Skip to main content

Advertisement

Log in

Vasopressin Receptor Antagonists

  • Antihypertensive Agents: Mechanisms of Drug Action (M Ernst, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Arginine vasopressin (AVP) is the principal hormone involved in regulating the tonicity of body fluids. Less appreciated is the role that AVP plays in a variety of other physiologic functions including glucose metabolism, cardiovascular homeostasis, bone metabolism, and cognitive behavior. AVP receptor antagonists are now available and currently approved to treat hyponatremia. There is a great deal of interest in exploring the potential benefits that these drugs may play in blocking AVP-mediated effects in other organ systems. The purpose of this report is to provide an update on the expanding role of AVP receptor antagonists and what disease states these drugs may eventually be used for.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Palmer BF, Alpern RJ. Integrated renal response to abnormalities in tonicity—overview. In: Seldin DW, Giebisch G, editors. Clinical disturbances of water balance. New York: Raven; 1993. p. 273–95.

    Google Scholar 

  2. Koshimizu T, Nakamura K, Egashira N, Hiroyama M, Nonoguchi H, Tanoue A. Vasopressin V1a and V1b receptors: from molecules to physiological systems. Physiol Rev. 2012;92:1813–64.

    Article  CAS  PubMed  Google Scholar 

  3. Zhang L, Hernandez VS. Synaptic innervation to rat hippocampus by vasopressin-immuno-positive fibres from the hypothalamic supraoptic and paraventricular nuclei. Neuroscience. 2013;228:139–62.

    Article  CAS  PubMed  Google Scholar 

  4. Bychowski ME, Mena JD, Auger CJ. Vasopressin infusion into the lateral septum of adult male rats rescues progesterone-induced impairment in social recognition. Neuroscience. 2013;246:52–82.

    Article  CAS  PubMed  Google Scholar 

  5. Ebstein RP, Knafo A, Mankuta D, Chew SH, Lai PS. The contributions of oxytocin and vasopressin pathway genes to human behavior. Horm Behav. 2012;61:359–79.

    Article  CAS  PubMed  Google Scholar 

  6. Yamaguchi Y, Suzuki T, Mizoro Y, Kori H, Okada K, Chen Y, et al. Mice genetically deficient in vasopressin V1a and V1b receptors are resistant to jet lag. Science. 2013;342:85–90. These investigators demonstrated deletion of the V1a and V1b receptors in a transgenic mouse model conferred resistance to manifestations of jet lag as measured by locomotor activity, body temperature and clock gene expression. They went on to show pharmacologic blockade of these receptors in wild type mice similarly resulted in accelerated recovery from jet lag.

    Article  CAS  PubMed  Google Scholar 

  7. Tanoue A, Ito S, Honda K, Oshikawa S, Kitagawa Y, Koshimizu TA, et al. The vasopressin V1b receptor critically regulates hypothalamic-pituitary-adrenal axis activity under both stress and resting conditions. J Clin Invest. 2004;113:302–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Iijima M, Yoshimizu T, Shimazaki T, Tokugawa K, Fukumoto K, Kurosu S, et al. Antidepressant and anxiolytic profiles of newly synthesized arginine vasopressin receptor 1B antagonists: TASP0233278 and TASP0390325. Br J Pharmacol. 2014;171:3511–25.

    Article  CAS  PubMed  Google Scholar 

  9. Juul KV, Bichet DG, Nielsen S, Norgaard JP. The physiological and pathophysiological functions of renal and extrarenal vasopressin V2 receptors. Am J Renal Physiol. 2014;306:F931–40. In addition to the role played by these receptors in renal water handling, this paper provides a comprehensive review describing the distribution and function of V2 receptors in other tissues to include the inner ear, vascular endothelium, and brain. The authors also discuss recent literature demonstrating the stimulatory effect of V2 receptors in tumor cells.

    Article  CAS  Google Scholar 

  10. Fujiwara Y, Hiroyama M, Sanbe A, Aoyagi T, Birumachi J, Yamauchi J, et al. Insulin hypersensitivity in mice lacking the V1b vasopressin receptor. J Physiol. 2007;584:235–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Aoyagi T, Birumachi J, Hiroyama M, Fujiwara Y, Sanbe A, Yamauchi J, et al. Alteration of glucose homeostasis in V1a vasopressin receptor-deficient mice. Endocrinology. 2007;148:2075–84.

    Article  CAS  PubMed  Google Scholar 

  12. Nakamura K, Aoyagi T, Hiroyama M, Kusakawa S, Mizutani R, Sanbe A, et al. Both V(1A) and V(1B) vasopressin receptors deficiency result in impaired glucose tolerance. Eur J Pharmacol. 2009;613:182–8.

    Article  CAS  PubMed  Google Scholar 

  13. Nakamura K, Yamashita T, Fujiki H, Aoyagi T, Yamauchi J, Mori T, et al. Enhanced glucose tolerance in the Brattleboro rat. Biochem Biophys Res Commun. 2011;405:64–7.

    Article  CAS  PubMed  Google Scholar 

  14. Kortenoeven M, Fenton R. Renal aquaporins and water balance disorders. Biochem Biophys Acta. 1840;2014:1533–49.

    Google Scholar 

  15. Rieg T, Tang T, Uchida S, Hammond HK, Fenton RA, Vallon V. Adenylyl cyclase 6 enhances NKCC2 expression and mediates vasopressin-induced phosphorylation of NKCC2 and NCC. Am J Pathol. 2013;182:96–106.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Cai Q, Nelson SK, McReynolds MR, Diamond-Stanic MK, Elliott D, Brooks HL. Vasopressin increases expression of UT-A1, UT-A3, and ER chaperone GRP78 in the renal medulla of mice with a urinary concentrating defect. Am J Physiol Renal Physiol. 2010;299:F712–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Palmer BF. New horizons in the pharmacologic approach to hyponatremia: the V2 receptor antagonists. J Hosp Med. 2010;5:S27–32.

    Article  PubMed  Google Scholar 

  18. Potts MB, DeGiacomo AF, Deragopian L, Blevins LS. Use of intravenous conivaptan in neurosurgical patients with hyponatremia from syndrome of inappropriate antidiuretic hormone secretion. Neurosurgery. 2011;69:268–73.

    Article  PubMed  Google Scholar 

  19. Buckley MS, Patel SA, Hattrup AE, Kazem NH, Jacobs SC, Culver MA. Conivaptan for treatment of hyponatremia in neurologic and neurosurgical adults. Ann Pharmacother. 2013;47:1194–200.

    Article  PubMed  Google Scholar 

  20. Zeltser D, Rosansky S, van Rensburg H, Verbalis J, Smith N. Assessment of the efficacy and safety of intravenous conivaptan in euvolemic and hypervolemic hyponatremia. Am J Nephrol. 2007;27:447–57.

    Article  CAS  PubMed  Google Scholar 

  21. Naidech AM, Paparello J, Liebling SM, Bassin SL, Levasseur K, Alberts MJ, et al. Use of Conivaptan (Vaprisol) for hyponatremic neuro-ICU patients. Neurocrit Care. 2010;13:57–61.

    Article  PubMed  Google Scholar 

  22. Marik PE, Rivera R. Therapeutic effect of conivaptan bolus dosing in hyponatremic neurosurgical patients. Pharmacotherapy. 2013;33:51–5. Conivaptan is typically given parentally as an initial bolus followed by a continuous infusion lasting for 24–96 h. Infusion-site reactions and phlebitis and the need for a dedicated venous catheter are potential obstacles to the use of the drug. In this retrospective review of hyponatremic patients in a neurosurgical intensive care unit, these investigators demonstrate use of a single 20 mg bolus dose of conivaptan results in a predictable and controlled increase in the serum sodium concentration without adverse effects. The efficacy of intermittent bolus therapy is described in several other papers in this report.

    Article  CAS  PubMed  Google Scholar 

  23. Breshears JD, Jiang B, Rowland NC, Kunwar S, Blevins LS. Use of conivaptan for management of hyponatremia following surgery for Cushing’s disease. Clin Neurol Neurosurg. 2013;115:2358–61.

    Article  PubMed  Google Scholar 

  24. Murphy T, Dhar R, Diringer M. Conivaptan bolus dosing for the correction of hyponatremia in the neurointensive care unit. Neurocrit Care. 2009;11:14–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Palmer BF. Pathogenesis of ascites and renal salt retention in cirrhosis. J Investig Med. 1999;47:183–202.

    CAS  PubMed  Google Scholar 

  26. Aoyagi T, Koshimizu TA, Tanoue A. Vasopressin regulation of blood pressure and volume: findings from V1a receptor-deficient mice. Kidney Int. 2009;76:1035–9.

    Article  CAS  PubMed  Google Scholar 

  27. Aoyagi T, Izumi Y, Hiroyama M, Matsuzaki T, Yasuoka Y, Sanbe A, et al. Vasopressin regulates the renin-angiotensin-aldosterone system via V1a receptors in macula densa cells. Am J Physiol Renal Physiol. 2008;295:F100–7.

    Article  CAS  PubMed  Google Scholar 

  28. Amorim JB, Malnic G. V(1) receptors in luminal action of vasopressin on distal K(+) secretion. Am J Physiol Renal Physiol. 2000;278:F809–16.

    CAS  PubMed  Google Scholar 

  29. Izumi Y, Hori K, Nakayama Y, Kimura M, Hasuike Y, Nanami M, et al. Aldosterone requires vasopressin V1a receptors on intercalated cells to mediate acid–base homeostasis. J Am Soc Nephrol. 2011;22:673–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Field M, Stanton B, Giebisch G. Influence of ADH on renal potassium handling: a micropuncture and microperfusion study. Kidney Int. 1984;25:502–11.

    Article  CAS  PubMed  Google Scholar 

  31. Cassola A, Giebisch G, Wang W. Vasopressin increases density of apical low-conductance K+ channels in rat CCD. Am J Physiol. 1993;264:F502–9.

    CAS  PubMed  Google Scholar 

  32. Uyehara CF, Sarkar J. Role of vasopressin in maintenance of potassium homeostasis in severe hemorrhage. Am J Physiol Regul Integr Comp Physiol. 2013;305:R101–3.

    Article  CAS  PubMed  Google Scholar 

  33. Schrier R, Gross P, Gheorghiade M, Berl T, Verbalis J, et al. Tolvaptan, a selective oral vasopressin V2-receptor antagonist, for hyponatremia. N Engl J Med. 2006;355:2099–112.

    Article  CAS  PubMed  Google Scholar 

  34. Berl T, Quittnat-Pelletier F, Verbalis J, Schrier R, Bichet D, Ouyang J, et al. Oral tolvaptan is safe and effective in chronic hyponatremia. J Am Soc Nephrol. 2010;21:705–12. The SALTWATER study was an open-label extension of the SALT-1 and SALT-2 studies in which 111 patients with hyponatremia due to congestive heart failure, cirrhosis, and SIADH were enrolled and received oral tolvaptan therapy for a maximum of 214 weeks. During a mean follow-up time of 701 days the mean serum sodium level increased from 130.8 ± 4.4 mmol/l at baseline to above 135 mmol/l after 14 days of treatment, and remained within the normal range for the rest of the study. This report supports the durability of effect of the V2 antagonists when used in the treatment of patients with chronic hyponatremia.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Sterns RH, Hix JK, Silver S. Treatment of hyponatremia. Curr Opin Nephrol Hypertens. 2010;19:493–8.

    Article  PubMed  Google Scholar 

  36. Verbalis JG, Goldsmith SR, Greenberg A, Korzelius C, Schrier RW, Sterns RH, et al. Diagnosis, evaluation, and treatment of hyponatremia: expert panel recommendations. Am J Med. 2013;126:S1–42. This report is a comprehensive and critical review of the recent literature concerning the diagnosis, evaluation and treatment of hyponatremia written by a panel of experts in this field. The panel states vasopressin receptor antagonists have the potential to replace water restriction as first-line treatment of euvolemic and hypervolemic hyponatremia.

    Article  PubMed  Google Scholar 

  37. Abraham WT, Hensen J, Gross PA, Bichet DG, Josiassen RC, Chafekar DS, et al. Lixivaptan safely and effectively corrects serum sodium concentrations in hospitalized patients with euvolemic hyponatremia. Kidney Int. 2012;82:1223–30.

    Article  CAS  PubMed  Google Scholar 

  38. Abraham WT, Decaux G, Josiassen RC, Yagil Y, Kopyt N, Thacker HP, et al. Oral lixivaptan effectively increases serum sodium concentrations in outpatients with euvolemic hyponatremia. Kidney Int. 2012;82:1215–22.

    Article  CAS  PubMed  Google Scholar 

  39. Bowman BT, Rosner MH. Lixivaptan—an evidence-based review of its clinical potential in the treatment of hyponatremia. Core Evid. 2013;8:47–56.

    PubMed Central  CAS  PubMed  Google Scholar 

  40. Rosner MH. Lixivaptan: a vasopressin receptor antagonist for the treatment of hyponatremia. Kidney Int. 2012;82:1154–6.

    Article  CAS  PubMed  Google Scholar 

  41. Palmer BF. Hyponatremia in a neurosurgical patient: SIADH vs cerebral salt wasting. Nephrol Dial Transplant. 2000;15:262–8.

    Article  CAS  PubMed  Google Scholar 

  42. Torres AC, Wickham EP, Biskobing DM. Tolvaptan for the management of syndrome of inappropriate antidiuretic hormone secretion: lessons learned in titration of dose. Endocr Pract. 2011;17:e97–100.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Lehrich RW, Ortiz-Melo DI, Patel MB, Greenberg A. Role of vaptans in the management of hyponatremia. Am J Kidney Dis. 2013;62:364–76.

    Article  CAS  PubMed  Google Scholar 

  44. Liu J, Sharma N, Zheng W, Ji H, Tam H, Wu X, et al. Sex differences in vasopressin V(2) receptor expression and vasopressin-induced antidiuresis. Am J Physiol Renal Physiol. 2011;300:F433–40. Most studies of hyponatremia have been conducted in men, but here is a suggestion in the literature that women may be more prone to the adverse affects of hyponatremia. In this paper investigators show normal female Sprague–Dawley rats have greater gene and protein expression of the V2 receptor in the kidney as compared to males under basal conditions. In addition, the female rats demonstrated a greater increase in urine osmolality in response to infused desmopressin. The finding of greater receptor density raises the possibility of a sexual dimorphism in sensitivity to vasopressin receptor blocker therapy between men and women.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Berletch JB, Yang F, Xu J, Carrel L, Disteche CM. Genes that escape from X inactivation. Hum Genet. 2011;130:237–45.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Rinschen MM, Schermer B, Benzing T. Vasopressin-2 receptor signaling and autosomal dominant polycystic kidney disease: from bench to bedside and back again. J Am Soc Nephrol. 2014;25:1140–7.

    Article  CAS  PubMed  Google Scholar 

  47. Torres VE, Harris PC. Strategies targeting cAMP signaling in the treatment of polycystic kidney disease. J Am Soc Nephrol. 2014;25:18–32. The majority of autosomal dominant polycystic kidney disease cases are attributable to mutations in the Pkd1 gene while mutations in the Pkd2 gene account for most of the remaining cases. A great deal of research is focused on the molecular mechanism by which these mutations give rise to the clinical manifestations of the disorder. The papers by Rinschen and Torres et al. provide an update on the experimental literature linking abnormalities of V2 receptor signaling in cyst development providing a rationale for use of V2 receptor blockade in the treatment of this disorder.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Torres VE, Chapman AB, Devuyst O, Gansevoort RT, Grantham JJ, Higashihara E, et al. Tolvaptan in patients with autosomal dominant polycystic kidney disease. N Engl J Med. 2012;367:2407–18. The TEMPO trial is a phase III trial investigating the use of a vasopressin receptor antagonist (tolvaptan) in the treatment of autosomal dominant polycystic kidney disease (see text for detailed discussion).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Baur BP, Meaney CJ. Review of tolvaptan for autosomal dominant polycystic kidney disease. Pharmacotherapy. 2014;34:605–16.

    Article  CAS  PubMed  Google Scholar 

  50. Wuthrich RP, Mei C. Aquaretic treatment in polycystic kidney disease. N Engl J Med. 2012;367:2440–2.

    Article  CAS  PubMed  Google Scholar 

  51. Erickson KF, Chertow GM, Goldhaber-Fiebert JD. Cost-effectiveness of tolvaptan in autosomal dominant polycystic kidney disease. Ann Intern Med. 2013;159:382–9.

    Article  PubMed Central  PubMed  Google Scholar 

  52. Nee R, Yuan CM, Abbott KC. Isn’t it ironic? Cost-effectiveness and willingness to pay for tolvaptan in the prevention of kidney failure in autosomal dominant polycystic kidney disease. Am J Kidney Dis. 2014;63:552–4.

    Article  PubMed  Google Scholar 

  53. Shoaf SE, Bricmont P, Mallikaarjun S. Pharmacokinetics and pharmacodynamics of oral tolvaptan in patients with varying degrees of renal function. Kidney Int. 2014;85:953–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Boertien WE, Meijer E, de Jong PE, Bakker SJ, Czerwiec FS, Struck J, et al. Short-term renal hemodynamic effects of tolvaptan in subjects with autosomal dominant polycystic kidney disease at various stages of chronic kidney disease. Kidney Int. 2013;84:1278–86.

    Article  CAS  PubMed  Google Scholar 

  55. Mori T, Oba I, Koizumi K, Kodama M, Shimanuki M, Tanno M, et al. Beneficial role of tolvaptan in the control of body fluids without reductions in residual renal function in patients undergoing peritoneal dialysis. Adv Perit Dial. 2013;29:33–7.

    PubMed  Google Scholar 

  56. O’Leary JG, Davis GL. Conivaptan increases serum sodium in hyponatremic patients with end-stage liver disease. Liver Transpl. 2009;15:1325–9.

    Article  PubMed  Google Scholar 

  57. Cardenas A, Gines P, Marotta P, Czerwiec F, Oyuang J, Guevara M, et al. Tolvaptan, an oral vasopressin antagonist, in the treatment of hyponatremia in cirrhosis. J Hepatol. 2012;56:571–8.

    Article  CAS  PubMed  Google Scholar 

  58. Wong F, Gines P, Watson H, Horsmans Y, Angeli P, Gow P, et al. Effects of a selective vasopressin V2 receptor antagonist, satavaptan, on ascites recurrence after paracentesis in patients with cirrhosis. J Hepatol. 2010;53:283–90.

    Article  CAS  PubMed  Google Scholar 

  59. Lee J, Kim DK, Lee JW, Oh KH, Oh YK, Na KY, et al. Rapid correction rate of hyponatremia as an independent risk factor for neurological complication following liver transplantation. Tohoku J Exp Med. 2013;229:97–105.

    Article  PubMed  Google Scholar 

  60. Hackworth WA, Heuman DM, Sanyal AJ, Fisher RA, Sterling RK, Luketic VA, et al. Effect of hyponatraemia on outcomes following orthotopic liver transplantation. Liver Int. 2009;29:1071–7.

    Article  CAS  PubMed  Google Scholar 

  61. Palmer BF, Alpern RJ, Seldin DW. Pathophysiology of sodium retention and wastage. In: Alpern RJ, Caplan M, Moe O, editors. Seldin and Giebisch’s the kidney: physiology and pathophysiology. 5th ed. San Diego: Elsevier; 2013. p. 1283–317.

    Chapter  Google Scholar 

  62. Konstam M, Gheorghiade M, Burnett J, Grinfeld L, Maggioni A, Swedberg K, et al. Effects of oral tolvaptan in patients hospitalized for worsening heart failure: the EVEREST outcome trial. JAMA. 2007;297:1319–31.

    Article  CAS  PubMed  Google Scholar 

  63. Hauptman PJ, Burnett J, Gheorghiade M, Grinfeld L, Konstam MA, Kostic D, et al. Clinical course of patients with hyponatremia and decompensated systolic heart failure and the effect of vasopressin receptor antagonism with tolvaptan. J Card Fail. 2013;19:390–7.

    Article  CAS  PubMed  Google Scholar 

  64. Rossi J, Bayram M, Udelson J, Lloyd-Jones D, Adams K, Oconnor C, et al. Improvement in hyponatremia during hospitalization for worsening heart failure is associated with improved outcomes: insights from the Acute and Chronic Therapeutic Impact of a Vasopressin Antagonist in Chronic Heart Failure (ACTIV in CHF) trial. Acute Card Care. 2007;9:82–6.

    Article  PubMed  Google Scholar 

  65. Goldsmith SR. Hyponatremia in heart failure: time for a trial. J Card Fail. 2013;19:398–400.

    Article  PubMed  Google Scholar 

  66. Ronco C, Di Lullo L. Cardiorenal syndrome. Heart Fail Clin. 2014;10:251–80.

    Article  PubMed  Google Scholar 

  67. Udelson JE, Orlandi C, Ouyang J, Krasa H, Zimmer CA, Frivold G, et al. Acute hemodynamic effects of tolvaptan, a vasopressin V2 receptor blocker, in patients with symptomatic heart failure and systolic dysfunction: an international, multicenter, randomized, placebo-controlled trial. J Am Coll Cardiol. 2008;52:1540–5.

    Article  CAS  PubMed  Google Scholar 

  68. Matsuzaki M, Hori M, Izumi T, Fukunami M. Efficacy and safety of tolvaptan in heart failure patients with volume overload despite the standard treatment with conventional diuretics: a phase III, randomized, double-blind, placebo-controlled study (QUEST study). Cardiovasc Drugs Ther. 2011;25 Suppl 1:S33–45.

    Article  PubMed  Google Scholar 

  69. Kinugawa K, Sato N, Inomata T, Shimakawa T, Iwatake N, Mizuguchi K. Efficacy and safety of tolvaptan in heart failure patients with volume overload. Circ J. 2014;78:844–52. Vasopressin receptor antagonists are being used to treat patients with congestive heart failure with the purpose of reducing circulatory congestion in the absence of hyponatremia. This paper describes the clinical efficacy of tolvaptan in patients with heart failure who had an insufficient response to traditional diuretics. Use of the drug provided additional reductions in body weight and congestive symptoms without causing worsening in renal function suggesting vasopressin receptor antagonists may be useful in patients with cardiorenal syndrome.

    Article  CAS  PubMed  Google Scholar 

  70. Ishikawa M, Kobayashi N, Sugiyama F, Onoda S, Ishimitsu T. Renoprotective effect of vasopressin v2 receptor antagonist tolvaptan in Dahl rats with end-stage heart failure. Int Heart J. 2013;54:98–106.

    Article  CAS  PubMed  Google Scholar 

  71. Okada T, Sakaguchi T, Hatamura I, Saji F, Negi S, Otani H, et al. Tolvaptan, a selective oral vasopressin V2 receptor antagonist, ameliorates podocyte injury in puromycin aminonucleoside nephrotic rats. Clin Exp Nephrol. 2009;13:438–46.

    Article  CAS  PubMed  Google Scholar 

  72. Shimizu M, Ishikawa S, Yachi Y, Muraoka M, Tasaki Y, Iwasaki H, et al. Tolvaptan therapy for massive edema in a patient with nephrotic syndrome. Pediatr Nephrol. 2014;29:915–7.

    Article  PubMed  Google Scholar 

  73. Berl T. An elderly patient with chronic hyponatremia. Clin J Am Soc Nephrol. 2013;8:469–75.

    Article  PubMed  Google Scholar 

  74. Hoorn E, Liamis G, Zietse R, Zillikens M. Hyponatremia and bone: an emerging relationship. Nat Rev Endocrinol. 2011;8:33–9.

    Article  PubMed  Google Scholar 

  75. Tamma R, Sun L, Cuscito C, Lu P, Corcelli M, Li J, et al. Regulation of bone remodeling by vasopressin explains the bone loss in hyponatremia. Proc Natl Acad Sci. 2013;110:18644–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Salt A, Plontke S. Meniere’s disease endolymphatic hydrops ear function animal models. Otolaryngol Clin N Am. 2010;43:971–83.

    Article  Google Scholar 

  77. Bernier V, Morello JP, Zarruk A, Debrand N, Salahpour A, Lonergan M, et al. Pharmacologic chaperones as a potential treatment for X-linked nephrogenic diabetes insipidus. J Am Soc Nephrol. 2006;17:232–43.

    Article  CAS  PubMed  Google Scholar 

  78. Los EL, Deen PM, Robben JH. Potential of nonpeptide (ant)agonists to rescue vasopressin V2 receptor mutants for the treatment of X-linked nephrogenic diabetes insipidus. J Neuroendocrinol. 2010;22:393–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Biff Palmer declares that he is a speaker for Otsuka.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biff F. Palmer.

Additional information

This article is part of the Topical Collection on Antihypertensive Agents: Mechanisms of Drug Action

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palmer, B.F. Vasopressin Receptor Antagonists. Curr Hypertens Rep 17, 1 (2015). https://doi.org/10.1007/s11906-014-0510-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11906-014-0510-4

Keywords

Navigation