Skip to main content

Advertisement

Log in

The Role of Selenium Nanoparticles in Agriculture and Food Technology

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Selenium (Se) is an essential micronutrient for diverse organisms such as mammals, bacteria, some insects and nematodes, archaea, and algae, as it is involved in a large number of physiological and metabolic processes and is part of approximately 25 selenoproteins in mammals. In plants, Se has no essential metabolic role, high concentrations of inorganic Se can lead to the formation of Se-amino acids, and its incorporation into selenoproteins can generate toxicity. Conversely, low doses of Se can trigger a variety of beneficial effects as an antioxidant, antimicrobial, or stress-modulating agent without being an essential element. Therefore, Se can generate toxicity depending on the dose and the chemical form in which it is supplied. Selenium nanoparticles (SeNPs) have emerged as an approach to reduce this negative effect and improve its biological properties. In turn, SeNPs have a wide range of potential advantages, making them an alternative for areas such as agriculture and food technology. This review focuses on the use of SeNPs and their different applications as antimicrobial agents, growth promoters, crop biofortification, and nutraceuticals in agriculture. In addition, the utilization of SeNPs in the generation of packaging with antioxidant and antimicrobial traits and Se enrichment of animal source foods for human consumption as part of food technology is addressed. Additionally, possible action mechanisms and potential adverse effects are discussed. The concentration, size, and synthesis method of SeNPs are determining factors of their biological properties.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Not applicable.

Abbreviations

SeNPs:

Selenium nanoparticles

CAT:

Catalase

GSH:

Glutathione

ROS:

Reactive oxygen species

RNS:

Reactive nitrogen species

JA:

Jasmonic acid

SOD:

Superoxide dismutase

POD:

Peroxidase

APX:

Ascorbate peroxidase

OH :

Hydroxyl radical

H2O2 :

Hydrogen peroxide

O2 :

Superoxide radical

O2H :

Peroxyl radical

NO :

Nitric oxide

MDA:

Malondialdehyde

PAL:

Phenylalanine ammonium lyase

PLL:

Poly-L-lysine

PAA:

Polyacrylic acid

PVP:

Polyvinylpyrrolidone

LC50 :

Median lethal concentration

GSH-Px:

Glutathione peroxidase

4CL:

4-Coumarate-CoA ligase

LOX:

Lipoxygenase

ABA:

Abscisic acid

SA:

Salicylic acid

Glu:

Glutamate

Pro:

Proline

P5C5:

Δ1-Pyrroline-5-carboxylate synthetase

P5CDH:

P5C dehydrogenase

ProDH:

Proline dehydrogenase

GSA:

Glutamyl-5-semi-aldehyde

HCT1:

Hydroxycinnamoyl-CoA quinate transferase

HQT1:

Hydroxycinnamoyl-CoA Quinate/shikimate hydroxycinnamoyl transferase

bZIP:

Basic leucine zipper domain

RNS:

Reactive nitrogen species

Mo:

Molybdenum

Fe:

Iron

ATP:

Adenosine triphosphate

C20:4n6:

Arachidonic acid

C18:2n6/C18:3n3:

Linoleic acid/arachidic acid

SFA/USFA:

Saturated fatty acids/unsaturated fatty acids

MRSA:

Multidrug-resistant strain S. aureus

GPx 1,2,4, :

Glutathione peroxidase 1,2,4

References

  1. Kieliszek M (2019) Selenium–fascinating microelement, properties and sources in food. Molecules 24:1298. https://doi.org/10.3390/molecules24071298

    Article  CAS  PubMed Central  Google Scholar 

  2. Bodnar M, Konieczka P, Namiesnik J (2012) The properties, functions, and use of selenium compounds in living organisms. J Environ Sci Health C 30:225–252. https://doi.org/10.1080/10590501.2012.705164

    Article  CAS  Google Scholar 

  3. Domokos-Szabolcsy E, Márton L, Sztrik A, Babka B, Prokisch J, Fari M (2012) Accumulation of red elemental selenium nanoparticles and their biological effects in Nicotinia tabacum. Plant Growth Regul 68:525–531. https://doi.org/10.1007/s10725-012-9735-x

    Article  CAS  Google Scholar 

  4. Jiang L, Ni J, Liu Q (2012) Evolution of selenoproteins in the metazoan. BMC Genomics 13:446. https://doi.org/10.1186/1471-2164-13-446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Araie H, Shiraiwa Y (2016) Selenium in Algae. In: Borowitzka M, Beardall J, Raven J (eds) The physiology of microalgae. Developments in Applied Phycology, Springer, Cham, pp 281–288. https://doi.org/10.1007/978-3-319-24945-2_12

  6. Vinkovic Vrcek I (2018) Selenium nanoparticles: biomedical applications. In: Michalke B (ed) Selenium. Molecular and Integrative Toxicology. Springer, Cham, pp 393–412. https://doi.org/10.1007/978-3-319-95390-8_21

  7. Mangiapane E, Pessione A, Pessione E (2014) Selenium and selenoproteins: an overview on different biological systems. Curr Protein Pept Sci 15:598–607. https://doi.org/10.2174/1389203715666140608151134

    Article  CAS  PubMed  Google Scholar 

  8. Jampílek J, Králová K (2017) Nanomaterials for delivery of nutrients and growth-promoting compounds to plants. In: Prasad R, Kumar M, Kumar V (eds) Nanotechnology, Springer, Singapore, pp 177–226. https://doi.org/10.1007/978-981-10-4573-8_9

  9. Rayman MP (2000) The importance of selenium to human health. Lancet 356:233–241. https://doi.org/10.1016/S0140-6736(00)02490-9

    Article  CAS  PubMed  Google Scholar 

  10. Schiavon M, Nardi S, Vecchia F, Ertani A (2020) Selenium biofortification in the 21st century: status and challenges for healthy human nutrition. Plant Soil 453:245–270. https://doi.org/10.1007/s11104-020-04635-9

    Article  CAS  Google Scholar 

  11. Kipp AP, Strohm D, Brigelius-Flohé R, Schomburg L, Bechthold A, Leschik-Bonnet E, Heseker H (2015) Revised reference values for selenium intake. J Trace Elem Med Biol 32:195–199. https://doi.org/10.1016/j.jtemb.2015.07.005

    Article  CAS  PubMed  Google Scholar 

  12. Kieliszek M, Błażejak S (2016) Current knowledge on the importance of selenium in food for living organisms: a review. Molecules 21:609. https://doi.org/10.3390/molecules21050609

    Article  CAS  PubMed Central  Google Scholar 

  13. Liu H, Yu F, Shao W, Ding D, Yu Z, Chen F, Geng D, Tan X, Lammi MJ, Guo X (2018) Associations between selenium content in hair and Kashin-Beck disease/Keshan disease in children in Northwestern China: a prospective cohort study. Biol Trace Elem Res 184:16–23. https://doi.org/10.1007/s12011-017-1169-x

    Article  CAS  PubMed  Google Scholar 

  14. Sonkusre P (2020) Specificity of biogenic selenium nanoparticles for prostate cancer therapy with reduced risk of toxicity: an in vitro and in vivo study. Front Oncol 9:1541. https://doi.org/10.3389/fonc.2019.01541

    Article  PubMed  PubMed Central  Google Scholar 

  15. Sonkusre P, Nanduri R, Gupta P, Cameotra SS (2014) Improved extraction of intracellular biogenic selenium nanoparticles and their specificity for cancer chemoprevention. J Nanomed Nanotechnol 5:1000194. https://doi.org/10.4172/2157-7439.1000194

    Article  CAS  Google Scholar 

  16. Khurana A, Tekula S, Saifi MA, Venkatesh P, Godugu C (2019) Therapeutic applications of selenium nanoparticles. Biomed Pharmacother 111:802–812. https://doi.org/10.1016/j.biopha.2018.12.146

    Article  CAS  PubMed  Google Scholar 

  17. Żarczyńska K, Sobiech P, Radwińska J, Rękawek W (2013) Effects of selenium on animal health. J Elem 18:329–340. https://doi.org/10.5601/jelem.2013.18.2.12

    Article  Google Scholar 

  18. Kargozar S, Mozafari M (2018) Nanotechnology and Nanomedicine: Start small, think big. Mater Today Proc 5:15492–15500. https://doi.org/10.1016/j.matpr.2018.04.155

    Article  CAS  Google Scholar 

  19. Hernández-Díaz JA, Garza-García JJO, Zamudio-Ojeda A, León-Morales JM, López-Velázquez JC, García-Morales S (2021) Plant-mediated synthesis of nanoparticles and their antimicrobial activity against phytopathogens. J Sci Food Agric 101:1270–1287. https://doi.org/10.1002/jsfa.10767

    Article  CAS  PubMed  Google Scholar 

  20. Rafique M, Sadaf I, Rafique MS, Tahir MB (2016) A review on green synthesis of silver nanoparticles and their applications. Artif Cell Nanomed Biotechnol 45:1272–1291. https://doi.org/10.1080/21691401.2016.1241792

    Article  CAS  Google Scholar 

  21. Menon S, Shanmugam V (2020) Chemopreventive mechanism of action by oxidative stress and toxicity induced surface decorated selenium nanoparticles. J Trace Elem Med Biol 62:126549. https://doi.org/10.1016/j.jtemb.2020.126549

    Article  CAS  PubMed  Google Scholar 

  22. Kondaparthi P, Flora S, Naqvi S (2019) Selenium nanoparticles: An insight on its Pro-oxidant and antioxidant properties. Front Nanosci Nanotechnol 6(1). https://doi.org/10.15761/fnn.1000189

  23. Shang Y, Hasan MK, Ahammed GJ, Li M, Yin H, Zhou J (2019) Applications of nanotechnology in plant growth and crop protection: a review. Molecules 24:2558. https://doi.org/10.3390/molecules24142558

    Article  CAS  PubMed Central  Google Scholar 

  24. Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014. https://doi.org/10.3389/fmicb.2017.01014

    Article  PubMed  PubMed Central  Google Scholar 

  25. Quiterio-Gutiérrez T, Cadenas-Pliego G, Hernández-Fuentes AD, Sandoval-Rangel A, Benavides-Mendoza A, Cabrera-de la Fuente M, Juárez-Maldonado A (2019) The application of selenium and copper nanoparticles modifies the biochemical responses of tomato plants under stress by Alternaria solani. Int J Mol Sci 20:1950. https://doi.org/10.3390/ijms20081950

    Article  CAS  PubMed Central  Google Scholar 

  26. Sarwar N, Akhtar M, Kamran MA, Imran M, Riaz MA, Kamran K, Hussain S (2020) Selenium biofortification in food crops: key mechanisms and future perspectives. J Food Compos Anal 93:103615. https://doi.org/10.1016/j.jfca.2020.103615

    Article  CAS  Google Scholar 

  27. Elbatala I, Sidkey N, Ismaila A, Arafa RA, Fathy R (2016) Impact of silver and selenium nanoparticles synthesized by gamma irradiation and their physiological response on early blight disease of potato. J Chem Pharm Res 8:934–951

    Google Scholar 

  28. Li D, Zhou C, Zhang J, An Q, Wu Y, Li J, Pan C (2020) Nano-selenium foliar applications enhance the nutrient quality of pepper by activating the capsaicinoid synthetic pathway. J Agric Food Chem 68:9888–9895. https://doi.org/10.1021/acs.jafc.0c03044

    Article  CAS  PubMed  Google Scholar 

  29. Udalova ZV, Folmanis GE, Khasanov FK, Zinovieva SV (2018) Selenium nanoparticles–an inducer of tomato resistance to the root-knot nematode Meloidogyne incognita (Kofoid et White, 1919) Chitwood 1949. Dokl Biochem Biophys 482:264–267. https://doi.org/10.1134/s1607672918050095

    Article  CAS  PubMed  Google Scholar 

  30. Abedi S, Iranbakhsh A, Oraghi Ardebili Z, Ebadi M (2021) Nitric oxide and selenium nanoparticles confer changes in growth, metabolism, antioxidant machinery, gene expression, and flowering in chicory (Cichorium intybus L.): potential benefits and risk assessment. Environ Sci Pollut Res 28:3136–3148. https://doi.org/10.1007/s11356-020-10706-2

  31. Schiavon M, Lima LW, Jiang Y, Hawkesford MJ (2017) Effects of selenium on plant metabolism and implications for crops and consumers. In: Pilon-Smits E, Winkel L, Lin ZQ (eds) Selenium in plants. Plant Ecophysiology. Springer, Cham, pp 257–275. https://doi.org/10.1007/978-3-319-56249-0_15

  32. Ahmed HS, Ahmed MF, Shoala T, Salah M (2018) Impact of single or fractionated radiation and selenium nano-particles on acid lime (Citrus aurantifolia L.) seed germination ability and seedlings growth. Adv Agric Environ Sci 1:91–100. https://doi.org/10.30881/aaeoa.00016

  33. Tocai M, Laslo V, Vicas SI (2018) Antioxidant capacity and total phenols content changes on cress (Lepidium Sativum) sprouts after exogenous supply with nano selenium. Nat Resour Sustain Dev 8:131–137. https://doi.org/10.31924/nrsd.v8i2.014

  34. Gunti L, Dass RS, Kalagatur NK (2019) Phytofabrication of selenium nanoparticles from Emblica officinalis fruit extract and exploring its biopotential applications: antioxidant, antimicrobial, and biocompatibility. Front Microbiol 10:931. https://doi.org/10.3389/fmicb.2019.00931

    Article  PubMed  PubMed Central  Google Scholar 

  35. Alagesan V, Venugopal S (2019) Green synthesis of selenium nanoparticle using leaves extract of Withania somnifera and its biological applications and photocatalytic activities. Bionanosci 9:105–116. https://doi.org/10.1007/s12668-018-0566-8

    Article  Google Scholar 

  36. Fardsadegh B, Jafarizadeh-Malmiri H (2019) Aloe vera leaf extract mediated green synthesis of selenium nanoparticles and assessment of their in vitro antimicrobial activity against spoilage fungi and pathogenic bacteria strains. Green Process Synth 8:399–407. https://doi.org/10.1515/gps-2019-0007

    Article  CAS  Google Scholar 

  37. Nandini B, Hariprasad P, Prakash HS, Shetty HS, Geetha N (2017) Trichogenic-selenium nanoparticles enhance disease suppressive ability of Trichoderma against downy mildew disease caused by Sclerospora graminicola in pearl millet. Sci Rep 7:2612. https://doi.org/10.1038/s41598-017-02737-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hu D, Yu S, Yu D, Liu N, Tang Y, Fan Y, Wu A (2019) Biogenic Trichoderma harzianum-derived selenium nanoparticles with control functionalities originating from diverse recognition metabolites against phytopathogens and mycotoxins. Food Control 106:106748. https://doi.org/10.1016/j.foodcont.2019.106748

    Article  CAS  Google Scholar 

  39. Vrandečić K, Ćosić J, Ilić J, Ravnjak B, Selmani A, Galić E, Vinković T (2020) Antifungal activities of silver and selenium nanoparticles stabilized with different surface coating agents. Pest Manag Sci 76:2021–2029. https://doi.org/10.1002/ps.5735

    Article  CAS  PubMed  Google Scholar 

  40. Huang X, Chen X, Chen Q, Yu Q, Sun D, Liu J (2016) Investigation of functional selenium nanoparticles as potent antimicrobial agents against superbugs. Acta Biomater 30:397–407. https://doi.org/10.1016/j.actbio.2015.10.041

    Article  CAS  PubMed  Google Scholar 

  41. Benelli G (2015) Plant-mediated biosynthesis of nanoparticles as an emerging tool against mosquitoes of medical and veterinary importance: a review. Parasitol Res 115:23–34. https://doi.org/10.1007/s00436-015-4800-9

    Article  PubMed  Google Scholar 

  42. Sowndarya P, Ramkumar G, Shivakumar MS (2017) Green synthesis of selenium nanoparticles conjugated Clausena dentata plant leaf extract and their insecticidal potential against mosquito vectors. Artif Cell Nanomed Biotechnol 45:1490–1495. https://doi.org/10.1080/21691401.2016.1252383

    Article  CAS  Google Scholar 

  43. Salem SS, Fouda MMG, Fouda A, Awad MA, Al-Olayan EM, Allam AA, Shaheen TI (2021) Antibacterial, cytotoxicity and larvicidal activity of green synthesized selenium nanoparticles using Penicillium corylophilum. J Clust Sci 32:351–361. https://doi.org/10.1007/s10876-020-01794-8

    Article  CAS  Google Scholar 

  44. Ramya S, Shanmugasundaram T, Balagurunathan R (2019) Actinobacterial enzyme mediated synthesis of selenium nanoparticles for antibacterial, mosquito larvicidal and anthelminthic applications. Particul Sci Technol 38:63–72. https://doi.org/10.1080/02726351.2018.1508098

    Article  CAS  Google Scholar 

  45. Krishnan M, Ranganathan K, Maadhu P, Thangavelu P, Kundan S, Arjunan N (2020) Leaf extract of Dillenia indica as a source of selenium nanoparticles with larvicidal and antimicrobial potential toward vector mosquitoes and pathogenic microbes. Coatings 10:626. https://doi.org/10.3390/coatings10070626

    Article  CAS  Google Scholar 

  46. Gudkov SV, Shafeev GA, Glinushkin AP, Shkirin AV, Barmina EV, Rakov II, Kalinitchenko VP (2020) Production and use of selenium nanoparticles as fertilizers. ACS Omega 5:17767–17774. https://doi.org/10.1021/acsomega.0c02448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Nazerieh H, Oraghi Ardebili Z, Iranbakhsh A (2018) Potential benefits and toxicity of nanoselenium and nitric oxide in peppermint. Acta Agric Slov 111:357–368. https://doi.org/10.14720/aas.2018.111.2.11

  48. Ragavan P, Ananth A, Rajan MR (2017) Impact of selenium nanoparticles on growth, biochemical characteristics and yield of cluster bean Cyamopsis tetragonoloba. Int J Environ Agric Biotechnol 2:2917–2926. https://doi.org/10.22161/ijeab/2.6.19

    Article  Google Scholar 

  49. Sotoodehnia-Korani S, Iranbakhsh A, Ebadi M, Majd A, Ardebili ZO (2020) Selenium nanoparticles induced variations in growth, morphology, anatomy, biochemistry, gene expression, and epigenetic DNA methylation in Capsicum annuum; an in vitro study. Environ Pollut 265:114727. https://doi.org/10.1016/j.envpol.2020.114727

    Article  CAS  PubMed  Google Scholar 

  50. Hernández-Hernández H, Quiterio-Gutiérrez T, Cadenas-Pliego G, Ortega-Ortiz H, Hernández-Fuentes AD, Cabrera de la Fuente M, Juárez-Maldonado A (2019) Impact of selenium and copper nanoparticles on yield, antioxidant system, and fruit quality of tomato plants. Plants 8:355. https://doi.org/10.3390/plants8100355

    Article  CAS  PubMed Central  Google Scholar 

  51. Juárez-Maldonado A, Ortega-Ortíz H, Morales-Díaz A, González-Morales S, Morelos-Moreno Á, Cabrera-De la Fuente M, Sandoval-Rangel A, Cadenas-Pliego G, Benavides-Mendoza A (2019) Nanoparticles and nanomaterials as plant biostimulants. Int J Mol Sci 20:162. https://doi.org/10.3390/ijms20010162

    Article  CAS  PubMed Central  Google Scholar 

  52. Hussein HAA, Darwesh OM, Mekki BB, El-Hallouty SM (2019) Evaluation of cytotoxicity, biochemical profile and yield components of groundnut plants treated with nano-selenium. Biotechnol Rep 24:e00377. https://doi.org/10.1016/j.btre.2019.e00377

    Article  Google Scholar 

  53. Golubkina NA, Folmanis GE, Tananaev IG, Krivenkov LV, Kosheleva OV, Soldatenko AV (2017) Comparative evaluation of spinach biofortification with selenium nanoparticles and ionic forms of the element. Nanotechnol Russ 12:569–576. https://doi.org/10.1134/S1995078017050032

    Article  CAS  Google Scholar 

  54. Zahedi SM, Abdelrahman M, Hosseini MS, Hoveizeh NF, Tran LSP (2019) Alleviation of the effect of salinity on growth and yield of strawberry by foliar spray of selenium-nanoparticles. Environ Pollut 253:246–258. https://doi.org/10.1016/j.envpol.2019.04.078

    Article  CAS  PubMed  Google Scholar 

  55. El Lateef Gharib FA, Zeid IM, Ghazi SM, Ahmed EZ (2019) The response of cowpea (Vigna unguiculata L) plants to foliar application of sodium selenate and selenium nanoparticles (SeNPs). J Nanomater Mol Nanotechnol 8:4

    Google Scholar 

  56. Babajani A, Iranbakhsh A, Oraghi Ardebili Z, Eslami B (2019) Differential growth, nutrition, physiology, and gene expression in Melissa officinalis mediated by zinc oxide and elemental selenium nanoparticles. Environ Sci Pollut Res 26:24430–24444. https://doi.org/10.1007/s11356-019-05676-z

    Article  CAS  Google Scholar 

  57. Li Y, Zhu N, Liang X, Zheng L, Zhang C, Li YF, Zhang Z, Gao Y, Zhao J (2019) A comparative study on the accumulation, translocation and transformation of selenite, selenate, and SeNPs in a hydroponic-plant system. Ecotoxicol Environ Saf 189:109955. https://doi.org/10.1016/j.ecoenv.2019.109955

    Article  CAS  PubMed  Google Scholar 

  58. Golubkina NA, Folmanis GE, Tananaev IG (2012) Comparative evaluation of selenium accumulation by allium species after foliar application of selenium nanoparticles, sodium selenite and sodium selenite. Dokl Biol Sci 444:176–179. https://doi.org/10.1134/S0012496612030076

    Article  CAS  PubMed  Google Scholar 

  59. Wang K, Wang Y, Li K, Wan Y, Wang Q, Zhuang Z, Guo Y, Li H (2020) Uptake, translocation and biotransformation of selenium nanoparticles in rice seedlings (Oryza sativa L.). J Nanobiotechnology 18:103. https://doi.org/10.1186/s12951-020-00659-6

  60. Hu T, Li H, Li J, Zhao G, Wu W, Liu L, Wang Q, Guo Y (2018) Absorption and bio-transformation of selenium nanoparticles by wheat seedlings (Triticum aestivum L.). Front Plant Sci 9:597. https://doi.org/10.3389/fpls.2018.00597

  61. He M, He CQ, Ding NZ (2018) Abiotic stresses: general defenses of land plants and chances for engineering multistress tolerance. Front Plant Sci 9:1771. https://doi.org/10.3389/fpls.2018.01771

    Article  PubMed  PubMed Central  Google Scholar 

  62. Habibi G, Aleyasin Y (2020) Green synthesis of Se nanoparticles and its effect on salt tolerance of barley plants. Int J Nano Dimens 11:145–157

    CAS  Google Scholar 

  63. Soleymanzadeh R, Iranbakhsh A, Habibi G, Ardebili ZO (2020) Selenium nanoparticle protected strawberry against salt stress through modifications in salicylic acid, ion homeostasis, antioxidant machinery, and photosynthesis performance. Acta Biol Crac Ser Bot 62:33–42. https://doi.org/10.24425/abcsb.2019.127751

  64. Amina Z, Samar O (2019) Nano Selenium: Reduction of severe hazards of atrazine and promotion of changes in growth and gene expression patterns on Vicia faba seedlings. Afr J Biotechnol 18:502–510. https://doi.org/10.5897/ajb2019.16773

    Article  CAS  Google Scholar 

  65. Djanaguiraman M, Belliraj N, Bossmann SH, Prasad PVV (2018) High-temperature stress alleviation by selenium nanoparticle treatment in grain sorghum. ACS Omega 3:2479–2491. https://doi.org/10.1021/acsomega.7b01934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Dudeja P, Gupta RK (2017) Nutraceuticals. In: Gupta RK, Minhas D, Minhas S (eds) Food Safety in the 21st Century. Academic Press, Massachusetts, pp 491–496. https://doi.org/10.1016/B978-0-12-801773-9.00040-6

  67. Zeid IM, Gharib FAEL, Ghazi SM, Ahmed EZ (2019) Promotive effect of ascorbic acid, gallic acid, selenium and nano-selenium on seed germination, seedling growth and some hydrolytic enzymes activity of cowpea (Vigna unguiculata) seedling. J Plant Physiol Pathol 7:1. https://doi.org/10.4172/2329-955X.1000193

    Article  Google Scholar 

  68. El-Kinany RG, Brengi SH, Nassar AK, El-Batal A (2019) Enhancement of plant growth, chemical composition and secondary metabolites of essential oil of salt-stressed coriander (Coriandrum Sativum L.) plants using selenium, nano-selenium, and glycine betaine. Sci J Flower Ornam Plant 6:151–173. https://doi.org/10.21608/sjfop.2019.84973

  69. Zahedi SM, Hosseini MS, Daneshvar Hakimi Meybodi N, Teixeira da Silva JA (2019) Foliar application of selenium and nano-selenium affects pomegranate (Punica granatum cv. Malase Saveh) fruit yield and quality. S Afr J Bot 124:350–358. https://doi.org/10.1016/j.sajb.2019.05.019

    Article  CAS  Google Scholar 

  70. EFSA Scientific Committee (2011) Scientific Opinion on Guidance on the risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain. EFSA J 9:2140. https://doi.org/10.2903/j.efsa.2011.2140

    Article  CAS  Google Scholar 

  71. Zanella M, Ciappellano SG, Venturini M, Tedesco E, Manodori L, Benett F (2015) Nutraceuticals and nanotechnology. Agro Food Industry Hi Tech 26:26–31

  72. Humphrey Adebayo A, Faith Yakubu O, Bakare-Akpata O (2020) Uptake, metabolism and toxicity of selenium in tropical plants. In: Rahman MM, Asiri AM, Khan A, Inamuddi (eds) Importance of selenium in the environment and human health. IntechOpen, London. https://doi.org/10.5772/intechopen.90295

  73. Singh T, Shukla S, Kumar P, Wahla V, Bajpai VK, Rather IA (2017) Application of nanotechnology in food science: perception and overview. Front Microbiol 8:1501. https://doi.org/10.3389/fmicb.2017.01501

    Article  PubMed  PubMed Central  Google Scholar 

  74. Ezhilarasi PN, Karthik P, Chhanwal N, Anandharamakrishnan C (2013) Nanoencapsulation techniques for food bioactive components: a review. Food Bioprocess Technol 6:628–647. https://doi.org/10.1007/s11947-012-0944-0

    Article  CAS  Google Scholar 

  75. Yu H, Park JY, Kwon CW, Hong SC, Park KM, Chang PS (2018) An overview of nanotechnology in food science: preparative methods, practical applications, and safety. J Chem 2018:5427978. https://doi.org/10.1155/2018/5427978

    Article  CAS  Google Scholar 

  76. Biji KB, Ravishankar CN, Mohan CO, Srinivasa Gopal TK (2015) Smart packaging systems for food applications: a review. J Food Sci Technol 52:6125–6135. https://doi.org/10.1007/s13197-015-1766-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Khiralla GM, El-Deeb BA (2015) Antimicrobial and antibiofilm effects of selenium nanoparticles on some foodborne pathogens. LWT Food Sci Technol 63:1001–1007. https://doi.org/10.1016/j.lwt.2015.03.086

    Article  CAS  Google Scholar 

  78. Webster TJ, Wang Q (2013) Short communication: inhibiting biofilm formation on paper towels through the use of selenium nanoparticles coatings. Int J Nanomedicine 8:407–411. https://doi.org/10.2147/IJN.S38777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Vera P, Canellas E, Nerín C (2018) New antioxidant multilayer packaging with nanoselenium to enhance the shelf-life of market food products. Nanomaterials 8:837. https://doi.org/10.3390/nano8100837

    Article  CAS  PubMed Central  Google Scholar 

  80. Han L, Pan K, Fu T, Phillips CJC, Gao T (2021) Nano-selenium supplementation increases selenoprotein (Sel) gene expression profiles and milk selenium concentration in lactating dairy cows. Biol Trace Elem Res 199:113–119. https://doi.org/10.1007/s12011-020-02139-2

    Article  CAS  PubMed  Google Scholar 

  81. Cai SJ, Wu CW, Gong LM, Song T, Wu H, Zhang LY (2012) Effects of nano-selenium on performance, meat quality, immune function, oxidation resistance, and tissue selenium content in broilers. Poult Sci 91:2532–2539. https://doi.org/10.3382/ps.2012-02160

    Article  CAS  PubMed  Google Scholar 

  82. Shi L, Xuna W, Yuea W, Zhanga C, Rena Y, Shi L, Wanga Q, Yanga R, Lei F (2011) Effect of sodium selenite, Se-yeast and nano-elemental selenium on growth performance, Se concentration and antioxidant status in growing male goats. Small Rumin Res 96:49–52. https://doi.org/10.1016/j.smallrumres.2010.11.005

    Article  Google Scholar 

  83. Radwan NL, Eldin TAS, Zaiat AAE, Mostafa MASA (2015) Effect of dietary nano-selenium supplementation on selenium content and oxidative stability in table eggs and productive performance of laying hens. Int J Poult Sci 14:161–176. https://doi.org/10.3923/ijps.2015.161.176

    Article  CAS  Google Scholar 

  84. Vilela C, Kurek M, Hayouka Z, Röcker B, Yildirim S, Antunes MDC, Freire CSR (2018) A concise guide to active agents for active food packaging. Trends Food Sci Tech 80:212–222. https://doi.org/10.1016/j.tifs.2018.08.006

    Article  CAS  Google Scholar 

  85. Wang Q, Webster TJ (2013) Bacteria fighting paper towels: the influence of selenium nanoparticles. 39th Annual Northeast Bioengineering Conference. IEEE Xplore. https://doi.org/10.1109/NEBEC.2013.55

  86. Jamróz E, Kopel P, Juszczak L, Kawecka A, Bytesnikova Z, Milosavljević V, Adam V (2018) Development and characterisation of furcellaran-gelatin films containing SeNPs and AgNPs that have antimicrobial activity. Food Hydrocoll 83:9–16. https://doi.org/10.1016/j.foodhyd.2018.04.028

    Article  CAS  Google Scholar 

  87. Jamróz E, Kopel P, Juszczak L, Kawecka A, Bytesnikova Z, Milosavljevic V, Makarewicz M (2019) Development of furcellaran-gelatin films with Se-AgNPs as an active packaging system for extension of mini kiwi shelf life. Food Packag Shelf Life 21:100339. https://doi.org/10.1016/j.fpsl.2019.100339

    Article  Google Scholar 

  88. Sharma C, Dhiman R, Rokana N, Panwar H (2017) Nanotechnology: an untapped resource for food packaging. Front Microbiol 8:1735. https://doi.org/10.3389/fmicb.2017.01735

    Article  PubMed  PubMed Central  Google Scholar 

  89. Vera P, Echegoyen Y, Canellas E, Nerín C, Palomo M, Madrid Y, Cámara C (2016) Nano selenium as antioxidant agent in a multilayer food packaging material. Anal Bioanal Chem 408:6659–6670. https://doi.org/10.1007/s00216-016-9780-9

    Article  CAS  PubMed  Google Scholar 

  90. Guillard V, Gaucel S, Fornaciari C, Angellier-Coussy H, Buche P, Gontard N (2018) The next generation of sustainable food packaging to preserve our environment in a circular economy context. Front Nutr 5:121. https://doi.org/10.3389/fnut.2018.00121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lauriano Souza VG, Fernando AL (2016) Nanoparticles in food packaging: Biodegradability and potential migration to food—A review. Food Packag Shelf Life 8:63–70. https://doi.org/10.1016/j.fpsl.2016.04.001

    Article  Google Scholar 

  92. Konkol D, Wojnarowski K (2018) The Use of nanominerals in animal nutrition as a way to improve the composition and quality of animal products. J Chem 2018:5927058. https://doi.org/10.1155/2018/5927058

    Article  CAS  Google Scholar 

  93. Gopi M, Pearlin B, Kumar RD, Shanmathy M, Prabakar G (2017) Role of nanoparticles in animal and poultry nutrition: modes of action and applications in formulating feed additives and food processing. Int J Pharmacol 13:724–731. https://doi.org/10.3923/ijp.2017.724.731

    Article  CAS  Google Scholar 

  94. Pelyhe C, Mézes M (2013) Myths and facts about the effects of nano-selenium in farm animals— mini-review. Eur Chem Bull 2:1049–1052

  95. Gangadoo S, Dinev I, Willson NL, Moore RJ, Chapman J, Stanley D (2020) Nanoparticles of selenium as high bioavailable and non-toxic supplement alternatives for broiler chickens. Environ Sci Pollut Res 27:16159–16166. https://doi.org/10.1007/s11356-020-07962-7

    Article  CAS  Google Scholar 

  96. Dawood MAO, Koshio S, Zaineldin AI, Van Doan H, Ahmed HA, Elsabagh M, Abdel-Daim MM (2019) An evaluation of dietary selenium nanoparticles for red sea bream (Pagrus major) aquaculture: growth, tissue bioaccumulation, and antioxidative responses. Environ Sci Pollut Res 26:30876–30884. https://doi.org/10.1007/s11356-019-06223-6

    Article  CAS  Google Scholar 

  97. Khan KU, Zuberi A, Nazir S, Ullah I, Jamil Z, Sarwar H (2017) Synergistic effects of dietary nano selenium and vitamin C on growth, feeding, and physiological parameters of mahseer fish (Tor putitora). Aquac Reports 5:70–75. https://doi.org/10.1016/j.aqrep.2017.01.002

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Consejo Nacional de Ciencia y Tecnología (CONACYT, Mexico) for the M. Sc. scholarship of Jorge JO Garza-García (717217) and José A Hernández-Díaz (717214). SGM and JMLM are part of PLANTECC National Laboratory.

Author information

Authors and Affiliations

Authors

Contributions

JJOGG investigated, designed figure sets, and wrote—original draft. JAHD investigated, designed figure sets, and wrote—original draft. AZO investigated and analyzed the literature. JMLM investigated, verified, and discussed the information. AGG investigated and organized the information. DRSC investigated and organized the information. JCLV investigated and verified the information. SGM conceptualized the idea, supervised, and wrote—revised and edited. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Soledad García-Morales.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Jorge J. O. Garza-García and José A. Hernández-Díaz contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garza-García, J.J.O., Hernández-Díaz, J.A., Zamudio-Ojeda, A. et al. The Role of Selenium Nanoparticles in Agriculture and Food Technology. Biol Trace Elem Res 200, 2528–2548 (2022). https://doi.org/10.1007/s12011-021-02847-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-021-02847-3

Keywords

Navigation