. FASEB J 20:2115–2117

    Article  PubMed  CAS  Google Scholar 

  • McCoy DE, Bhattacharya S, Olson BA, Levier DG, Arend LJ, Spielman WS (1993) The renal adenosine system: structure, function, and regulation. Semin Nephrol 13:31–40

    PubMed  CAS  Google Scholar 

  • McDonald MC, Mota-Filipe H, Thiemermann C (1999) Effects of inhibitors of the activity of poly (ADP-ribose) synthetase on the organ injury and dysfunction caused by haemorrhagic shock. Br J Pharmacol 128:1339–1345

    Article  PubMed  CAS  Google Scholar 

  • McDonald MC, Mota-Filipe H, Wright JA, Abdelrahman M, Threadgill MD, Thompson AS, Thiemermann C (2000) Effects of 5-aminoisoquinolinone, a water-soluble, potent inhibitor of the activity of poly (ADP-ribose) polymerase on the organ injury and dysfunction caused by haemorrhagic shock. Br J Pharmacol 130:843–850

    Article  PubMed  CAS  Google Scholar 

  • McIntyre TM, Pontsler AV, Silva AR, St Hilaire A, Xu Y, Hinshaw JC, Zimmerman GA, Hama K, Aoki J, Arai H, Prestwich GD (2003) Identification of an intracellular receptor for lysophosphatidic acid (LPA): LPA is a transcellular PPARgamma agonist. Proc Natl Acad Sci USA 100:131–136

    Article  PubMed  CAS  Google Scholar 

  • McLay JS, Chatterjee PK, Nicolson AG, Jardine AG, McKay NG, Ralston SH, Grabowski P, Haites NE, MacLeod AM, Hawksworth GM (1994) Nitric oxide production by human proximal tubular cells: a novel immunomodulatory mechanism? Kidney Int 46:1043–1049

    Article  PubMed  CAS  Google Scholar 

  • Mehta A, Sekhon CP, Giri S, Orak JK, Singh AK (2002) Attenuation of ischemia/reperfusion induced MAP kinases by N-acetyl cysteine, sodium nitroprusside and phosphoramidon. Mol Cell Biochem 240:19–29

    Article  PubMed  CAS  Google Scholar 

  • Mejia-Villet JM, Ramirez V, Cruz C, Uribe N, Gamba G, Bobadilla NA (2007) Renal ischemia/reperfusion injury is prevented by the mineralocorticoid receptor blocker spironolactone. Am J Physiol Renal Physiol; Epub ahead of print

  • Meyer-Ficca ML, Meyer RG, Jacobson EL, Jacobson MK (2005) Poly(ADP-ribose) polymerases: managing genome stability. Int J Biochem Cell Biol 37:920–926

    Article  PubMed  CAS  Google Scholar 

  • Mezzano SA, Barria M, Droguett MA, Burgos ME, Ardiles LG, Flores C, Egido J (2001) Tubular NF-kappaB and AP-1 activation in human proteinuric renal disease. Kidney Int 60:1366–1377

    Article  PubMed  CAS  Google Scholar 

  • Mias C, Seguelas M-H, Trouche E, Calise D, Bourin P, Cussac D, Parini A (2006) Melatonin preconditioning improves survival of mesenchymal stem cells grafted into ischemic kidney (Abstract F-SA-DS410). J Am Soc Nephrol 17:662A

    Google Scholar 

  • Mister M, Noris M, Szymczuk J, Azzollini N, Aiello S, Abbate M, Trochimowicz L, Gagliardini E, Arduini A, Perico N, Remuzzi G (2002) Propionyl-L-carnitine prevents renal function deterioration due to ischemia/reperfusion. Kidney Int 61:1064–1078

    Article  PubMed  CAS  Google Scholar 

  • Mody FV, Singh BN, Mohiuddin IH, Coyle KB, Buxton DB, Hansen HW, Sumida R, Schelbert HR (1998) Trimetazidine-induced enhancement of myocardial glucose utilization in normal and ischemic myocardial tissue an evaluation by positron emission tomography. Am J Cardiol 82:42K–49K

    Article  PubMed  CAS  Google Scholar 

  • Mojzis J, Pomfy M, Kohut A, Benes L, Nicak A, Mirossay L (1996) Effect of stobadine on gastric mucosal injury after ischaemia/reperfusion. Physiol Res 45:399–403

    PubMed  CAS  Google Scholar 

  • Molitoris BA, Marrs J (1999) The role of cell adhesion molecules in ischemic acute renal failure. Am J Med 106:583–592

    Article  PubMed  CAS  Google Scholar 

  • Montoliu J (1997) Clearance of inflammatory mediators through continuous renal replacement therapy. Blood Purif 15:305–308

    PubMed  CAS  Google Scholar 

  • Moonis M, Kane K, Schwiderski U, Sandage BW, Fisher M (2005) HMG-CoA reductase inhibitors improve acute ischemic stroke outcome. Stroke 36:1298–1300

    Article  PubMed  CAS  Google Scholar 

  • Mota-Filipe H, Sepodes B, McDonald MC, Cuzzocrea S, Pinto R, Thiemermann C (2002) The novel PARP inhibitor 5-aminoisoquinolinone reduces the liver injury caused by ischemia and reperfusion in the rat. Med Sci Monit 8:BR444–BR453

    PubMed  CAS  Google Scholar 

  • Motterlini R, Clark JE, Foresti R, Sarathchandra P, Mann BE, Green CJ (2002) Carbon monoxide-releasing molecules: characterization of biochemical and vascular activities. Circ Res 90:E17–E24

    Article  PubMed  CAS  Google Scholar 

  • Motterlini R, Mann BE, Johnson TR, Clark JE, Foresti R, Green CJ (2003) Bioactivity and pharmacological actions of carbon monoxide-releasing molecules. Curr Pharm Des 9:2525–2539

    Article  PubMed  CAS  Google Scholar 

  • Motterlini R, Mann BE, Foresti R (2005) Therapeutic applications of carbon monoxide-releasing molecules. Expert Opin Investig Drugs 14:1305–1318

    Article  PubMed  CAS  Google Scholar 

  • Muia C, Mazzon E, Crisafulli C, Di Paola R, Genovese T, Caputi AP, Cuzzocrea S (2006) Role of endogenous peroxisome proliferator-activated receptor-α (PPAR-α) ligands in the development of gut ischemia and reperfusion in mice. Shock 25:17–22

    PubMed  CAS  Google Scholar 

  • Muller GA, Muller CA, Markovic-Lipkovski J (1996) Adhesion molecules in renal diseases. Ren Fail 18:711–724

    Article  PubMed  CAS  Google Scholar 

  • Muller DN, Dechend R, Mervaala EM, Park JK, Schmidt F, Fiebeler A, Theuer J, Breu V, Ganten D, Haller H, Luft FC (2000) NF-kappaB inhibition ameliorates angiotensin II-induced inflammatory damage in rats. Hypertension 35:193–201

    PubMed  CAS  Google Scholar 

  • Murch O, Collin M, Thiemermann C (2007) Lysophosphatidic acid reduces the organ injury caused by endotoxemia—a role for G-protein-coupled receptors and peroxisome proliferator-activated receptor-gamma. Shock 27:48–54

    Article  PubMed  CAS  Google Scholar 

  • Murphy GJ, Holder JC (2000) PPAR-gamma agonists: therapeutic role in diabetes, inflammation and cancer. Trends Pharmacol Sci 21:469–474

    Article  PubMed  CAS  Google Scholar 

  • Murphy TP, Rundback JH, Cooper C, Kiernan MS (2002) Chronic renal ischemia: implications for cardiovascular disease risk. J Vasc Interv Radiol 13:1187–1198

    Article  PubMed  Google Scholar 

  • Murthy KG, Xiao CY, Mabley JG, Chen M, Szabó C (2004) Activation of poly(ADP-ribose) polymerase in circulating leukocytes during myocardial infarction. Shock 21:230–234

    Article  PubMed  CAS  Google Scholar 

  • Nagababu E, Ramasamy S, Abernethy DR, Rifkind JM (2003) Active nitric oxide produced in the red cell under hypoxic conditions by deoxyhemoglobin-mediated nitrite reduction. J Biol Chem 278:46349–46356

    Article  PubMed  CAS  Google Scholar 

  • Naidu BV, Woolley SM, Farivar AS, Thomas R, Fraga C, Mulligan MS (2003) Simvastatin ameliorates injury in an experimental model of lung ischemia-reperfusion. J Thorac Cardiovasc Surg 126:482–489

    Article  PubMed  CAS  Google Scholar 

  • Naito Y, Takagi T, Uchiyama K, Handa O, Tomatsuri N, Imamoto E, Kokura S, Ichikawa H, Yoshida N, Yoshikawa T (2002) Suppression of intestinal ischemia-reperfusion injury by a specific peroxisome proliferator-activated receptor-gamma ligand, pioglitazone, in rats. Redox Rep 7:294–299

    Article  PubMed  CAS  Google Scholar 

  • Naito Y, Katada K, Takagi T, Tsuboi H, Kuroda M, Handa O, Kokura S, Yoshida N, Ichikawa H, Yoshikawa T (2006) Rosuvastatin reduces rat intestinal ischemia-reperfusion injury associated with the preservation of endothelial nitric oxide synthase protein. World J Gastroenterol 12:2024–2030

    PubMed  CAS  Google Scholar 

  • Nakagawa T, Yokozawa T, Satoh A, Kim HY (2005) Attenuation of renal ischemia-reperfusion injury by proanthocyanidin-rich extract from grape seeds. J Nutri Sci Vitaminol (Tokyo) 51:283–286

    CAS  Google Scholar 

  • Nakajima A, Wada K, Miki H, Kubota N, Nakajima N, Terauchi Y, Ohnishi S, Saubermann LJ, Kadowaki T, Blumberg RS, Nagai R, Matsuhashi N (2001) Endogenous PPAR gamma mediates anti-inflammatory activity in murine ischemia-reperfusion injury. Gastroenterology 120:460–469

    Article  PubMed  CAS  Google Scholar 

  • Nakajima A, Ueda K, Takaoka M, Kurata H, Takayama J, Ohkita M, Matsumura Y (2006a) Effects of pre- and post-ischemic treatments with FK409, a nitric oxide donor, on ischemia/reperfusion-induced renal injury and endothelin-1 production in rats. Biol Pharm Bull 29:577–579

    Article  PubMed  CAS  Google Scholar 

  • Nakajima A, Ueda K, Takaoka M, Yoshimi Y, Matsumura Y (2006b) Opposite effects of pre- and postischemic treatments with nitric oxide donor on ischemia/reperfusion-induced renal injury. J Pharmacol Exp Ther 316:1038–1046

    Article  PubMed  CAS  Google Scholar 

  • Nakao A, Neto JS, Kanno S, Stolz DB, Kimizuka K, Liu F, Bach FH, Billiar TR, Choi AM, Otterbein LE, Murase N (2005) Protection against ischemia/reperfusion injury in cardiac and renal transplantation with carbon monoxide, biliverdin and both. Am J Transplant 5:282–291

    Article  PubMed  CAS  Google Scholar 

  • Nath KA (2006) Heme oxygenase-1: a provenance for cytoprotective pathways in the kidney and other tissues. Kidney Int 70:432–443

    PubMed  CAS  Google Scholar 

  • Nath KA, Norby SM (2000) Reactive oxygen species and acute renal failure. Am J Med 109:655–678

    Article  Google Scholar 

  • Nelson PJ (2007) Renal ischemia-reperfusion injury: renal dendritic cells loudly sound the alarm. Kidney Int 71:604–605

    Article  PubMed  CAS  Google Scholar 

  • Nešić Z, Todorović Z, Stojanović R, Basta-Jovanović G, Radojević-Škodrić S, Veličković R, Chatterjee PK, Thiemermann C, Prostran M (2006) Single-dose intravenous simvastatin treatment attenuates renal injury in an experimental model of ischemia-reperfusion in the rat. J Pharmacol Sci 102(4):413–417

    Article  PubMed  CAS  Google Scholar 

  • Neto JS, Nakao A, Kimizuka K, Romanosky AJ, Stolz DB, Uchiyama T, Nalesnik MA, Otterbein LE, Murase N (2004) Protection of transplant-induced renal ischemia-reperfusion injury with carbon monoxide. Am J Physiol Renal Physiol 287:F979–F989

    Article  PubMed  CAS  Google Scholar 

  • Neto JS, Nakao A, Toyokawa H, Nalesnik MA, Romanosky AJ, Kimizuka K, Kaizu T, Hashimoto N, Azhipa O, Stolz DB, Choi AM, Murase N (2006) Low-dose carbon monoxide inhalation prevents development of chronic allograft nephropathy. Am J Physiol Renal Physiol 290:F324–F334

    Article  PubMed  CAS  Google Scholar 

  • Nilakantan V, Hilton G, Maenpaa C, Van Why SK, Pieper GM, Johnson CP, Shames BD (2007) Favorable balance of anti-oxidant/pro-oxidant systems and ablated oxidative stress in Brown Norway rats in renal ischemia-reperfusion injury. Mol Cell Biochem; Epub ahead of print

  • Nishida M, Ieshima M, Konishi F, Yamashita J, Takaoka M, Matsumura Y (2002) Role of endothelin B receptor in the pathogenesis of ischemic acute renal failure. J Cardiovasc Pharmacol 40:586–593

    Article  PubMed  CAS  Google Scholar 

  • Nitescu N, Grimberg E, Ricksten SE, Guron G (2006a) Effects of N-acetyl-L-cysteine on renal haemodynamics and function in early ischaemia-reperfusion injury in rats. Clin Exp Pharmacol Physiol 33:53–57

    Article  PubMed  CAS  Google Scholar 

  • Nitescu N, Ricksten SE, Marcussen N, Haraldsson B, Nilsson U, Basu S, Guron G (2006b) N-acetylcysteine attenuates kidney injury in rats subjected to renal ischaemia-reperfusion. Nephrol Dial Transplant 21:1240–1247

    Article  PubMed  CAS  Google Scholar 

  • Nitescu N, Grimberg E, Ricksten SE, Marcussen N, Guron G (2007) Thrombin inhibition with melagatran does not attenuate renal ischaemia-reperfusion injury in rats. Nephrol Dial Transplant; Epub ahead of print

  • Noiri E, Peresleni T, Miller F, Goligorsky MS (1996) In vivo targeting of inducible NO synthase with oligodeoxynucleotides protects rat kidney against ischemia. J Clin Invest 97:2377–2383

    PubMed  CAS  Google Scholar 

  • Noiri E, Nakao A, Uchida K, Tsukahara H, Ohno M, Fujita T, Brodsky S, Goligorsky MS (2001) Oxidative and nitrosative stress in acute renal ischemia. Am J Physiol 281:F948–F957

    CAS  Google Scholar 

  • Nosal’ova V, Navarova J, Mihalova D, Sotnikova R (2007) Mesenteric ischemia/reperfusion-induced intestinal and vascular damage: effect of stobadine. Methods Find Exp Clin Pharmacol 29:39–45

    Article  PubMed  CAS  Google Scholar 

  • Nose K (2000) Role of reactive oxygen species in the regulation of physiological functions. Biol Pharm Bull 23:897–903

    PubMed  CAS  Google Scholar 

  • Oda H, Keane WF (1999) Recent advances in statins and the kidney. Kidney Int 71:S2–S5

    Article  CAS  Google Scholar 

  • O’Donnell MP, Kasiske BL, Kim Y, Schmitz PG, Keane WF (1993) Lovastatin retards the progression of established glomerular disease in obese Zucker rats. Am J Kidney Dis 22:83–89

    PubMed  CAS  Google Scholar 

  • Oettinger CW, Siwale RC, D’Souza MJ (2006) Intracellular delivery of antioxidants (Abstract TH-PO937). J Am Soc Nephrol 17:305A

    Google Scholar 

  • Oliver JA, Maarouf O, Cheema FH, Martens TP, Al-Awqati Q (2004) The renal papilla is a niche for adult kidney stem cells. J Clin Invest 114:795–804

    Article  PubMed  CAS  Google Scholar 

  • Okamoto M, Tsuchiya K, Kanematsu Y, Izawa Y, Yoshizumi M, Kagawa S, Tamaki T (2005) Nitrite-derived nitric oxide formation following ischemia-reperfusion injury in kidney. Am J Physiol Renal Physiol 288:F182–F187

    Article  PubMed  CAS  Google Scholar 

  • Okusa MD (2002) A(2A) adenosine receptor: a novel therapeutic target in renal disease. Am J Physiol Renal Physiol 282:F10–F18

    PubMed  CAS  Google Scholar 

  • Okusa MD, Linden J, Macdonald T, Huang L (1999) Selective A2A adenosine receptor activation reduces ischemia-reperfusion injury in rat kidney. Am J Physiol 277:F404–F412

    PubMed  CAS  Google Scholar 

  • Okusa MD, Linden J, Huang L, Rosin DL, Smith DF, Sullivan G (2001) Enhanced protection from renal ischemia-reperfusion injury with A(2A)-adenosine receptor activation and PDE 4 inhibition. Kidney Int 59:2114–2125

    PubMed  CAS  Google Scholar 

  • Okusa MD, Ye H, Huang L, Sigismund L, Macdonald T, Lynch KR (2003) Selective blockade of lysophosphatidic acid LPA3 receptors reduces murine renal ischemia-reperfusion injury. Am J Physiol Renal Physiol 285:F565–F574

    PubMed  Google Scholar 

  • Omori H, Nagashima H, Tsurumi Y, Takagi A, Ishizuka N, Hagiwara N, Kawana M, Kasanuki H (2002) Direct in vivo evidence of a vascular statin: a single dose of cerivastatin rapidly increases vascular endothelial responsiveness in healthy normocholesterolaemic subjects. Br J Clin Pharmacol 54:395–399

    Article  PubMed  CAS  Google Scholar 

  • Ondrejickova O, Horakova L, Juranek I, Ziegelhoeffer A, Stolc S (1999) Effect of stobadine on lipid peroxidation in brain and heart after ischemia and reperfusion of the brain. Life Sci 65:1959–1961

    Article  PubMed  CAS  Google Scholar 

  • Otani H (2004) Reactive oxygen species as mediators of signal transduction in ischemic preconditioning. Antioxid Redox Signal 6:449–469

    Article  PubMed  CAS  Google Scholar 

  • Otto H, Reche PA, Bazan F, Dittmar K, Haag F, Koch-Nolte F (2005) In silico characterization of the family of PARP-like poly(ADP-ribosyl)transferases (pARTs). BMC Genomics 6:139

    Article  PubMed  CAS  Google Scholar 

  • Pablos MI, Chuang J, Reiter RJ, Ortiz GG, Daniels WM, Sewerynek E, Melchiorri D, Poeggeler B (1995) Time course of the melatonin-induced increase in glutathione peroxidase activity in chick tissues. Biol Signals 4:325–330

    Article  PubMed  CAS  Google Scholar 

  • Padanilam BJ, Lewington AJ (1999) Molecular mechanisms of cell death and regeneration in acute ischemic renal injury. Curr Opin Nephrol Hypertens 8:15–19

    Article  PubMed  CAS  Google Scholar 

  • Pagliaro P, Gattullo D, Rastaldo R, Losano G (2001) Involvement of nitric oxide in ischemic preconditioning. Ital Heart J 2:660–668

    PubMed  CAS  Google Scholar 

  • Paller MS (1992) Free radical-mediated postischemic injury in renal transplantation. Ren Fail 14:257–260

    PubMed  CAS  Google Scholar 

  • Paller MS (1994) The cell biology of reperfusion injury in the kidney. J Invest Med 42:632–639

    CAS  Google Scholar 

  • Paller MS, Neumann TV (1991) Reactive oxygen species and rat renal epithelial cells during hypoxia and reoxygenation. Kidney Int 40:1041–1049

    Article  PubMed  CAS  Google Scholar 

  • Paller MS, Hoidal JR, Ferris TF (1984) Oxygen free radicals in ischemic acute renal failure in the rat. J Clin Invest 74:1156–1164

    PubMed  CAS  Google Scholar 

  • Panchapakesan U, Sumual S, Pollock CA, Chen X (2005) PPARγ agonists exert antifibrotic effects in renal tubular cells exposed to high glucose. Am J Physiol Renal Physiol 289:F1153–F1158

    Article  PubMed  CAS  Google Scholar 

  • Park KM, Kim JI, Ahn Y, Bonventre AJ, Bonventre JV (2004) Testosterone is responsible for enhanced susceptibility of males to ischemic renal injury. J Biol Chem 279:52282–52292

    Article  PubMed  CAS  Google Scholar 

  • Park KM, Cho HJ, Bonventre JV (2005) Orchiectomy reduces susceptibility to renal ischemic injury: a role for heat shock proteins. Biochem Biophys Res Commun 328:312–317

    Article  PubMed  CAS  Google Scholar 

  • Patel NSA, Chatterjee PK, Chatterjee BE, Cuzzocrea S, Serraino I, Brown PAJ, Stewart KN, Mota-Filipe H, Thiemermann C (2002) The stable nitroxyl radical TEMPONE reduces renal dysfunction and injury mediated by oxidative stress in the rat kidney. Free Rad Med Biol 33:1575–1589

    Article  CAS  Google Scholar 

  • Patel NSA, Cuzzocrea S, Chatterjee PK, Di Paola R, Sautebin L, Britti D, Thiemermann C (2004) Reduction of renal ischemia-reperfusion injury in 5-lipoxygenase knockout mice and by the 5-lipoxygenase inhibitor zileuton. Mol Pharmacol 66:220–227

    Article  PubMed  CAS  Google Scholar 

  • Patel NSA, Cortes U, Di Poala R, Mazzon E, Mota-Filipe H, Cuzzocrea S, Wang ZQ, Thiemermann C (2005) Mice lacking the 110-kD isoform of poly(ADP-ribose) glycohydrolase are protected against renal ischemia/reperfusion injury. J Am Soc Nephrol 16:712–719

    Article  PubMed  CAS  Google Scholar 

  • Patel NSA, Cuzzocrea S, Collino M, Chatterjee PK, Mazzon E, Britti D, Yaqoob MM, Thiemermann C (2007) The role of cycloxygenase-2 in the rodent kidney following ischaemia/reperfusion injury in vivo. Eur J Pharmacol 562:148–154

    Article  PubMed  CAS  Google Scholar 

  • Patschan D, Plotkin M, Goligorsky MS (2006) Therapeutic use of stem and endothelial progenitor cells in acute renal injury: ca ira. Curr Opin Pharmacol 6:176–183

    Article  PubMed  CAS  Google Scholar 

  • Pearson RJ, Wilson T, Wang R (2006) Endogenous hydrogen sulfide and the cardiovascular system—what’s the smell all about? Clin Invest Med 29:146–150

    PubMed  CAS  Google Scholar 

  • Peer G, Blum M, Iaina A (1996) Nitric oxide and acute renal failure. Nephron 73:375–381

    PubMed  CAS  Google Scholar 

  • Peitzman AB, Billiar TR, Harbrecht BG, Kelly E, Udekwu AO, Simmons RL (1995) Hemorrhagic shock. Curr Probl Surg 32:925–1002

    Article  PubMed  CAS  Google Scholar 

  • Perco P, Pleban C, Kainz A, Lukas A, Mayer B, Oberbauer R (2007) Gene expression and biomarkers in renal transplant ischemia reperfusion injury. Transpl Int 20:2–11

    Article  PubMed  CAS  Google Scholar 

  • Peresleni T, Noiri E, Bahou WF, Goligorsky MS (1996) Antisense oligodeoxynucleotides to inducible NO synthase rescue epithelial cells from oxidative stress injury. Am J Physiol 270:F971–F977

    PubMed  CAS  Google Scholar 

  • Pincemail J, Defraigne JO, Detry O, Franssen C, Meurisse M, Limet R (2000) Ischemia-reperfusion injury of rabbit kidney: comparative effects of desferrioxamine and N-acetylcysteine as antioxidants. Transplant Proc 32:475–476

    Article  PubMed  CAS  Google Scholar 

  • Pinheiro HS, Camara NO, Noronha IL, Maugeri IL, Franco MF, Medina JO, Pacheco-Silva A (2007) Contribution of CD4+ T cells to the early mechanisms of ischemia-reperfusion injury in a mouse model of acute renal failure. Braz J Med Biol Res 40:557–568

    Article  PubMed  CAS  Google Scholar 

  • Piriyawat P, Labiche LA, Burgin WS, Aronowski JA, Grotta JC (2003) Pilot dose-escalation tudy of caffeine plus ethanol (caffeinol) in acute ischemic stroke. Stroke 34:1242–1245

    Article  PubMed  CAS  Google Scholar 

  • Plaschke K, Kopitz J, Weigand MA, Martin E, Bardenheuer HJ (2000) The neuroprotective effect of cerebral poly(ADP-ribose)polymerase inhibition in a rat model of global ischemia. Neurosci Lett 284:109–112

    Article  PubMed  CAS  Google Scholar 

  • Portilla D, Dai G, Peters JM, Gonzalez FJ, Crew MD, Proia AD (2000) Etomoxir-induced PPARα-modulated enzymes protect during acute renal failure. Am J Physiol Renal Physiol 278:F667–F675

    PubMed  CAS  Google Scholar 

  • Prathapasinghe GA, Siow YL, O K (2007) Detrimental role of homocysteine in renal ischemia/reperfusion injury. Am J Physiol Renal Physiol; Epub ahead of print

  • Pryor W, Squadrito G (1995) The chemistry of peroxynitrite: a product from the reaction of nitric oxide with superoxide. Am J Physiol 268:L699–L772

    PubMed  CAS  Google Scholar 

  • Qi S, Xu D, Ma A, Zhang X, Chida N, Sudo Y, Tamura K, Daloze P, Chen H (2006) Effect of a novel inducible nitric oxide synthase inhibitor, FR260330, in prevention of renal ischemia/reperfusion injury in vervet monkeys. Transplantation 81:627–631

    Article  PubMed  CAS  Google Scholar 

  • Racz I, Tory K, Gallyas F Jr, Berente Z, Osz E, Jaszlits L, Bernath S, Sumegi B, Rabloczky G, Literati-Nagy P (2002) BGP-15—a novel poly(ADP-ribose) polymerase inhibitor—protects against nephrotoxicity of cisplatin without compromising its antitumor activity. Biochem Pharmacol 63:1099–1111

    Article  PubMed  CAS  Google Scholar 

  • Radi R, Beckman JS, Bush KM, Freeman BA (1991) Peroxynitrite-induced membrane lipid peroxidation: the cytotoxic potential of superoxide and nitric oxide. Arch Biochem Biophys 288:481–487

    Article  PubMed  CAS  Google Scholar 

  • Radi R, Peluffo G, Alvarez MN, Naviliat M, Cayota A (2001) Unraveling peroxynitrite formation in biological systems. Free Rad Biol Med 30:463–488

    Article  PubMed  CAS  Google Scholar 

  • Radovits T, Lin LN, Zotkina J, Gero D, Szabó C, Karck M, Szabó G (2007) Poly(ADP-ribose) polymerase inhibition improves endothelial dysfunction induced by reactive oxidant hydrogen peroxide in vitro. Eur J Pharmacol Mar 12; Epub ahead of print

  • Raff U, Schneider R, Gambaryan S, Seibold S, Reber M, Vornberger N, Freund R, Schramm L, Wanner C, Galle J (2005) L-Arginine does not affect renal morphology and cell survival in ischemic acute renal failure in rats. Nephron Physiol 101:39–50

    Article  CAS  Google Scholar 

  • Rakotovao A, Berthonneche C, Guiraud A, de Lorgeril M, Salen P, de Leiris J, Boucher F (2004) Ethanol, wine, and experimental cardioprotection in ischemia/reperfusion: role of the prooxidant/antioxidant balance. Antioxid Redox Signal 6:431–438

    Article  PubMed  CAS  Google Scholar 

  • Ramesh G, Lan V, Smith C, Reeves WB (2006) S1P analog ameliorates acute renal failure and endogenous S1P mediates ischemic preconditioning (Abstract TH-PO1023). J Am Soc Nephrol 17:325A

    Article  Google Scholar 

  • Rankin EB, Biju MP, Liu Q, Unger TL, Rha J, Johnson RS, Simon MC, Keith B, Haase VH (2007) Hypoxia-inducible factor-2 (HIF-2) regulates hepatic erythropoietin in vivo. J Clin Invest 117:1068–1077

    Article  PubMed  CAS  Google Scholar 

  • Ratcliffe PJ (2007) HIF-1 and HIF-2: working alone or together in hypoxia? J Clin Invest 117:862–865

    Article  PubMed  CAS  Google Scholar 

  • Reece TB, Okonkwo DO, Ellman PI, Warren PS, Smith RL, Hawkins AS, Linden J, Kron IL, Tribble CG, Kern JA (2004) The evolution of ischemic spinal cord injury in function, cytoarchitecture, and inflammation and the effects of adenosine A2A receptor activation. J Thorac Cardiovasc Surg 128:925–932

    Article  PubMed  CAS  Google Scholar 

  • Reiter RJ, Melchiorri D, Sewerynek E, Poeggeler B, Barlow-Walden L, Chuang J, Ortiz GG, Acuna-Castroviejo D (1995) A review of the evidence supporting melatonin’s role as an antioxidant. J Pineal Res 18:1–11

    Article  PubMed  CAS  Google Scholar 

  • Reiter RJ, Carneiro RC, Oh CS (1997) Melatonin in relation to cellular antioxidative defense mechanisms. Horm Metab Res 29:363–372

    Article  PubMed  CAS  Google Scholar 

  • Ricote M, Li AC, Willson TM, Kelly CJ, Glass CK (1998) The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. Nature 391:79–82

    Article  PubMed  CAS  Google Scholar 

  • Riera M, Herrero I, Torras J, Cruzado JM, Fatjo M, Lloberas N, Alsina J, Grinyo JM (1999) Ischemic preconditioning improves postischemic acute renal failure. Transplant Proc 31:2346–2347

    Article  PubMed  CAS  Google Scholar 

  • Rodrigo R, Bosco C (2006) Oxidative stress and protective effects of polyphenols: comparative studies in human and rodent kidney. A Review. Comp Biochem Physiol C Toxicol Pharmacol 142:317–327

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Pena A, Garcia-Criado FJ, Eleno N, Arevalo M, Lopez-Novoa JM (2004) Intrarenal administration of molsidomine, a molecule releasing nitric oxide, reduces renal ischemia-reperfusion injury in rats. Am J Transplant 4:1605–1613

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Reynoso S, Leal C, Portilla-de Buen E, Castillo JC, Ramos-Solano F (2004) Melatonin ameliorates renal ischemia/reperfusion injury. J Surg Res 116:242–247

    Article  PubMed  CAS  Google Scholar 

  • Rondon-Berrios H, Palevsky PM (2007) Treatment of acute kidney injury: an update on the management of renal replacement therapy. Curr Opin Nephrol Hypertens 16:64–70

    Article  PubMed  Google Scholar 

  • Rosenberger C, Rosen S, Heyman SN (2005) Current understanding of HIF in renal disease. Kidney Blood Press Res 28:325–340

    Article  PubMed  Google Scholar 

  • Ross SD, Tribble CG, Linden J, Gangemi JJ, Lanpher BC, Wang AY, Kron IL (1999) Selective adenosine-A2A activation reduces lung reperfusion injury following transplantation. J Heart Lung Transplant 18:994–1002

    Article  PubMed  CAS  Google Scholar 

  • Rundback JH, Murphy TP, Cooper C, Weintraub JL (2002) Chronic renal ischemia: pathophysiologic mechanisms of cardiovascular and renal disease. J Vasc Interv Radiol 13:1085–1092

    Article  PubMed  Google Scholar 

  • Rushing GD, Britt LD (2007) Inhibition of NF-KB does not induce C-Jun N-terminal kinase-mediated apoptosis in reperfusion injury. J Am Coll Surg 204:964–967

    Article  PubMed  Google Scholar 

  • Sacco RL, Chong JY, Prabhakaran S, Elkind MS (2007) Experimental treatments for acute ischaemic stroke. Lancet 369:331–341

    Article  PubMed  CAS  Google Scholar 

  • Sadis C, Teske G, Stokman G, Kubjak C, Claessen N, Moore F, Loi P, Diallo B, Barvais L, Goldman M, Florquin S, Le Moine A (2007) Nicotine protects kidney from renal ischemia/reperfusion injury through the cholinergic anti-inflammatory pathway. PLoS ONE 2:e469

    Article  PubMed  CAS  Google Scholar 

  • Sahna E, Parlakpinar H, Cihan OF, Turkoz Y, Acet A (2006) Effects of aminoguanidine against renal ischaemia-reperfusion injury in rats. Cell Biochem Funct 24:137–141

    Article  PubMed  CAS  Google Scholar 

  • Saito M, Satoh S, Kojima N, Tada H, Sato M, Suzuki T, Senoo H, Habuchi T (2005) Effects of a phenolic compound, resveratrol, on the renal function and costimulatory adhesion molecule CD86 expression in rat kidneys with ischemia/reperfusion injury. Arch Histol Cytol 68:41–49

    Article  PubMed  CAS  Google Scholar 

  • Salom MG, Arregui B, Carbonell LF, Ruiz F, Gonzalez-Mora JL, Fenoy FJ (2005) Renal ischemia induces an increase in nitric oxide levels from tissue stores. Am J Physiol Regul Integr Comp Physiol 289:R1459–R1466

    PubMed  CAS  Google Scholar 

  • Salvemini D, Doyle TM, Cuzzocrea S (2006) Superoxide, peroxinitrite and oxidative/nitrosative stress in inflammation. Biochem Soc Trans 34:965–970

    Article  PubMed  CAS  Google Scholar 

  • Sambandam N, Morabito D, Wagg C, Finck BN, Kelly DP, Lopaschuk GD (2006) Chronic activation of PPARalpha is detrimental to cardiac recovery after ischemia. Am J Physiol Heart Circ Physiol 290:H87–H95

    Article  PubMed  CAS  Google Scholar 

  • Sanada S, Kitakaze M (2004) Ischemic preconditioning: emerging evidence, controversy, and translational trials. Int J Cardiol 97:263–276

    Article  PubMed  Google Scholar 

  • Sandau KB, Zhou J, Kietzmann T, Brune B (2001) Regulation of the hypoxia-inducible factor 1alpha by the inflammatory mediators nitric oxide and tumor necrosis factor-alpha in contrast to desferroxamine and phenylarsine oxide. J Biol Chem 276:39805–39811

    Article  PubMed  CAS  Google Scholar 

  • Sandouka A, Fuller BJ, Mann BE, Green CJ, Foresti R, Motterlini R (2006) Treatment with CO-RMs during cold storage improves renal function at reperfusion. Kidney Int 69:239–247

    Article  PubMed  CAS  Google Scholar 

  • Schindler R (2004) Causes and therapy of microinflammation in renal failure. Nephrol Dial Transplant 19:V34–V40

    Article  PubMed  CAS  Google Scholar 

  • Schreiber V, Dantzer F, Ame JC, de Murcia G (2006) Poly(ADP-ribose): novel functions for an old molecule. Nat Rev Mol Cell Biol 7:517–528

    Article  PubMed  CAS  Google Scholar 

  • Sekhon CS, Sekhon BK, Singh I, Orak JK, Singh AK (2003) Attenuation of renal ischemia reperfusion injury by a triple drug combination therapy. J Nephrol 16:63–74

    PubMed  CAS  Google Scholar 

  • Semedo P, Wang PM, Andreucci TH, Cenedeze MA, Teixeira VP, Reis MA, Pacheco-Silva A, Camara NO (2007) Mesenchymal stem cells ameliorate tissue damages triggered by renal ischemia and reperfusion injury. Transplant Proc 39:421–423

    Article  PubMed  CAS  Google Scholar 

  • Sen CK, Packer L (1996) Antioxidant and redox regulation of gene transcription. FASEB J 10:709–720

    PubMed  CAS  Google Scholar 

  • Sener G, Sener E, Sehirli O, Ogunc AV, Cetinel S, Gedik N, Sakarcan A (2005) Ginkgo biloba extract ameliorates ischemia reperfusion-induced renal injury in rats. Pharmacol Res 52:216–222

    Article  PubMed  Google Scholar 

  • Sener G, Sehirli O, Velioglu-Ogunc A, Cetinel S, Gedik N, Caner M, Sakarcan A, Yegen BC (2006a) Montelukast protects against renal ischemia/reperfusion injury in rats. Pharmacol Res 54:65–71

    Article  PubMed  CAS  Google Scholar 

  • Sener G, Tugtepe H, Yuksel M, Cetinel S, Gedik N, Yegen BC (2006b) Resveratrol improves ischemia/reperfusion-induced oxidative renal injury in rats. Arch Med Res 37:822–829

    Article  PubMed  CAS  Google Scholar 

  • Seok YM, Kim J, Choi KC, Yoon CH, Boo YC, Park Y, Park KM (2007) Wen-pi-tang-Hab-Wu-ling-san attenuates kidney ischemia/reperfusion injury in mice A role for antioxidant enzymes and heat-shock proteins. J Ethnopharmacol; Epub ahead of print

  • Sepodes B, Maio R, Pinto R, Sharples E, Oliveira P, McDonald M, Yaqoob M, Thiemermann C, Mota-Filipe H (2006) Recombinant human erythropoietin protects the liver from hepatic ischemia-reperfusion injury in the rat. Transpl Int 19:919–926

    Article  PubMed  CAS  Google Scholar 

  • Sevastos J, Kennedy SE, Davis DR, Sam M, Peake PW, Charlesworth JA, Mackman N, Erlich JH (2007) Tissue factor deficiency and PAR-1 deficiency are protective against renal ischemia reperfusion injury. Blood 109:577–583

    Article  PubMed  CAS  Google Scholar 

  • Shall S, de Murcia G (2000) Poly(ADP-ribose) polymerase-1: what have we learned from the deficient mouse model? Mutat Res 30(460):1–15

    Google Scholar 

  • Sharples EJ, Yaqoob MM (2006a) Erythropoietin and acute renal failure. Semin Nephrol 26:325–331

    Article  PubMed  CAS  Google Scholar 

  • Sharples EJ, Yaqoob MM (2006b) Erythropoietin in experimental acute renal failure. Nephron Exp Nephrol 104:e83–e88

    Article  PubMed  CAS  Google Scholar 

  • Sharples EJ, Thiemermann C, Yaqoob MM (2005) Mechanisms of disease: Cell death in acute renal failure and emerging evidence for a protective role of erythropoietin. Nat Clin Pract Nephrol 1:87–97

    Article  PubMed  CAS  Google Scholar 

  • Sharples EJ, Thiemermann C, Yaqoob MM (2006) Novel applications of recombinant erythropoietin. Curr Opin Pharmacol 6:184–189

    Article  PubMed  CAS  Google Scholar 

  • Sheridan AM, Bonventre JV (2000) Cell biology and molecular mechanisms of injury in ischemic acute renal failure. Curr Opin Nephrol Hypertens 9:427–434

    Article  PubMed  CAS  Google Scholar 

  • Sheridan AM, Bonventre JV (2001) Pathophysiology of ischemic acute renal failure. Contrib Nephrol 132:7–21

    Article  PubMed  CAS  Google Scholar 

  • Shibata Y, Takaoka M, Maekawa D, Kuwahara C, Matsumura Y (2004) Involvement of nitric oxide in the suppressive effect of 17beta-estradiol on endothelin-1 overproduction in ischemic acute renal failure. J Cardiovasc Pharmacol 44:S459–S461

    Article  PubMed  CAS  Google Scholar 

  • Shimizu H, Takahashi T, Suzuki T, Yamasaki A, Fujiwara T, Odaka Y, Hirakawa M, Fujita H, Akagi R (2000) Protective effect of heme oxygenase induction in ischemic acute renal failure. Crit Care Med 28:809–817

    Article  PubMed  CAS  Google Scholar 

  • Shimoda N, Fukazawa N, Nonomura K, Fairchild RL (2007) Cathepsin G is required for sustained inflammation and tissue injury after reperfusion of ischemic kidneys. Am J Pathol 170:930–940

    Article  PubMed  CAS  Google Scholar 

  • Shoskes DA, Halloran PF (1996) Delayed graft function in renal transplantation: etiology, management and long-term significance. J Urol 155:1831–1840

    Article  PubMed  CAS  Google Scholar 

  • Siegel NJ, Shah SV (2003) Acute renal failure: directions for the next decade. J Am Soc Nephrol 14:2176–2177

    Article  PubMed  Google Scholar 

  • Singbartl K, Ley K (2000) Protection from ischemia-reperfusion induced severe acute renal failure by blocking E-selectin. Crit Care Med 28:2507–2514

    Article  PubMed  CAS  Google Scholar 

  • Singbartl K, Green SA, Ley K (2000) Blocking P-selectin protects from ischemia/reperfusion-induced acute renal failure. FASEB J 14:48–54

    PubMed  CAS  Google Scholar 

  • Singh D, Chopra K (2004a) The effect of naringin, a bioflavonoid on ischemia-reperfusion induced renal injury in rats. Pharmacol Res 50:187–193

    Article  PubMed  CAS  Google Scholar 

  • Singh D, Chopra K (2004b) Effect of trimetazidine on renal ischemia/reperfusion injury in rats. Pharmacol Res 50:623–629

    Article  PubMed  CAS  Google Scholar 

  • Singh I, Gulati S, Orak JK, Singh AK (1993) Expression of antioxidant enzymes in rat kidney during ischemia-reperfusion injury. Mol Cell Biochem 125:97–104

    Article  PubMed  CAS  Google Scholar 

  • Singh D, Chander V, Chopra K (2004a) Carvedilol attenuates ischemia-reperfusion-induced oxidative renal injury in rats. Fundam Clin Pharmacol 18:627–634

    Article  PubMed  CAS  Google Scholar 

  • Singh D, Chander V, Chopra K (2004b) The effect of quercetin, a bioflavonoid on ischemia/reperfusion induced renal injury in rats. Arch Med Res 35:484–494

    Article  PubMed  CAS  Google Scholar 

  • Singh D, Chander V, Chopra K (2005) Protective effect of catechin on ischemia-reperfsuion-induced renal injury in rats. Pharmacol Rep 57:70–76

    PubMed  CAS  Google Scholar 

  • Singh D, Kaur R, Chander V, Chopra K (2006) Antioxidants in the prevention of renal disease. J Med Food 9:443–450

    Article  PubMed  CAS  Google Scholar 

  • Sivarajah A, Chatterjee PK, Hattori Y, Brown PA, Stewart KN, Todorovic Z, Mota-Filipe H, Thiemermann C (2002) Agonists of peroxisome-proliferator activated receptor-α (clofibrate and WY14643) reduce renal ischemia/reperfusion injury in the rat. Med Sci Monit 8:BR532–BR539

    PubMed  CAS  Google Scholar 

  • Sivarajah A, Chatterjee PK, Patel NS, Todorovic Z, Hattori Y, Brown PA, Stewart KN, Mota-Filipe H, Cuzzocrea S, Thiemermann C (2003) Agonists of peroxisome-proliferator activated receptor-γ reduce renal ischemia/reperfusion injury. Am J Nephrol 23:267–276

    Article  PubMed  CAS  Google Scholar 

  • Sivarajah A, McDonald MC, Thiemermann C (2006) The production of hydrogen sulphide limits myocardial ischemia and reperfusion injury and contributes to the cardioprotective effects of preconditioning with endotoxin, but not ischemia in the rat. Shock 26:154–161

    Article  PubMed  CAS  Google Scholar 

  • Slama JT, Aboul-Ela N, Goli DM, Cheesman BV, Simmons AM, Jacobson MK (1995) Specific inhibition of poly(ADP-ribose) glycohydrolase by adenosine diphosphate (hydroxymethyl)pyrrolidinediol. J Med Chem 38:389–393

    Article  PubMed  CAS  Google Scholar 

  • Solmazgul E, Uzun G, Cermik H, Atasoyu EM, Aydinoz S, Yildiz S (2007) Hyperbaric oxygen therapy attenuates renal ischemia/reperfusion injury in rats. Urol Int 78:82–85

    Article  PubMed  CAS  Google Scholar 

  • Southan GJ, Szabó C (2003) Pharmacological inhibition of poly(ADP-ribose) polymerase (PARP). Med Sci Mon 9:31–32

    Google Scholar 

  • Spain DA, Wilson MA, Garrison RN (1994) Nitric oxide synthase inhibition exacerbates sepsis-induced renal hypoperfusion. Surgery 116:322–330

    PubMed  CAS  Google Scholar 

  • Star RA (1998) Treatment of acute renal failure. Kidney Int 54:1817–1831

    Article  PubMed  CAS  Google Scholar 

  • Stenvinkel P (2003) Interactions between inflammation, oxidative stress, and endothelial dysfunction in end-stage renal disease. J Renal Nutr 13:144–148

    Article  Google Scholar 

  • Stephens CT, Jandhyala BS (2002) Effects of fenoldopam, a dopamine D-1 agonist, and clevidipine, a calcium channel antagonist, in acute renal failure in anesthetized rats. Clin Exp Hypertens 24:301–313

    Article  PubMed  CAS  Google Scholar 

  • Stocker R, Yamamoto Y, McDonagh AF, Glazer AN, Ames BN (1987) Bilirubin is an antioxidant of possible physiological importance. Science 235:1043–1046

    Article  PubMed  CAS  Google Scholar 

  • Stone DH, Al-Badawi H, Conrad MF, Stoner MC, Entabi F, Cambria RP, Watkins MT (2005) PJ34, a poly-ADP-ribose polymerase inhibitor, modulates renal injury after thoracic aortic ischemia/reperfusion. Surgery 138:368–374

    Article  PubMed  Google Scholar 

  • Storz P, Toker A (2003) NF-kappaB signalling—an alternate pathway for oxidative stress responses. Cell Cycle 2:9–10

    PubMed  CAS  Google Scholar 

  • Sugino H, Shimada H, Tsuchimoto K (2001) Role of adenosine in renal protection induced by a brief episode of ischemic preconditioning in rats. Jpn J Pharmacol 87:134–142

    Article  PubMed  CAS  Google Scholar 

  • Suto MJ, Turner WR, Arundel-Suto CM, Werbel LM, Sebolt-Leopold JS (1991) Dihydroisoquinolinones: the design and synthesis of a new series of potent inhibitors of poly(ADP-ribose) polymerase. Anticancer Drug Des 6:107–117

    PubMed  CAS  Google Scholar 

  • Sutton TA, Kelly KJ, Mang HE, Plotkin Z, Sandoval RM, Dagher PC (2005) Minocycline reduces renal microvascular leakage in a rat model of ischemic renal injury. Am J Physiol Renal Physiol 288:F91–F97

    Article  PubMed  CAS  Google Scholar 

  • Szabó C, Dawson VL (1998) Role of poly(ADP-ribose) synthetase in inflammation and ischaemia-reperfusion. Trends Pharmacol Sci 19:287–298

    Article  PubMed  Google Scholar 

  • Szabó C, Zingarelli B, O’Connor M, Salzman AL (1996) DNA strand breakage, activation of poly-ADP ribosyl synthetase, and cellular energy depletion are involved in the cytotoxicity in macrophages and smooth muscle cells exposed to peroxynitrite. Proc Natl Acad Sci USA 93:1753–1758

    Article  PubMed  Google Scholar 

  • Szabó G, Bahrle S, Stumpf N, Sonnenberg K, Szabó EE, Pacher P, Csont T, Schulz R, Dengler TJ, Liaudet L, Jagtap PG, Southan GJ, Vahl CF, Hagl S, Szabó C (2002) Poly(ADP-Ribose) polymerase inhibition reduces reperfusion injury after heart transplantation. Circ Res 90:100–106

    Article  PubMed  Google Scholar 

  • Tahara M, Nakayama M, Jin MB, Fujita M, Suzuki T, Taniguchi M, Shimamura T, Furukawa H, Todo S (2005) A radical scavenger, edavarone, protects canine kidneys from ischemia-reperfusion injury after 72 hours of cold preservation and autotransplantation. Transplantation 80:213–221

    Article  PubMed  CAS  Google Scholar 

  • Tain YL, Muller V, Szabó A, Dikalova A, Griendling K, Baylis C (2006) Lack of long-term protective effect of antioxidant/anti-inflammatory therapy in transplant-induced ischemia/reperfusion injury. Am J Nephrol 26:213–217

    Article  PubMed  CAS  Google Scholar 

  • Takahashi K, Greenberg JH, Jackson P, Maclin K, Zhang J (1997) Neuroprotective effects of inhibiting poly(ADP-ribose) synthetase on focal cerebral ischemia in rats. J Cereb Blood Flow Metab 17:1137–1142

    Article  PubMed  CAS  Google Scholar 

  • Takahashi T, Morita K, Akagi R, Sassa S (2004) Protective role of heme oxygenase-1 in renal ischemia. Antioxid Redox Signal 6:867–877

    PubMed  CAS  Google Scholar 

  • Tang C, Li X, Du J (2006) Hydrogen sulfide as a new endogenous gaseous transmitter in the cardiovascular system. Curr Vasc Pharmacol 4:17–22

    Article  PubMed  CAS  Google Scholar 

  • Tentori L, Portarena I, Graziani G (2002) Potential clinical applications of poly(ADP-ribose) polymerase (PARP) inhibitors. Pharmacol Res 45:73–85

    Article  PubMed  CAS  Google Scholar 

  • Tepel M, Van Der Giet M, Statz M, Jankowski J, Zidek W (2003) The antioxidant acetylcysteine reduces cardiovascular events in patients with end stage renal failure: a randomized, controlled trial. Circulation 107:992–995

    Article  PubMed  CAS  Google Scholar 

  • Thadhani R, Pascual M, Bonventre JV (1996) Acute renal failure. N Engl J Med 334:1448–1460

    Article  PubMed  CAS  Google Scholar 

  • Theilmeier G, Schmidt C, Herrmann J, Keul P, Schafers M, Herrgott I, Mersmann J, Larmann J, Hermann S, Stypmann J, Schober O, Hildebrand R, Schulz R, Heusch G, Haude M, von Wnuck Lipinski K, Herzog C, Schmitz M, Erbel R, Chun J, Levkau B (2006) High-density lipoproteins and their constituent, sphingosine-1-phosphate, directly protect the heart against ischemia/reperfusion injury in vivo via the S1P3 lysophospholipid receptor. Circulation 114:1403–1409

    Article  PubMed  CAS  Google Scholar 

  • Thiemermann C (2001) Inhaled CO: deadly gas or novel therapeutic? Nat Med 7:534–535

    Article  PubMed  CAS  Google Scholar 

  • Thiemermann C (2003) Membrane-permeable radical scavengers (tempol) for shock, ischemia-reperfusion injury, and inflammation. Crit Care Med 31:S76–S84

    Article  PubMed  CAS  Google Scholar 

  • Thiemermann C, Bowes J, Myint FP, Vane JR (1997) Inhibition of the activity of poly(ADP ribose) synthetase reduces ischemia-reperfusion injury in the heart and skeletal muscle. Proc Natl Acad Sci USA 94:679–683

    Article  PubMed  CAS  Google Scholar 

  • Thiemermann C, Patel NSA, Kvale EO, Cockerill GW, Brown PA, Stewart KN, Cuzzocrea S, Britti D, Mota-Filipe H, Chatterjee PK (2003) High density lipoprotein (HDL) reduces renal ischemia/reperfusion injury. J Am Soc Nephrol 14:1833–1843

    Article  PubMed  CAS  Google Scholar 

  • Thongboonkerd V (2005) Proteomic analysis of renal diseases: unraveling the pathophysiology and biomarker discovery. Exp Reviews in Proteomics 2:349–366

    Article  CAS  Google Scholar 

  • Thurman JM (2007) Triggers of inflammation after renal ischemia/reperfusion. Clin Immunol 123:7–13

    Article  PubMed  CAS  Google Scholar 

  • Togel F, Weiss K, Yang Y, Hu Z, Zhang P, Westenfelder C (2007) Vasculotropic, paracrine actions of infused mesenchymal stem cells are important to the recovery from acute kidney injury. Am J Physiol Renal Physiol 292:F1626–F1635

    Article  PubMed  CAS  Google Scholar 

  • Toledo-Pereyra LH, Lopez-Neblina F, Toledo AH (2004a) Reactive oxygen species and molecular biology of ischemia/reperfusion. Ann Transplant 9:81–83

    PubMed  CAS  Google Scholar 

  • Toledo-Pereyra LH, Toledo AH, Walsh J, Lopez-Neblina F (2004b) Molecular signaling pathways in ischemia/reperfusion. Exp Clin Transplant 2:174–177

    PubMed  Google Scholar 

  • Tonelli M, Moye L, Sacks FM, Cole T, Curhan GC, Cholesterol and Recurrent Events Trial Investigators (2003a) Effect of pravastatin on loss of renal function in people with moderate chronic renal insufficiency and cardiovascular disease. J Am Soc Nephrol 14:1605–1613

    Article  PubMed  CAS  Google Scholar 

  • Tonelli M, Moye L, Sacks FM, Kiberd B, Curhan G, Cholesterol and Recurrent Events (CARE) Trial Investigators (2003b) Pravastatin for secondary prevention of cardiovascular events in persons with mild chronic renal insufficiency. Ann Intern Med 138:98–104

    PubMed  CAS  Google Scholar 

  • Torras J, Herrero-Fresneda I, Lloberas N, Riera M, Ma Cruzado J, Ma Grinyo J (2002) Promising effects of ischemic preconditioning in renal transplantation. Kidney Int 61:2218–2227

    Article  PubMed  Google Scholar 

  • Touyz RM, Schiffrin EL (2006) Peroxisome proliferator-activated receptors in vascular biology-molecular mechanisms and clinical implications. Vascul Pharmacol 45:19–28

    Article  PubMed  CAS  Google Scholar 

  • Tripatara P, Patel NSA, Webb A, Rathod K, Lecomte FM, Mazzon E, Cuzzocrea S, Yaqoob MM, Ahluwalia A, Thiemermann C (2007) Nitrite-derived nitric oxide protects the rat kidney against ischemia/reperfusion injury in vivo: role for xanthine oxidoreductase. J Am Soc Nephrol 18:570–580

    Article  PubMed  CAS  Google Scholar 

  • Trof RJ, Di Maggio F, Leemreis J, Groeneveld AB (2006) Biomarkers of acute renal injury and renal failure. Shock 26:245–253

    Article  PubMed  CAS  Google Scholar 

  • Troppmann C, Gillingham KJ, Benedetti E, Almond PS, Gruessner RW, Najarian JS, Matas AJ (1995) Delayed graft function, acute rejection, and outcome after cadaver renal transplantation. The multivariate analysis. Transplantation 59:962–968

    PubMed  CAS  Google Scholar 

  • Tugtepe H, Sener G, Biyikli NK, Yuksel M, Cetinel S, Gedik N, Yegen BC (2007) The protective effect of oxytocin on renal ischemia/reperfusion injury in rats. Regul Pept; Epub ahead of print

  • Tullius SG, Nieminen-Kelha M, Buelow R, Reutzel-Selke A, Martins PN, Pratschke J, Bachmann U, Lehmann M, Southard D, Iyer S, Schmidbauer G, Sawitzki B, Reinke P, Neuhaus P, Volk HD (2002) Inhibition of ischemia/reperfusion injury and chronic graft deterioration by a single-donor treatment with cobalt-protoporphyrin for the induction of heme oxygenase-1. Transplantation 74:591–598

    Article  PubMed  CAS  Google Scholar 

  • Uchino S, Bellomo R, Goldsmith D, Bates S, Ronco C (2006) An assessment of the RIFLE criteria for acute renal failure in hospitalized patients. Crit Care Med 34:1913–1917

    Article  PubMed  Google Scholar 

  • Ueda K, Hayaishi O (1985) ADP-ribosylation. Annu Rev Biochem 54:73–100

    Article  PubMed  CAS  Google Scholar 

  • van Kooten C, Langers AM, Bruijn JA, Daha MR (1999) Role of tubular cells in progressive renal disease. Kidney Blood Press Res 22:53–61

    Article  PubMed  Google Scholar 

  • Venkatachalam MA, Bernard DB, Donohue JF, Levinsky NG (1978) Ischemic damage and repair in the rat proximal tubule. Differences among the S1, S2 and S3 segments. Kidney Int 14:31–49

    Article  PubMed  CAS  Google Scholar 

  • Venkataraman R, Kellum JA (2000) Novel approaches to the treatment of acute renal failure. Expert Opin Invest Drugs 9:2579–2592

    Article  CAS  Google Scholar 

  • Venkataraman R, Kellum JA (2003) Novel approaches to the treatment of acute renal failure. Expert Opin Investig Drugs 12:1353–1366

    Article  PubMed  CAS  Google Scholar 

  • Vera T, Henegar JR, Drummond HA, Rimoldi JM, Stec DE (2005) Protective effect of carbon monoxide-releasing compounds in ischemia-induced acute renal failure. J Am Soc Nephrol 16:950–958

    Article  PubMed  CAS  Google Scholar 

  • Versteilen AM, Di Maggio F, Leemreis JR, Groenveld AB, Musters RJ, Sipkema P (2004) Molecular mechanisms of acute renal failure following ischemia/reperfusion. Int J Artif Organs 27:1019–1029

    PubMed  CAS  Google Scholar 

  • Versteilen AM, Korstjens IJ, Musters RJ, Groeneveld AB, Sipkema P (2006) Rho kinase regulates renal blood flow by modulating eNOS activity in ischemia-reperfusion of the rat kidney. Am J Physiol Renal Physiol 291:F606–F611

    Article  PubMed  CAS  Google Scholar 

  • Viedt C, Dechend R, Fei J, Hansch GM, Kreuzer J, Orth SR (2002) MCP-1 induces inflammatory activation of human tubular epithelial cells: involvement of the transcription factors, nuclear factor-kappaB and activating protein-1. J Am Soc Nephrol 13:1534–1547

    Article  PubMed  CAS  Google Scholar 

  • Vinas JL, Sola A, Genesca M, Alfaro V, Pi F, Hotter G (2006) NO and NOS isoforms in the development of apoptosis in renal ischemia/reperfusion. Free Radic Biol Med 40:992–1003

    Article  PubMed  CAS  Google Scholar 

  • Vitzthum H, Weiss B, Bachleitner W, Kramer BK, Kurtz A (2004) Gene expression of adenosine receptors along the nephron. Kidney Int 65:1180–1190

    Article  PubMed  CAS  Google Scholar 

  • Vos IH, Rabelink TJ, Dorland B, Loos R, Van Middelaar B, Grone HJ, Joles JA (2001) L-arginine supplementation improves function and reduces inflammation in renal allografts. J Am Soc Nephrol 12:361–367

    PubMed  CAS  Google Scholar 

  • Waller HL, Harper SJ, Hosgood SA, Bagul A, Kay MD, Kaushik M, Yang B, Bicknell GR, Nicholson ML (2007) Differential expression of cytoprotective and apoptotic genes in an ischaemia-reperfusion isolated organ perfusion model of the transplanted kidney. Transpl Int; Epub ahead of print

  • Walker LM, Walker PD, Imam SZ, Ali SF, Mayeux PR (2000) Evidence for peroxynitrite formation in renal ischemia-reperfusion injury: studies with the inducible nitric oxide synthase inhibitor L-N 6-(1-iminoethyl)lysine. J Pharmacol Exp Ther 295:417–442

    PubMed  CAS  Google Scholar 

  • Walter DH, Rochwalsky U, Reinhold J, Seeger F, Aicher A, Urbich C, Spyridopoulos I, Chun J, Brinkmann V, Keul P, Levkau B, Zeiher AM, Dimmeler S, Haendeler J (2007) Sphingosine-1-phosphate stimulates the functional capacity of progenitor cells by activation of the CXCR4-dependent signaling pathway via the S1P3 receptor. Arterioscler Thromb Vasc Biol 27:275–282

    Article  PubMed  CAS  Google Scholar 

  • Wang PH, Cenedeze MA, Pesquero JB, Pacheco-Silva A, Camara NO (2006a) Influence of bradykinin B1 and B2 receptors in the immune response triggered by renal ischemia-reperfusion injury. Int Immunopharmacol 6:1960–1965

    Article  PubMed  CAS  Google Scholar 

  • Wang Q, Guo G, Wiunmill R, Stephenson R, Pacleb J, Bin-Ho W, Flippin L, Gervasi D, Porter S, Lin A, Liu D, Seeley T, Klaus S (2006b) Renoprotective and therapeutic efficacy of the HIF prolyl hydroxylase inhibitor FG-4539 in experimental ischemia-reperfusion induced acute renal injury. J Am Soc Nephrol 17:325A (Abstract TH-PO1025)

    Article  Google Scholar 

  • Wang Y, Ji HX, Xing SH, Pei DS, Guan QH (2007) SP600125, a selective JNK inhibitor, protects ischemic renal injury via suppressing the extrinsic pathways of apoptosis. Life Sci 80:2067–2075

    Article  PubMed  CAS  Google Scholar 

  • Wayman NS, McDonald MC, Thompson AS, Threadgill MD, Thiemermann C (2001) 5-aminoisoquinolinone, a potent inhibitor of poly (adenosine 5′-diphosphate ribose) polymerase, reduces myocardial infarct size. Eur J Pharmacol 430:93–100

    Article  PubMed  CAS  Google Scholar 

  • Wayman NS, Hattori Y, McDonald MC, Mota-Filipe H, Cuzzocrea S, Pisano B, Chatterjee PK, Thiemermann C (2002a) Ligands of the peroxisome proliferator-activated receptors (PPAR-γ and PPAR-α) reduce myocardial infarct size. FASEB J 16:1027–1040

    Article  PubMed  CAS  Google Scholar 

  • Wayman NS, Ellis BL, Thiemermann C (2002b) Ligands of the peroxisome proliferator-activated receptor-PPAR-α reduce myocardial infarct size. Med Sci Monit 8:BR243–BR247

    PubMed  CAS  Google Scholar 

  • Wayman NS, Ellis BL, Thiemermann C (2003) Simvastatin reduces infarct size in a model of acute myocardial ischemia and reperfusion in the rat. Med Sci Monit 9:BR155–BR159

    PubMed  CAS  Google Scholar 

  • Webb A, Bond R, McLean P, Uppal R, Benjamin N, Ahluwalia A (2004) Reduction of nitrite to nitric oxide during ischemia protects against myocardial ischemia-reperfusion damage. Proc Natl Acad Sci USA 101:13683–13688

    Article  PubMed  CAS  Google Scholar 

  • Weight SC, Nicholson ML (1998) Nitric oxide and renal reperfusion injury: a review. Eur J Vasc Endovasc Surg 16:98–103

    Article  PubMed  CAS  Google Scholar 

  • Weight SC, Bell PR, Nicholson ML (1996) Renal ischemia-reperfusion injury. Br J Surg 83:162–170

    Article  PubMed  CAS  Google Scholar 

  • Weight SC, Furness PN, Nicholson ML (1998) Nitric oxide generation is increased in experimental renal warm ischaemia-reperfusion injury. Br J Surg 85:1663–1668

    Article  PubMed  CAS  Google Scholar 

  • Weihprecht H, Lorenz JN, Briggs JP, Schnermann J (1994) Synergistic effects of angiotensin and adenosine in the renal microvasculature. Am J Physiol 266:F227–F239

    PubMed  CAS  Google Scholar 

  • Wheeler DC (1998a) Potential non-lipid-lowering uses of statins. Drugs 56:517–522

    Article  PubMed  CAS  Google Scholar 

  • Wheeler DC (1998b) Statins and the kidney. Curr Opin Nephrol Hypertens 7:579–584

    PubMed  CAS  Google Scholar 

  • Wilson SH, Chade AR, Feldstein A, Sawamura T, Napoli C, Lerman A, Lerman LO (2003) Lipid-lowering-independent effects of simvastatin on the kidney in experimental hypercholesterolaemia. Nephrol Dial Transplant 18:703–709

    Article  PubMed  CAS  Google Scholar 

  • Winburn IC, Harrison JC, MacGinley RJ, Walker RJ, Sammut IA (2006) Renal tubular damage following carbon monoxide releasing molecule exposure: implications for future treatment of transplant ischaemia reperfusion injury. Transplantation 82:1043 (abstract)

    Google Scholar 

  • Woon EC, Threadgill MD (2005) Poly(ADP-ribose)polymerase inhibition—where now? Curr Med Chem 12:2373–2392

    Article  PubMed  CAS  Google Scholar 

  • Wu H, Ren B, Zhu J, Dong G, Xu B, Wang C, Zheng X, Jing H (2006) Pretreatment with recombined human erythropoietin attenuates ischemia-reperfusion-induced lung injury in rats. Eur J Cardiothorac Surg 29:902–907

    Article  PubMed  Google Scholar 

  • Xie J, Guo Q (2007) Par-4 is a novel mediator of renal tubule cell death in models of ischemia-reperfusion injury. Am J Physiol Renal Physiol 292:F107–F115

    Article  PubMed  CAS  Google Scholar 

  • Xu T, Chen X, Wang XF, Huang XB, Qu XK, Ye HY, Zhang XD, Hou SK, Zhu JC (2004) Electron paramagnetic resonance in monitoring of nitric oxide production after kidney transplantation in rats. Chin Med J 117:1552–1557

    PubMed  CAS  Google Scholar 

  • Yamakura F, Taka H, Fujimura T, Murayama K (1998) Inactivation of human manganese-superoxide dismutase by peroxynitrite is caused by exclusive nitration of tyrosine 34 to 3-nitrotyrosine. J Biol Chem 273:14085–14089

    Article  PubMed  CAS  Google Scholar 

  • Yamashita J, Ogata M, Itoh M, Yamasowa H, Shimeda Y, Takaoka M, Matsumura Y (2003) Role of nitric oxide in the renal protective effects of ischemic preconditioning. J Cardiovasc Pharmacol 42:419–427

    Article  PubMed  Google Scholar 

  • Yamashita J, Ohkita M, Takaoka M, Kaneshiro Y, Matsuo T, Kaneko K, Matsumura Y (2007) Role of Na+/H+ exchanger in the pathogenesis of ischemic acute renal failure in mice. J Cardiovasc Pharmacol 49:154–160

    Article  PubMed  CAS  Google Scholar 

  • Yamasowa H, Shimizu S, Inoue T, Takaoka M, Matsumura Y (2005) Endothelial nitric oxide contributes to the renal protective effects of ischemic preconditioning. J Pharmacol Exp Ther 312:153–159

    Article  PubMed  CAS  Google Scholar 

  • Yim MB, Chock PB, Stadtman ER (1990) Copper-zinc SOD catalyses hydroxyl radical production from hydrogen peroxide. Proc Natl Acad Sci USA 87:5006–5010

    Article  PubMed  CAS  Google Scholar 

  • Ying W, Swanson RA (2000) The poly(ADP-ribose) glycohydrolase inhibitor gallotannin blocks oxidative astrocyte death. Neuroreport 11:1385–1388

    Article  PubMed  CAS  Google Scholar 

  • Yokota N, O’Donnell M, Daniels F, Burne-Taney M, Keane W, Kasiske B, Rabb H (2003) Protective effect of HMG-CoA reductase inhibitor on experimental renal ischemia-reperfusion injury. Am J Nephrol 23:13–17

    Article  PubMed  CAS  Google Scholar 

  • Yokota-Ikeda N, Sharyo S, Mori M, Uchida K, Ito K, Ikeda M (2006) Mechanisms underlying the protective effect of pravastatin on renal ischemia-reperfusion injury. J Am Soc Nephrol 17:330A (Abstract TH-PO1048)

    Google Scholar 

  • Yokozawa T, Chung HY, Kim DW, Goto H (1999) Involvement of superoxide and/or nitric oxide in renal tissue injury. Exp Toxicol Pathol 51:517–521

    PubMed  CAS  Google Scholar 

  • Yokozawa T, Dong E, Chen CP (2000) Protection of the kidney by Wen-Pi-Tang against ischemia-reperfusion injury. Phytomedicine 7:185–189

    PubMed  CAS  Google Scholar 

  • Yokozawa T, Ishida A, Kashiwada Y, Cho EJ, Kim HY, Ikeshiro Y (2004a) Coptidis Rhizoma: protective effects against peroxynitrite-induced oxidative damage and elucidation of its active components. J Pharm Pharmacol 56:547–556

    Article  PubMed  CAS  Google Scholar 

  • Yokozawa T, Rhyu DY, Cho EJ (2004b) (-)-Epicatechin 3-O-gallate ameliorates the damages related to peroxynitrite production by mechanisms distinct from those of other free radical inhibitors. J Pharm Pharmacol 56:231–239

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura R, Matsuyama M, Segawa Y, Tsuchida K, Takemoto Y, Kuratsukuri K, Kawahito Y, Shinka T, Sano H, Nakatani T (2004) Study of peroxisome proliferator-activated receptor (PPAR)-γ in renal ischemia-reperfusion injury. Transplant Proc 36:1946–1948

    Article  PubMed  CAS  Google Scholar 

  • Ysebaert DK, De Greef KE, De Beuf A, Van Rompay AR, Vercauteren S, Persy VP, De Broe ME (2004) T cells mediate renal ischemia/reperfusion injury. Kidney Int 66:491–496

    Article  PubMed  CAS  Google Scholar 

  • Yu L, Gengaro PE, Niederberger M, Burke TJ, Schrier RW (1994) Nitric oxide: a mediator in rat tubular hypoxia/reoxygenation injury. Proc Natl Acad Sci USA 91:1691–1695

    Article  PubMed  CAS  Google Scholar 

  • Yue TL (2003) Cardioprotective effects of thiazolidinediones, peroxisome proliferator-activated receptor-gamma agonists. Drugs Today (Barc) 39:949–960

    Article  CAS  Google Scholar 

  • Zager RA, Jurkowitz MS, Merola AJ (1985) Responses of the normal rat kidney to sequential ischemic events. Am J Physiol 249:F148–F159

    PubMed  CAS  Google Scholar 

  • Zahmatkesh M, Kadkhodaee M, Moosavi SM, Jorjani M, Kajbafzadeh A, Golestani A, Ghaznavi R (2005) Beneficial effects of MnTBAP, a broad-spectrum reactive species scavenger, in rat renal ischemia/reperfusion injury. Clin Exp Nephrol 9:212–218

    Article  PubMed  CAS  Google Scholar 

  • Zahmatkesh M, Kadkhodaee M, Arab HA, Shams S (2006) Effects of co-administration of an iNOS inhibitor with a broad-spectrum reactive species scavenger in rat renal ischemia/reperfusion injury. Nephron Exp Nephrol 103:e119–e125

    Article  PubMed  CAS  Google Scholar 

  • Zanardo G, Michielon P, Paccagnella A, Rosi P, Calo M, Salandin V, Da Ros A, Michieletto F, Simini G (1994) Acute renal failure in the patient undergoing cardiac operation. J Thorac Cardiovasc Surg 107:1489–1495

    PubMed  CAS  Google Scholar 

  • Zhang Z, Naughton D, Winyard PG, Benjamin N, Blake DR, Symons MC (1998) Generation of nitric oxide by a nitrite reductase activity of xanthine oxidase: a potential pathway for nitric oxide formation in the absence of nitric oxide synthase activity. Biochem Biophys Res Commun 249:767–772

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Zheng X, Sun H, Feng B, Chen G, Vladau C, Li M, Chen D, Suzuki M, Min L, Liu W, Garcia B, Zhong R, Min WP (2006) Prevention of renal ischemic injury by silencing the expression of renal caspase 3 and caspase 8. Transplantation 82:1728–1732

    Article  PubMed  CAS  Google Scholar 

  • Zhao Y, Patzer A, Herdegen T, Gohlke P, Culman J (2006) Activation of cerebral peroxisome proliferator-activated receptors γ promotes neuroprotection by attenuation of neuronal cyclooxygenase-2 overexpression after focal cerebral ischemia in rats. FASEB J 20:1162–1175

    Article  PubMed  CAS  Google Scholar 

  • Zheng X, Zhang X, Sun H, Feng B, Li M, Chen G, Vladau C, Chen D, Suzuki M, Min L, Liu W, Zhong R, Garcia B, Jevnikar A, Min WP (2006) Protection of renal ischemia injury using combination gene silencing of complement 3 and caspase 3 genes. Transplantation 82:1781–1786

    Article  PubMed  CAS  Google Scholar 

  • Zimmerman BJ, Granger DN (1992) Reperfusion injury. Surg Clin North Am 72:65–83

    PubMed  CAS  Google Scholar 

  • Zingarelli B, Cuzzocrea S, Zsengeller Z, Salzman AL, Szabó C (1997) Protection against myocardial ischemia and reperfusion injury by 3-aminobenzamide, an inhibitor of poly (ADP-ribose) synthetase. Cardiovasc Res 36:205–215

    Article  PubMed  CAS  Google Scholar 

  • Zweier JL, Wang P, Samouilov A, Kuppusamy P (1995) Enzyme-independent formation of nitric oxide in biological tissues. Nat Med 1:804–809

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The author would like to thank Dr Victoria Stewart for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prabal K. Chatterjee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chatterjee, P.K. Novel pharmacological approaches to the treatment of renal ischemia-reperfusion injury: a comprehensive review. Naunyn-Schmied Arch Pharmacol 376, 1–43 (2007). https://doi.org/10.1007/s00210-007-0183-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-007-0183-5

Keywords

Navigation