Skip to main content
Log in

Dose-Dependent Oxidative Damage in Erythrocytes and Hepatic Tissue of Wistar Rats Concurrently Exposed with Arsenic and Quinalphos: a Subacute Study

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Concurrent exposure to a multitude of environmental toxicants pose serious health hazard to humans and animals. The present investigation was conceptualized to determine deleterious effects of concomitant subacute arsenic and quinalphos exposure on antioxidant responses of liver and erythrocytes of Wistar rats. Fifty-four Wistar rats were divided into nine groups with six animals in each. Animals were exposed to either quinalphos (1/100th and 1/10th of LD50) through oral gavage daily or arsenic (50 and 100 ppb) in drinking water alone and in combination for 28 days. While treatment with different toxicants alone also significantly reduced hemoglobin concentration, hepatic biomarkers and levels of antioxidant parameters as compared with control values, concomitant exposure significantly (P < 0.05) elevated levels of hepatic transaminases and alkaline phosphatase. Moreover, along with significant depletion in activities of SOD, CAT, TTH, AChE, and enzymes of glutathione complex, a significant enhancement of lipid peroxidation was also recorded in liver and erythrocytes in co-exposed animals in a dose-dependent manner when compared with exposure to individual toxicant. More severe alterations occurred in hepatic histo-architecture of rats receiving combined treatment as compared with those treated with either toxicant. Results indicated that oxidative damage in erythrocytes was more than that of the liver of rats on concomitant exposure of arsenic and quinalphos in a dose-dependent manner. In nutshell, our results revealed that combined treatment of quinalphos with arsenic potentiated toxic effects of either toxicant on antioxidant machinery of liver and erythrocytes and hepatic histomorphology of exposed Wistar rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

Code Availability

Not applicable

References

  1. Deman R (2014) Study on Individual and Combined Toxicity of Quinalphos and Dimethoate on Certain Neurological Aspects of Giant Fresh Water Prawn Macrobrachium. Int J Sci Res Publ 4:1–5

    Google Scholar 

  2. Akbel E, Arslan-Acaroz D, Demirel HH et al (2018) The subchronic exposure to malathion, an organophosphate pesticide, causes lipid peroxidation, oxidative stress, and tissue damage in rats: the protective role of resveratrol. Toxicol Res (Camb) 7:503–512. https://doi.org/10.1039/C8TX00030A

    Article  CAS  Google Scholar 

  3. Behrends A, Riediger S, Grube S et al (2007) Photocatalytic mechanisms of indoleamine destruction by the quinalphos metabolite 2-hydroxyquinoxaline: a study on melatonin and its precursors serotonin and N -acetylserotonin. J Environ Sci Heal Part B 42:599–606. https://doi.org/10.1080/03601230701465437

    Article  CAS  Google Scholar 

  4. Uggini GK, Patel PV, Balakrishnan S (2012) Embryotoxic and teratogenic effects of pesticides in chick embryos: A comparative study using two commercial formulations. Environ Toxicol 27:166–174. https://doi.org/10.1002/tox.20627

    Article  CAS  PubMed  Google Scholar 

  5. Singh P, Verma PK, Raina R et al (2020) Maximum contaminant level of arsenic in drinking water potentiates quinalphos-induced renal damage on co-administration of both arsenic and quinalphos in Wistar rats. Environ Sci Pollut Res 27:21331–21340. https://doi.org/10.1007/s11356-020-08643-1

    Article  CAS  Google Scholar 

  6. Singh P, Verma PK, Sharma P et al (2020) effects on antioxidant system of cardiac tissue following repeated oral administration of arsenic, quinalphos and their combination in wistar rats. Explor Anim Med Res 10:141–147

    CAS  Google Scholar 

  7. Zerin T, Song H-Y, Kim Y-S (2015) Quinalphos induced intracellular ROS generation and apoptosis in human alveolar A549 cells. Mol Cell Toxicol 11:61–69. https://doi.org/10.1007/s13273-015-0008-4

    Article  CAS  Google Scholar 

  8. Suvardhan K, Kumar KS, Chiranjeevi P (2005) Extractive Spectrofluorometric Determination of Quinalphos Using Fluorescein in Environmental Samples. Environ Monit Assess 108:217–227. https://doi.org/10.1007/s10661-005-4690-x

    Article  CAS  PubMed  Google Scholar 

  9. Mohammod Mostakim G, Zahangir MM, Monir Mishu M et al (2015) Alteration of Blood Parameters and Histoarchitecture of Liver and Kidney of Silver Barb after Chronic Exposure to Quinalphos. J Toxicol 2015:1–8. https://doi.org/10.1155/2015/415984

    Article  CAS  Google Scholar 

  10. Sadiqul IM, Ferdous Z, Nannu MTA et al (2016) Acute exposure to a quinalphos containing insecticide (convoy) causes genetic damage and nuclear changes in peripheral erythrocytes of silver barb, Barbonymus gonionotus. Environ Pollut 219:949–956. https://doi.org/10.1016/j.envpol.2016.09.066

    Article  CAS  PubMed  Google Scholar 

  11. Munia ZS, Shoeb M, Mamun MIR, Nahar N (2018) Dissipation pattern of quinalphos in cauliflower, tomato and bean samples. J Consum Prot Food Saf 13:63–67. https://doi.org/10.1007/s00003-017-1143-8

    Article  CAS  Google Scholar 

  12. Nurchi VM, Buha Djordjevic A, Crisponi G et al (2020) Arsenic Toxicity: molecular targets and therapeutic agents. Biomolecules 10:235. https://doi.org/10.3390/biom10020235

    Article  CAS  PubMed Central  Google Scholar 

  13. Walvekar RR, Kane SV, Nadkarni MS et al (2007) Chronic arsenic poisoning: A global health issue - A report of multiple primary cancers. J Cutan Pathol 34:203–206. https://doi.org/10.1111/j.1600-0560.2006.00596.x

    Article  CAS  PubMed  Google Scholar 

  14. Islam SMM, Rahman MA, Nahar S et al (2019) Acute toxicity of an organophosphate insecticide sumithion to striped catfish Pangasianodon hypophthalmus. Toxicol Reports 6:957–962. https://doi.org/10.1016/j.toxrep.2019.09.004

    Article  Google Scholar 

  15. Han JM, Park HJ, Kim JH et al (2019) Toxic effects of arsenic on growth, hematological parameters, and plasma components of starry flounder, Platichthys stellatus, at two water temperature conditions. Fish Aquat Sci 22:1–8. https://doi.org/10.1186/s41240-019-0116-5

    Article  Google Scholar 

  16. Khanam R, Kumar A, Nayak AK et al (2020) Metal(loid)s (As, Hg, Se, Pb and Cd) in paddy soil: Bioavailability and potential risk to human health. Sci Total Environ 699:134330. https://doi.org/10.1016/j.scitotenv.2019.134330

    Article  CAS  PubMed  Google Scholar 

  17. Ince S, Kucukkurt I, Acaroz U et al (2019) Boron ameliorates arsenic-induced DNA damage, proinflammatory cytokine gene expressions, oxidant/antioxidant status, and biochemical parameters in rats. J Biochem Mol Toxicol 33:e22252. https://doi.org/10.1002/jbt.22252

    Article  CAS  PubMed  Google Scholar 

  18. Chakraborti D (2016) Is WHO guideline value of arsenic in drinking water 10 ppb in the developing countries safe to drink? BLDE Univ J Heal Sci 1:57. https://doi.org/10.4103/2456-1975.183289

    Article  Google Scholar 

  19. Steinmaus CM, Yuan Y, Smith AH (2005) The temporal stability of arsenic concentrations in well water in western Nevada. Environ Res 99:164–168. https://doi.org/10.1016/j.envres.2004.10.003

    Article  CAS  PubMed  Google Scholar 

  20. Raizada RB, Srivastava MK, Singh RP et al (1993) Acute and subchronic oral toxicity of technical quinalphos in rats. Vet Hum Toxicol 35:223–225

    CAS  PubMed  Google Scholar 

  21. Aebi H (1974) Catalase. In: Methods of Enzymatic Analysis. Elsevier, pp 673–684

  22. Marklund S, Marklund G (1974) Involvement of the Superoxide Anion Radical in the Autoxidation of Pyrogallol and a Convenient Assay for Superoxide Dismutase. Eur J Biochem 47:469–474. https://doi.org/10.1111/j.1432-1033.1974.tb03714.x

    Article  CAS  PubMed  Google Scholar 

  23. Hafeman DG, Sunde RA, Hoekstra WG (1974) Effect of dietary selenium on erythrocyte and liver glutathione peroxidase in the rat. J Nutr 104:580–587. https://doi.org/10.1093/jn/104.5.580

    Article  CAS  PubMed  Google Scholar 

  24. Carlberg I, Mannervik B (1985) [59] Glutathione reductase. Methods Enzymol 113:484–490. https://doi.org/10.1016/S0076-6879(85)13062-4

    Article  CAS  PubMed  Google Scholar 

  25. Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

    Article  CAS  PubMed  Google Scholar 

  26. Voss G, Sachsse K (1970) Red cell and plasma cholinesterase activities in microsamples of human and animal blood determined simultaneously by a modified acetylthiocholine/DTNB procedure. Toxicol Appl Pharmacol 16:764–772. https://doi.org/10.1016/0041-008X(70)90082-7

    Article  CAS  PubMed  Google Scholar 

  27. Mochnik PA, Frei B, Ames BN (1994) [23] Measurement of antioxidants in human blood plasma. In: Methods in Enzymology. Methods Enzymol, pp 269–279

  28. Shafiq-Ur-Rehman, (1984) Lead-induced regional lipid peroxidation in brain. Toxicol Lett 21:333–337

    Article  CAS  Google Scholar 

  29. Beutler E (1975) Reduced Glutathione (GSH). In Bergmeyen, H.V., Ed., Red Blood Cell Metabolism A Manual of Biochemical Methods, 2nd Edition, Grune and Stratton, New York, 112–114. - References - Scientific Research Publishing. In: book

  30. Drury, R.A.B WEA (1980) Carleton’s histological technique. (1980 edition) | Open Library

  31. Kumar A, Kumar R, Rahman MS et al (2021) Assessment of arsenic exposure in the population of Sabalpur village of Saran District of Bihar with mitigation approach. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-021-13521-5

    Article  Google Scholar 

  32. Altuntas I, Delibas N, Doguc D et al (2003) Role of reactive oxygen species in organophosphate insecticide phosalone toxicity in erythrocytes in vitro. Toxicol Vitr 17:153–157. https://doi.org/10.1016/S0887-2333(02)00133-9

    Article  CAS  Google Scholar 

  33. Parvez F, Medina S, Santella RM et al (2017) Arsenic exposures alter clinical indicators of anemia in a male population of smokers and non-smokers in Bangladesh. Toxicol Appl Pharmacol 331:62–68. https://doi.org/10.1016/j.taap.2017.05.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kumar R, Banerjee TK (2016) Arsenic induced hematological and biochemical responses in nutritionally important catfish Clarias batrachus (L.). Toxicol Reports 3:148–152. https://doi.org/10.1016/j.toxrep.2016.01.001

    Article  CAS  Google Scholar 

  35. Khan AM, Sultana M, Raina R et al (2013) Effect of sub-acute oral exposure of bifenthrin on biochemical parameters in crossbred goats. Proc Natl Acad Sci India Sect B - Biol Sci 83:323–328. https://doi.org/10.1007/s40011-012-0150-x

    Article  CAS  Google Scholar 

  36. DU Chowdhury S, S I, (2016) Protective effect of Spirodela polyrhiza on various organs of arsenic-induced Wistar Albino Rats. J Cytol Histol 07:410. https://doi.org/10.4172/2157-7099.1000410

    Article  CAS  Google Scholar 

  37. Raina R, Baba NA, Verma PK et al (2015) Hepatotoxicity induced by subchronic exposure of fluoride and chlorpyrifos in Wistar rats: Mitigating effect of ascorbic acid. Biol Trace Elem Res 166:157–162. https://doi.org/10.1007/s12011-015-0263-1

    Article  CAS  PubMed  Google Scholar 

  38. Mahajan L, Verma PK, Raina R, Sood S (2018) Toxic effects of imidacloprid combined with arsenic: Oxidative stress in rat liver. Toxicol Ind Health 34:726–735. https://doi.org/10.1177/0748233718778993

    Article  CAS  PubMed  Google Scholar 

  39. Balasubramanian J, Kumar A (2013) Effect of sodium arsenite on liver function related enzymes of cat fish Heteropneustes fossilis and its chelation by zeolite. Ecotoxicol Environ Contam 8:53–59. https://doi.org/10.5132/eec.2013.02.008

    Article  Google Scholar 

  40. Mathur AK, Gupta BN, Singh A et al (2000) Dermal toxicity of linear alkylbenzene sulfonate and quinalphos in guinea pigs. J Toxicol Cutan Ocul Toxicol 19:43–53. https://doi.org/10.3109/15569520009051477

    Article  CAS  Google Scholar 

  41. Reddy GR, Basha MR, Devi CB et al (2003) Lead induced effects on acetylcholinesterase activity in cerebellum and hippocampus of developing rat. Int J Dev Neurosci 21:347–352. https://doi.org/10.1016/S0736-5748(03)00071-6

    Article  CAS  PubMed  Google Scholar 

  42. Sarkar R, Mohanakumar KP, Chowdhury M (2000) Effects of an organophosphate pesticide, quinalphos, on the hypothalamo-pituitary-gonadal axis in adult male rats. J Reprod Fertil 118:29–38

    Article  CAS  PubMed  Google Scholar 

  43. Tsakiris S, Angelogianni P, Schulpis KH, Stavridis JC (2000) Protective effect of l-phenylalanine on rat brain acetylcholinesterase inhibition induced by free radicals. Clin Biochem 33:103–106. https://doi.org/10.1016/S0009-9120(99)00090-9

    Article  CAS  PubMed  Google Scholar 

  44. Baba NA, Raina R, Verma PK, Sultana M (2014) Alterations in plasma and tissue acetylcholinesterase activity following repeated oral exposure of chlorpyrifos alone and in conjunction with fluoride in Wistar rats. Proc Natl Acad Sci India Sect B - Biol Sci 84:969–972. https://doi.org/10.1007/s40011-013-0286-3

    Article  CAS  Google Scholar 

  45. Khan AM, Raina R, Dubey N, Verma PK (2018) Effect of deltamethrin and fluoride co-exposure on the brain antioxidant status and cholinesterase activity in Wistar rats. Drug Chem Toxicol 41:123–127. https://doi.org/10.1080/01480545.2017.1321009

    Article  CAS  PubMed  Google Scholar 

  46. Dinkova-Kostova A (2002) Protection Against Cancer by Plant Phenylpropenoids: Induction of Mammalian Anticarcinogenic Enzymes. Mini-Reviews Med Chem 2:595–610. https://doi.org/10.2174/1389557023405558

    Article  CAS  Google Scholar 

  47. Gultekin F, Ozturk M, Akdogan M (2000) The effect of organophosphate insecticide chlorpyrifos-ethyl on lipid peroxidation and antioxidant enzymes (in vitro). Arch Toxicol 74:533–538. https://doi.org/10.1007/s002040000167

    Article  CAS  PubMed  Google Scholar 

  48. Sharma Y, Bashir S, Irshad M et al (2005) Dimethoate-induced effects on antioxidant status of liver and brain of rats following subchronic exposure. Toxicology 215:173–181. https://doi.org/10.1016/j.tox.2005.06.029

    Article  CAS  PubMed  Google Scholar 

  49. Prabu SM, Muthumani M (2012) Silibinin ameliorates arsenic induced nephrotoxicity by abrogation of oxidative stress, inflammation and apoptosis in rats. Mol Biol Rep. https://doi.org/10.1007/s11033-012-2029-6

    Article  PubMed  Google Scholar 

  50. Druwe IL, Vaillancourt RR (2010) Influence of arsenate and arsenite on signal transduction pathways: An update. Arch Toxicol 84:585–596. https://doi.org/10.1007/s00204-010-0554-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sharma P, Verma PK, Sood S et al (2021) Neuroprotective potential of hydroethanolic hull extract of Juglans regia L. on isoprenaline induced oxidative damage in brain of Wistar rats. Toxicol Reports 8:223–229. https://doi.org/10.1016/j.toxrep.2021.01.006

    Article  CAS  Google Scholar 

  52. Wang L, Xu ZR, Jia XY, Han XY (2006) Effects of dietary arsenic levels on serum parameters and trace mineral retentions in growing and finishing pigs. Biol Trace Elem Res 113:155–164. https://doi.org/10.1385/BTER:113:2:155

    Article  CAS  PubMed  Google Scholar 

  53. Jain A, Agrawal S, Flora SJS (2015) Arsenic and nicotine co-exposure lead to some synergistic effects on oxidative stress and apoptotic markers in young rat blood, liver, kidneys and brain. Toxicol Reports 2:1334–1346. https://doi.org/10.1016/j.toxrep.2015.09.003

    Article  CAS  Google Scholar 

  54. Madkour NK (2012) Protective effect of curcumin on oxidative stress and DNA fragmentation against lambda cyhalothrin-induced liver damage in rats. J Appl Pharm Sci 2:76–81. https://doi.org/10.7324/JAPS.2012.21214

    Article  CAS  Google Scholar 

  55. M. Muthumani and S. Miltonprabu (2013) Tetrahydrocurcumin Potentially Attenuates Arsenic Induced Oxidative Hepatic Dysfunction in Rats. J Clin Toxicol 03https://doi.org/10.4172/2161-0495.1000168

  56. Muthumani M, Prabu SM (2014) Silibinin potentially attenuates arsenic-induced oxidative stress mediated cardiotoxicity and dyslipidemia in rats. Cardiovasc Toxicol 14:83–97. https://doi.org/10.1007/s12012-013-9227-x

    Article  CAS  PubMed  Google Scholar 

  57. Prabu SM, Sumedha NC (2014) Ameliorative effect of diallyl trisulphide on arsenic-induced oxidative stress in rat erythrocytes and DNA damage in lymphocytes. J Basic Clin Physiol Pharmacol 25:181–197. https://doi.org/10.1515/jbcpp-2013-0047

    Article  CAS  PubMed  Google Scholar 

  58. Shah MD, Iqbal M (2010) Diazinon-induced oxidative stress and renal dysfunction in rats. Food Chem Toxicol 48:3345–3353. https://doi.org/10.1016/j.fct.2010.09.003

    Article  CAS  PubMed  Google Scholar 

  59. Kapoor U, Srivastava MK, Bhardwaj S, Srivastava LP (2010) Effect of imidacloprid on antioxidant enzymes and lipid peroxidation in female rats to derive its no observed effect level (NOEL). J Toxicol Sci 35:577–581. https://doi.org/10.2131/jts.35.577

    Article  CAS  PubMed  Google Scholar 

  60. Teimouri F, Amirkabirian N, Esmaily H et al (2006) Alteration of hepatic cells glucose metabolism as a non-cholinergic detoxication mechanism in counteracting diazinon-induced oxidative stress. Hum Exp Toxicol 25:697–703. https://doi.org/10.1177/0960327106075064

    Article  CAS  PubMed  Google Scholar 

  61. Aflanie I, Muhyi R, Suhartono E (2015) Effect of Heavy Metal on Malondialdehyde and Advanced Oxidation Protein Produtcs Concentration: A Focus on Arsenic, Cadmium, and Mercury. J Med Bioeng 4:332–337. https://doi.org/10.12720/jomb.4.4.332-337

  62. Ferzand R, Gadahi JA, Saleha S, Ali Q (2008) Histological and haematological disturbance caused by arsenic toxicity in mice model. Pakistan J Biol Sci 11:1405–1413. https://doi.org/10.3923/pjbs.2008.1405.1413

    Article  CAS  Google Scholar 

  63. Mondal R, Biswas S, Chatterjee A et al (2016) Protection against arsenic-induced hematological and hepatic anomalies by supplementation of Vitamin C and vitamin e in adult male rats. J Basic Clin Physiol Pharmacol 27:643–652. https://doi.org/10.1515/jbcpp-2016-0020

    Article  CAS  PubMed  Google Scholar 

  64. Toor HK, Sangha GK, Khera KS (2013) Imidacloprid induced histological and biochemical alterations in liver of female albino rats. Pestic Biochem Physiol 105:1–4. https://doi.org/10.1016/j.pestbp.2012.10.001

    Article  CAS  PubMed  Google Scholar 

  65. Edwards FL, Yedjou CG, Tchounwou PB (2013) Involvement of oxidative stress in methyl parathion and parathion-induced toxicity and genotoxicity to human liver carcinoma (HepG 2) cells. Environ Toxicol 28:342–348. https://doi.org/10.1002/tox.20725

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors thank the Dean, Faculty of Veterinary Science and Animal Husbandry, R S Pura, Jammu for providing necessary facilities for conducting the research.

Funding

Research work of students thus no external funding required.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Dr Pawan Kumar Verma and Dr Parvinder Singh contributed to conception, design, and execution of the research work to generate the basic data. The Dr Rajinder Raina edited final manuscript and Dr Shilpa Sood carried out histopathological work of experiment. Dr Priyanka Sharma contributed to statistical analysis of data.

Corresponding author

Correspondence to Pawan Kumar Verma.

Ethics declarations

Ethics Approval

The experimental protocol was duly approved by Institutional Animal Ethics Committee (IAEC) vide proposal no 7/IAEC-17/2017.

Consent to Participate

Not applicable.

Consent for Publication

All authors agreed to publication of article.

Conflict of Interests

The author(s) declare(s) that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, P.K., Singh, P., Sharma, P. et al. Dose-Dependent Oxidative Damage in Erythrocytes and Hepatic Tissue of Wistar Rats Concurrently Exposed with Arsenic and Quinalphos: a Subacute Study. Biol Trace Elem Res 200, 2160–2173 (2022). https://doi.org/10.1007/s12011-021-02807-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-021-02807-x

Keywords

Navigation