Skip to main content
Log in

RETRACTED ARTICLE: Silibinin ameliorates arsenic induced nephrotoxicity by abrogation of oxidative stress, inflammation and apoptosis in rats

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

This article was retracted on 01 June 2021

This article has been updated

Abstract

Arsenic (As) is an environmental and industrial pollutant that affects various organs in human and experimental animals. Silibinin is a naturally occurring plant bioflavonoid found in the milk thistle of Silybum marianum, which has been reported to have a wide range of pharmacological properties. A body of evidence has accumulated implicating the free radical generation with subsequent oxidative stress in the biochemical and molecular mechanisms of As toxicity. Since kidney is the critical target organ of chronic As toxicity, we carried out this study to investigate the effects of silibinin on As-induced toxicity in the kidney of rats. In experimental rats, oral administration of sodium arsenite [NaAsO2, 5 mg/(kg day)] for 4 weeks significantly induced renal damage which was evident from the increased levels of serum urea, uric acid, creatinine with a significant (p < 0.05) decrease in creatinine clearance. As also significantly decreased the levels of urea, uric acid and creatinine in urine. A markedly increased levels of lipid peroxidation markers (thiobarbituric acid reactive substances and lipid hydroperoxides) and protein carbonyl contents with significant (p < 0.05) decrease in non-enzymatic antioxidants (total sulfhydryl groups, reduced glutathione, vitamin C and vitamin E) and enzymatic antioxidants (superoxide dismutase, catalase, glutathione peroxidase and glutathione S-transferase), Glutathione metabolizing enzymes (glutathione reductase and glutathione-6-phosphate dehydrogenase) and membrane bound ATPases were also observed in As treated rats. Co-administration of silibinin (75 mg/kg day) along with As resulted in a reversal of As-induced biochemical changes in kidney accompanied by a significant decrease in lipid peroxidation and an increase in the level of renal antioxidant defense system. The histopathological and immunohistochemical studies in the kidney of rats also shows that silibinin (75 mg/kg day) markedly reduced the toxicity of As and preserved the normal histological architecture of the renal tissue, inhibited the caspase-3 mediated tubular cell apoptosis and decreased the NADPH oxidase, iNOS and NF-κB over expression by As and upregulated the Nrf2 expression in the renal tissue. The present study suggests that the nephroprotective potential of silibinin in As toxicity might be due to its antioxidant and metal chelating properties, which could be useful for achieving optimum effects in As-induced renal damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Change history

References

  1. Yadav RS, Sankhwar ML, Shukla RK, Chandra R, Pant AB, Islam F, Khanna VK (2009) Attenuation of arsenic neurotoxicity by curcumin in rats. Toxicol Appl Pharmacol 240:367–376

    CAS  PubMed  Google Scholar 

  2. Ratnaike RN (2003) Acute and chronic arsenic toxicity. Postgrad Med J 79:391–396

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Ginsburg JM (1965) Renal mechanism for excretion and transformation of arsenic in the dog. Am J Physiol 208:832–840

    CAS  PubMed  Google Scholar 

  4. Liu J, Liu Y, Goyer RA, Achanzar W, Waalkes MP (2000) Metallothionein-I/II null mice are more sensitive than wild-type mice to the hepatotoxic and nephrotoxic effects of chronic oral or injected inorganic arsenicals. Toxicol Sci 55:460–467

    CAS  PubMed  Google Scholar 

  5. Yang Y, Xia M, Jin Q, Bendahhou S, Shi J, Chen Y, Liang B, Lin J, Liu Y, Liu B, Zhou Q, Zhang D, Wan R, Ma N, Su X, Niu K, Pe Y, Xu W, Chen Z, Wan H, Cui J, Barhanin J, Chen Y (2004) Identification of a KCNE2 gain-of-function mutation in patients with familial atrial fibrillation. Am J Hum Genet 75:899–905

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Lin A, Zhang X, Zhu YG, Zhao FJ (2008) Arsenate-induced toxicity: effects on antioxidative enzymes and DNA damage in Vicia faba. Environ Toxicol Chem 2:4139

    Google Scholar 

  7. Li Y, Ling M, Xu Y, Wang S, Li Z, Zhou J, Wang X, Liu Q (2010) The repressive effect of NF-kappaB on p53 by mot-2 is involved in human keratinocyte transformation induced by low levels of arsenite. Toxicol Sci 116:174–182

    CAS  PubMed  Google Scholar 

  8. Taylor DJ, Green NPO, Stout GW, Soper R (2003) Biological sciences. Cambridge University Press, Cambridge, pp 680–692

    Google Scholar 

  9. Bhadauria S, Flora SJS (2007) Response of arsenic-induced oxidative stress, DNA damage and metal imbalance to combined administration of DMSA and monoisoamyl-DMSA during chronic arsenic poisoning in rats. Cell Biol Toxicol 23:91–104

    CAS  PubMed  Google Scholar 

  10. Kokilavani V, Devi MA, Sivarajan K, Panneerselvam C (2005) Combined efficacies of DL-ά-Lipoic acid and meso 2,3-dimercaptosuccinic acid against arsenic induced toxicity in antioxidant system of rats. Toxicol Lett 160:1–7

    CAS  PubMed  Google Scholar 

  11. Uivarosi V, Barbuceanu SF, Aldea V, Arama CC, Badea M, Olar R, Marinescu D (2010) Synthesis, spectral and thermal studies of new rutin vanadyl complexes. Molecules 15:1578–1589

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Sakai K, Li Y, Shirakawa T, Kitagawa Y, Hirose G (2001) Induction of major histocompatibility complex I class molecules on human neuroblastoma line cells by a flavonoid antioxidant. Neurosci Lett 298:127–130

    CAS  PubMed  Google Scholar 

  13. Zhou B, Wu LJ, Tashiro S, Onodera S, Uchiami F, Ikejima T (2006) Silibinin protects rat cardiac myocyte from isoproterenol-induced DNA damage independent on regulation on regulation of cell cycle. Biol Pharmacol Bull 29:1900–1905

    CAS  Google Scholar 

  14. Dietzmann J, Thiel U, Ansorge S, Neumann KH, Tager M (2002) Thiol-inducing and immunoregulatory effects of flavonoids in perinuclear blood mononuclear cells from patients with end-stage diabetic nephropathy. Free Radic Biol Med 33:1347–1354

    CAS  PubMed  Google Scholar 

  15. Ligeret H, Brault A, Vellerand D, Hadded Y, Hadded PS (2008) Antioxidant and mitochondrial protective effects of silibinin in cold preservation warm reperfusion liver injury. J Ethnopharmacol 115:507–514

    CAS  PubMed  Google Scholar 

  16. Niehiaus WG, Samuelsson D (1968) Formation of malondialdehyde from phospholipids arachidonate during microsomal lipid peroxidation. Eur J Biochem 6:126–130

    Google Scholar 

  17. Jiang ZY, Hunt JV, Wolff SD (1992) Ferrous ion oxidation in the presence of xylenol orange for detection of lipid hydroperoxide in low density lipoprotein. Ann Biochem 202:384–389

    CAS  Google Scholar 

  18. Levine RL, Garland D, Oliver CN, Amic A, Climent I, Lenz AG, Ahn BW, Shaltiel S, Stadtman ER (1990) Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 186:464–478

    CAS  PubMed  Google Scholar 

  19. Moron MS, Despierre JW, Minnervik B (1979) Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochim Biophys Acta 582:67–78

    CAS  PubMed  Google Scholar 

  20. Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77

    CAS  PubMed  Google Scholar 

  21. Omaye ST, Turnbull JD, Sauberlich HE (1979) Selected methods for the determination of ascorbic acid in animal cells, tissues and fluids. Methods Enzymol 62:3–11

    CAS  PubMed  Google Scholar 

  22. Desai ID (1984) Vitamin E analysis method for animal tissues. Methods Enzymol 105:138–143

    CAS  PubMed  Google Scholar 

  23. Kakkar P, Das B, Viswanathan PN (1984) A modified spectrophotometric assay of superoxide dismutase. Indian J Biochem Biophys 21:130–132

    CAS  PubMed  Google Scholar 

  24. Sinha AK (1972) Colorimetric assay of catalase. Ann Biochem 47:389–394

    CAS  Google Scholar 

  25. Rotruck JT, Rope AL, Ganther HF, Swason AB (1973) Selenium: biochemical role as a component of glutathione peroxidase. Science 179:588–590

    CAS  PubMed  Google Scholar 

  26. Habig WH, Pabst MJ, Jakpoly WB (1974) Glutathione transferase: a first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

    CAS  PubMed  Google Scholar 

  27. Horn HD, Burns FH (1978) Assay of glutathione reductase activity. In: Bergmeyer HV (ed) Methods of enzymatic analysis. Academic Press, New York, pp 142–146

    Google Scholar 

  28. Beutler E (1983) Active transport of glutathione disulfide from erythrocytes. In: Larson A, Orrenius S, Holmgren A, Mannerwik B (eds) Functions of glutathione, biochemical, physiological, toxicological and clinical aspects. Raven Press, New York, p 65

    Google Scholar 

  29. Lowry OH, Rosenbrough MJ, Farr AL, Randall RJ (1951) Protein measurement with Folin–phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  30. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR (1982) Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Anal Biochem 126:131–138

    CAS  PubMed  Google Scholar 

  31. Evans DJ Jr (1969) Membrane adenosine triphosphatase of E. coli activation by calcium ions and inhibition by monovalent cations. J Bacteriol 100:914–922

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Fiske CH, Subbarow Y (1925) The colorimetric determination of phosphorus. J Biol Chem 66:375–400

    CAS  Google Scholar 

  33. Bonting SL (1970) Presence of enzyme system in mammalian tissues. In: Bilter EE (ed) Membrane and ion transport. Wiley Inter Science, London, pp 257–263

    Google Scholar 

  34. Hjerten S, Pan H (1983) Purification and characterization of two forms of low affinity Ca++–ATPase from erythrocyte membrane. Biochim Biophys Acta 728:281–288

    CAS  PubMed  Google Scholar 

  35. Ohnishi T, Suzuki T, Suzuki Y, Ozawa K (1982) A comparative study of plasma membrane Mg++–ATPase activities in normal, regenerating and malignant cells. Biochim Biophys Acta 684:67–74

    CAS  PubMed  Google Scholar 

  36. Shi H, Djikeng A, Tschudi C, Ullu E (2004) Argonaut protein in the early divergent eukaryote Trypanosoma brucei: control of small interfering RNA accumulation and retroposon transcript abundance. Mol Cell Biol 24:420–427

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Sinha H, Manna P, Sil PC (2008) Arjunolic acid attenuates arsenic-induced nephrotoxicity. Pathophysiology 15:147–156

    CAS  PubMed  Google Scholar 

  38. Muthumani M, Milton Prabu S (2012) Silibinin potentially protects arsenic induced oxidative hepatic dysfunction in rats. Toxicol Mech Methods 22:277–288

    CAS  PubMed  Google Scholar 

  39. Rajnarayana K, Sripalreddy M, Chaluvadi MR, Krishna DR (2001) Bioflavonoids classification, pharmacological, biochemical effects and therapeutic potential. Indian J Pharmacol 33:2–16

    Google Scholar 

  40. Patel HR, Kalia K (2010) Sub-chronic arsenic exposure aggravates nephrotoxicity in experimental diabetic rats. Indian J Exp Biol 48:762–768

    CAS  PubMed  Google Scholar 

  41. Basiglio CL, Sanchez Pozzi EJ, Mottino AD, Roma MG (2009) Differential effects of silymarin and its active component SB on plasma membrane stability and hepatocellular lysis. Chem Biol Interact 179:297–303

    CAS  PubMed  Google Scholar 

  42. Chou WC, Jie C, Kenedy AA, Jones RJ, Trush MA, Dang CV (2004) Role of NADPH oxidase in arsenic-induced reactive oxygen species formation and cytotoxicity in myeloid leukemia cells. Proc Natl Acad Sci 101:4578–4583

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Usoh IF, Akpan EJ, Etim EO, Farombi EO (2005) Antioxidant actions of dried flower extracts of Hibiscus sabdariffa L. on sodium arsenite-induced oxidative stress in rats. Pakistan J Nutr 4:135–141

    Google Scholar 

  44. Yamanaka K, Hasegawa A, Sawamura R, Okada S (1991) Cellular response to oxidative damage in lung induced by administration of dimethyl arsenic acid, a major metabolite of inorganic arsenic in mice. Toxicol Appl Pharmacol 108:205–213

    CAS  PubMed  Google Scholar 

  45. Kono Y, Fridovich I (1982) Superoxide radical inhibits catalase. J Biol Chem 257:5751–5754

    CAS  PubMed  Google Scholar 

  46. Kirkman MN, Gaetani GF (1984) Catalase: a tetrameric enzyme with four tightly bound molecules of NADPH. Proc Nat Acad Sci USA 81:4343–4347

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Danyelle TM, Kenneth TD (2003) The role of glutathione S-transferase in anticancer drug resistance. Drug Res 22:7369–7375

    Google Scholar 

  48. Flora SJS, Kannan GM, Kumar P (1999) Selenium effects on gallium arsenite induced biochemical and immunotoxicological changes in rat. Chem Biol Interact 122:1–13

    CAS  PubMed  Google Scholar 

  49. Ganyc D, Talbot S, Konate F, Jackson S, Schanen B, Cullen W, Self WT (2007) Impact of trivalent arsenicals on selenoprotein synthesis. Environ Health Perspect 115:346–353

    CAS  PubMed  Google Scholar 

  50. Shila S, Kokilavani V, Subathra M (2005) Brain regional responses in antioxidant system to α-lipoic acid in arsenic intoxicated rat. Toxicology 210:25–36

    CAS  PubMed  Google Scholar 

  51. Hughes MF (2002) Arsenic toxicity and potential mechanisms of action. Toxicol Lett 133:1–16

    CAS  PubMed  Google Scholar 

  52. Haddad Y, Vallerand D, Brault A, Haddad PS (2011) Antioxidant and hepatoprotective effects of silibinin in a rat model of nonalcoholic steatohepatitis. Evid Based Complement Alternat Med. doi:10.1093/ecam/nep164

  53. Sharmila Banu G, Kumar G, Murugesan AG (2009) Ethanolic leaf extract of Trianthema portulacastrum L. A meliorates aflatoxin B1 induced hepatic damage in rats. Indian J Clin Biochem 24:250–256

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Kempaiah RK, Srinivasan K (2006) Protective effect of curcumin, capsaicin and garlic on erythrocyte integrity in high fat fed rats. J Nutr Biochem 17:471–478

    CAS  PubMed  Google Scholar 

  55. Ithayarasi AP, Devi CS (1997) Effect of alpha-tocopherol on lipid peroxidation in isoproterenol induced myocardial infarction in rats. Indian J Physiol Pharmacol 41:369–376

    CAS  PubMed  Google Scholar 

  56. Finotti P, Palatini P (1986) Reduction of erythrocyte Na+/K+ ATPase activity in type I insulin dependent diabetic subjects and its activation by homologus plasma. Diabetology 29:623–628

    CAS  Google Scholar 

  57. Das AK, Bag S, Sahu R, Dua TK, Sinha MK, Gangopadhyay M (2010) Protective effect of Corchorus olitorius leaves on sodium arsenite-induced toxicity in experimental rats. Food Chem Toxicol 48:326–335

    CAS  PubMed  Google Scholar 

  58. Katiyar SK (2005) Silymarin and skin cancer prevention: anti-inflammatory, antioxidant and immunomodulatory effects (review). Int J Oncol 26:169–176

    CAS  PubMed  Google Scholar 

  59. Bratton SB, Cohen GM (2001) Apoptotic death sensor: an organelle’s alter ego? Trends Pharmacol Sci 22:306–315

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Milton Prabu.

About this article

Cite this article

Prabu, S.M., Muthumani, M. RETRACTED ARTICLE: Silibinin ameliorates arsenic induced nephrotoxicity by abrogation of oxidative stress, inflammation and apoptosis in rats. Mol Biol Rep 39, 11201–11216 (2012). https://doi.org/10.1007/s11033-012-2029-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-2029-6

Keywords

Navigation