Skip to main content
Log in

Different Routes of Administration Lead to Different Oxidative Damage and Tissue Disorganization Levels on the Subacute Cadmium Toxicity in the Liver

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The toxic effects of cadmium (Cd) on hepatic parameters are widely described in the literature. Experimental models often make use of the intraperitoneal route (i.p.) because it is easier to apply, while in the oral route, Cd poisoning in humans is best represented by allowing the metal to pass through the digestive system and be absorbed into the bloodstream. Thus, this study investigated the Cd exposure impact on the liver, by comparing both i.p. and oral routes, both in single dose, in addition to the oral route in fractional doses. Swiss adult male mice received CdCl2 1.5 mg/kg i.p., 30 mg/kg oral single dose, and 4.28 mg/kg oral route in fractional doses for 7 consecutive days. Cd bioaccumulation was observed in all animals exposed to Cd. Hepatic concentrations of Ca and Fe increased only in the fractionated oral route. Liver activities of SOD and CAT increased only by oral single dose. GST decreased in all forms of oral administration, while MDA decreased only in i.p. route. Liver weight and HSI increased in the i.p. route, while organ volume increased in all forms of oral administration, and liver density increased in all animals exposed to Cd. In hepatic histomorphometry, the changes were more evident in oral administration, mainly in exposure to metal in a single dose. Thus, the subacute administration of Cd in different routes of administration leads to different changes in liver poisoning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. Sarkar A, Ravindran G, Krishnamurthy V (2013) A brief review on the effect of cadmium toxicity: from cellular to organ level. Int J Bio-Technology Res 3:2249–6858

    Google Scholar 

  2. de Angelis C, Galdiero M, Pivonello C et al (2017) The environment and male reproduction: the effect of cadmium exposure on reproductive functions and its implication in fertility. Reprod Toxicol 73:105–127. https://doi.org/10.1016/j.reprotox.2017.07.021

    Article  CAS  PubMed  Google Scholar 

  3. Fernandes GW, Goulart FF, Ranieri BD et al (2016) Deep into the mud: ecological and socio-economic impacts of the dam breach in Mariana, Brazil. Nat Conserv 14:35–45. https://doi.org/10.1016/j.ncon.2016.10.003

    Article  Google Scholar 

  4. Cionek VM, Alves GHZ, Tófoli RM et al (2019) Brazil in the mud again: lessons not learned from Mariana dam collapse. Biodivers Conserv 28:1935–1938. https://doi.org/10.1007/s10531-019-01762-3

    Article  Google Scholar 

  5. Lima AT, Bastos FA, Teubner FJ et al (2020) Strengths and weaknesses of a hybrid post-disaster management approach: the Doce River (Brazil) mine-tailing dam burst. Environ Manage. https://doi.org/10.1007/s00267-020-01279-4

  6. ATSDR (2012) Toxicological profile for cadmium. Agency for Toxic Substances and Disease Registry, U.S. Department of Health and Human Services, Atlanta

  7. Gao P, Liu S, Ye W et al (2015) Assessment on the occupational exposure of urban public bus drivers to bioaccessible trace metals through resuspended fraction of settled bus dust. Sci Total Environ 508:37–45. https://doi.org/10.1016/j.scitotenv.2014.11.067

    Article  CAS  PubMed  Google Scholar 

  8. Coelho DG, Marinato CS, Matos LP et al (2020) Evaluation of heavy metals in soil and tissues of economic-interest plants grown in sites affected by the Fundão dam failure in Mariana, Brazil. Integr Environ Assess Manag. https://doi.org/10.1002/ieam.4253

  9. Bonecker ACT, Castro MS d, Costa PG et al (2019) Larval fish assemblages of the coastal area affected by the tailings of the collapsed dam in southeast Brazil. Reg Stud Mar Sci 32:100848. https://doi.org/10.1016/j.rsma.2019.100848

    Article  Google Scholar 

  10. Akhgari M, Abdollahi M, Kebryaeezadeh A et al (2003) Biochemical evidence for free radical-induced lipid peroxidation as a mechanism for subchronic toxicity of malathion in blood and liver of rats. Hum Exp Toxicol 22:205–211. https://doi.org/10.1191/0960327103ht346oa

    Article  CAS  PubMed  Google Scholar 

  11. Salińska A, Wlostowski T, Zambrzycka E (2012) Effect of dietary cadmium and/or lead on histopathological changes in the kidneys and liver of bank voles Myodes glareolus kept in different group densities. Ecotoxicology 21:2235–2243. https://doi.org/10.1007/s10646-012-0979-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Djuric A, Begic A, Gobeljic B et al (2015) Oxidative stress, bioelements and androgen status in testes of rats subacutely exposed to cadmium. Food Chem Toxicol 86:25–33. https://doi.org/10.1016/j.fct.2015.09.004

    Article  CAS  PubMed  Google Scholar 

  13. Cupertino M do C, Novaes RD, Santos EC et al (2017) Cadmium-induced testicular damage is associated with mineral imbalance, increased antioxidant enzymes activity and protein oxidation in rats. Life Sci 175:23–30. https://doi.org/10.1016/j.lfs.2017.03.007

    Article  CAS  Google Scholar 

  14. Arafa MH, Mohammad NS, Atteia HH (2014) Fenugreek seed powder mitigates cadmium-induced testicular damage and hepatotoxicity in male rats. Exp Toxicol Pathol 66:293–300. https://doi.org/10.1016/j.etp.2014.04.001

    Article  CAS  PubMed  Google Scholar 

  15. Cupertino MC, Costa KLC, Santos DCM et al (2013) Long-lasting morphofunctional remodelling of liver parenchyma and stroma after a single exposure to low and moderate doses of cadmium in rats. Int J Exp Pathol 94:343–351. https://doi.org/10.1111/iep.12046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rana K, Verma Y, Rana SVS (2020) Possible mechanisms of liver injury induced by cadmium sulfide nanoparticles in rat. Biol Trace Elem Res. https://doi.org/10.1007/s12011-020-02128-5

  17. Saedi S, Jafarzadeh Shirazi MR, Totonchi M et al (2020) Effect of prepubertal exposure to CdCl2 on the liver, hematological, and biochemical parameters in female rats; an experimental study. Biol Trace Elem Res 194:472–481. https://doi.org/10.1007/s12011-019-01800-9

    Article  CAS  PubMed  Google Scholar 

  18. de Souza Predes F, da Silva Diamante MA, Foglio MA et al (2014) Hepatoprotective effect of Arctium lappa root extract on cadmium toxicity in adult wistar rats. Biol Trace Elem Res 160:250–257. https://doi.org/10.1007/s12011-014-0040-6

    Article  CAS  PubMed  Google Scholar 

  19. Talcott MR, Akers W, Marini RP (2015) Chapter 25 - Techniques of Experimentation. In: Anderson LC, Otto G, Pritchett-Corning KR et al (eds) Laboratory animal medicine, 3rd edn, third edit. Elsevier Inc., pp 1201–1262

  20. Zhu L, Duan P, Hu X et al (2019) Exposure to cadmium and mono-(2-ethylhexyl) phthalate induce biochemical changes in rat liver, spleen, lung and kidney as determined by attenuated total reflection-Fourier transform infrared spectroscopy. J Appl Toxicol 39:783–797. https://doi.org/10.1002/jat.3767

    Article  CAS  PubMed  Google Scholar 

  21. Mouro VGS, Martins ALP, Silva J et al (2019) Subacute testicular toxicity to cadmium exposure intraperitoneally and orally. Oxid Med Cell Longev 2019:1–14. https://doi.org/10.1155/2019/3429635

    Article  CAS  Google Scholar 

  22. Mouro VGS, Siman VA, da Silva J et al (2019) Cadmium-induced testicular toxicity in mice: subacute and subchronic route-dependent effects. Biol Trace Elem Res. https://doi.org/10.1007/s12011-019-01731-5

  23. Matović V, Dukić-Ćosić D, Buha A, Bulat Z (2013) Route, dose and duration of exposure to cadmium-relevance to oxidative stress induction. In: Bogaert L, Coppens N (eds) Peroxidases: biochemical characteristics, functions and potential applications. Nova Science Publishers, Inc., pp 159–175

  24. Matović V, Buha A, Bulat Z et al (2012) Route-dependent effects of cadmium/cadmium and magnesium acute treatment on parameters of oxidative stress in rat liver. Food Chem Toxicol 50:552–557. https://doi.org/10.1016/j.fct.2011.12.035

    Article  CAS  PubMed  Google Scholar 

  25. Goering PL, Waalkes MP, Klaassen CD (1995) Toxicology of cadmium. In: Goyer RA, Cherian MG (eds) Toxicology of Metals: Biochemical Aspects. Springer Berlin Heidelberg, Berlin, pp 189–214

    Chapter  Google Scholar 

  26. Oh S-H, Lee B-H, Lim S-C (2004) Cadmium induces apoptotic cell death in WI 38 cells via caspase-dependent Bid cleavage and calpain-mediated mitochondrial Bax cleavage by Bcl-2-independent pathway. Biochem Pharmacol 68:1845–1855. https://doi.org/10.1016/j.bcp.2004.06.021

    Article  CAS  PubMed  Google Scholar 

  27. Satarug S, Garrett SH, Sens MA, Sens DA (2010) Cadmium, environmental exposure, and health outcomes. Environ Health Perspect 118:182–190. https://doi.org/10.1289/ehp.0901234

    Article  CAS  PubMed  Google Scholar 

  28. de Souza Predes F, Diamante MAS, Dolder H (2010) Testis response to low doses of cadmium in Wistar rats. Int J Exp Pathol 91:125–131. https://doi.org/10.1111/j.1365-2613.2009.00692.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Karnovsky MJ (1965) A formaldehyde-glutaraldehyde fixative of high osmolarity for use in electron microscopy. J Cell Biol 27:137–138

    Google Scholar 

  30. Novaes RD, Mouro VGS, Gonçalves RV et al (2018) Aluminum: a potentially toxic metal with dose-dependent effects on cardiac bioaccumulation, mineral distribution, DNA oxidation and microstructural remodeling. Environ Pollut 242:814–826. https://doi.org/10.1016/j.envpol.2018.07.034

    Article  CAS  PubMed  Google Scholar 

  31. Karnovsky MJ (1965) A formaldehyde-glutaraldehyde fixative of high osmolarity for use in electron microscopy. J Cell Biol 27:137–138

    Google Scholar 

  32. Kunifuji Y, Nakamura T, Takasugi M (1987) Influence of cadmium on the distribution of the essential trace elements zinc and copper in the liver and kidneys of rats. Biol Trace Elem Res 14:237–248. https://doi.org/10.1007/BF02795690

    Article  CAS  PubMed  Google Scholar 

  33. Müller L, Stacey NH (1989) Subclinical response to cadmium in liver cells. Biol Trace Elem Res 21:317–323. https://doi.org/10.1007/BF02917270

    Article  PubMed  Google Scholar 

  34. Abarikwu SO, Iserhienrhien BO, Badejo TA (2013) Rutin- and Selenium-attenuated cadmium-induced testicular pathophysiology in rats. Hum Exp Toxicol 32:395–406. https://doi.org/10.1177/0960327112472995

    Article  CAS  PubMed  Google Scholar 

  35. Abarikwu SO, Oruitemeka S, Uwadileke IA et al (2018) Oral administration of cadmium depletes intratesticular and epididymal iron levels and inhibits lipid peroxidation in the testis and epididymis of adult rats. J Trace Elem Med Biol 48:213–223. https://doi.org/10.1016/j.jtemb.2018.04.011

    Article  CAS  PubMed  Google Scholar 

  36. Cupertino MC, Novaes RD, Santos EC et al (2017) Differential susceptibility of germ and leydig cells to cadmium-mediated toxicity: impact on testis structure, adiponectin levels, and steroidogenesis. Oxid Med Cell Longev 2017. https://doi.org/10.1155/2017/3405089

  37. Djordjevic VR, Wallace DR, Schweitzer A et al (2019) Environmental cadmium exposure and pancreatic cancer: evidence from case control, animal and in vitro studies. Environ Int 128:353–361. https://doi.org/10.1016/j.envint.2019.04.048

    Article  CAS  PubMed  Google Scholar 

  38. Hentze MW, Muckenthaler MU, Andrews NC (2004) Balancing acts: molecular control of mammalian iron metabolism. Cell 117(285–297):50. https://doi.org/10.1016/S0092-8674(04)00343-5

    Article  Google Scholar 

  39. Ryu DY, Lee SJ, Park DW, Choi BS, Klaassen CD, Park JD (2004) Dietary iron regulates intestinal cadmium absorption through iron transporters in rats. Toxicol Lett 152:19–25. https://doi.org/10.1016/j.toxlet.2004.03.015

    Article  CAS  PubMed  Google Scholar 

  40. El-Sokkary GH, Nafady AA, Shabash EH (2010) Melatonin administration ameliorates cadmium-induced oxidative stress and morphological changes in the liver of rat. Ecotoxicol Environ Saf 73:456–463. https://doi.org/10.1016/j.ecoenv.2009.09.014

    Article  CAS  PubMed  Google Scholar 

  41. Clapham DE (2007) Calcium Signaling. Cell 131:1047–1058. https://doi.org/10.1016/j.cell.2007.11.028

    Article  CAS  PubMed  Google Scholar 

  42. Boucherie S, Decaens C, Verbavatz J-M et al (2013) Cadmium disorganises the scaffolding of gap and tight junction proteins in the hepatic cell line WIF B9. Biol Cell 105:561–575. https://doi.org/10.1111/boc.201200092

    Article  CAS  PubMed  Google Scholar 

  43. Hu W, Jones PD, Upham BL et al (2002) Inhibition of gap junctional intercellular communication by perfluorinated compounds in rat liver and dolphin kidney epithelial cell lines in vitro and Sprague-Dawley rats in vivo. Toxicol Sci 68:429–436. https://doi.org/10.1093/toxsci/68.2.429

    Article  CAS  PubMed  Google Scholar 

  44. Han F, Yan S, Shi YX (2013) Single-prolonged stress induces endoplasmic reticulum - dependent apoptosis in the hippocampus in a rat model of post-traumatic stress disorder. PLoS One 8. https://doi.org/10.1371/journal.pone.0069340

  45. Liu N, Huang H, Liu S et al (2014) Calcium channel blocker verapamil accelerates gambogic acid-induced cytotoxicity via enhancing proteasome inhibition and ROS generation. Toxicol Vitr 28:419–425. https://doi.org/10.1016/j.tiv.2013.12.008

    Article  CAS  Google Scholar 

  46. Zou H, Liu X, Han T et al (2015) Alpha-lipoic acid protects against cadmium-induced hepatotoxicity via calcium signalling and gap junctional intercellular communication in rat hepatocytes. J Toxicol Sci 40:469–477. https://doi.org/10.2131/jts.40.469

    Article  CAS  PubMed  Google Scholar 

  47. Liao Y, Cao H, Xia B et al (2017) Changes in trace element contents and morphology in bones of duck exposed to molybdenum or/and cadmium. Biol Trace Elem Res 175:449–457. https://doi.org/10.1007/s12011-016-0778-0

    Article  CAS  PubMed  Google Scholar 

  48. Xu S, Pi H, Chen Y et al (2013) Cadmium induced Drp1-dependent mitochondrial fragmentation by disturbing calcium homeostasis in its hepatotoxicity. Cell Death Dis 4:1–10. https://doi.org/10.1038/cddis.2013.7

    Article  CAS  Google Scholar 

  49. Casalino E, Sblano C, Landriscina C (1997) Enzyme activity alteration by cadmium administration to rats: the possibility of iron involvement in lipid peroxidation. Arch Biochem Biophys 346:171–179. https://doi.org/10.1006/abbi.1997.0197

    Article  CAS  PubMed  Google Scholar 

  50. Djukić-Ćosić D, Ćurčić Jovanović M, Plamenac Bulat Z et al (2008) Relation between lipid peroxidation and iron concentration in mouse liver after acute and subacute cadmium intoxication. J Trace Elem Med Biol 22:66–72. https://doi.org/10.1016/j.jtemb.2007.09.024

    Article  CAS  PubMed  Google Scholar 

  51. Kingsley BS, Frazier JM (1979) Cadmium transport in isolated perfused rat liver: zinc-cadmium competition. Am J Physiol Physiol 236:C139–C143. https://doi.org/10.1152/ajpcell.1979.236.3.C139

    Article  CAS  Google Scholar 

  52. Anstee QM, Goldin RD (2006) Mouse models in non-alcoholic fatty liver disease and steatohepatitis research. Int J Exp Pathol 87:1–16. https://doi.org/10.1111/j.0959-9673.2006.00465.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Malhi H, Guicciardi ME, Gores GJ (2010) Hepatocyte death: a clear and present danger. Physiol Rev 90:1165–1194. https://doi.org/10.1152/physrev.00061.2009

    Article  CAS  PubMed  Google Scholar 

  54. Wang J, Zhu H, Liu X, Liu Z (2014) Oxidative stress and Ca2+ signals involved on cadmium-induced apoptosis in rat hepatocyte. Biol Trace Elem Res 161:180–189. https://doi.org/10.1007/s12011-014-0105-6

    Article  CAS  PubMed  Google Scholar 

  55. Pham TND, Marion M, Denizeau F, Jumarie C (2006) Cadmium-induced apoptosis in rat hepatocytes does not necessarily involve caspase-dependent pathways. Toxicol Vitr 20:1331–1342. https://doi.org/10.1016/j.tiv.2006.05.005

    Article  CAS  Google Scholar 

  56. Li Y, Lim SC (2007) Cadmium-induced apoptosis of hepatocytes is not associated with death receptor-related caspase-dependent pathways in the rat. Environ Toxicol Pharmacol 24:231–238. https://doi.org/10.1016/j.etap.2007.05.010

    Article  CAS  PubMed  Google Scholar 

  57. Torkzad MR, Norén A, Kullberg J (2012) Stereology: a novel technique for rapid assessment of liver volume. Insights Imaging 3:387–393. https://doi.org/10.1007/s13244-012-0166-z

    Article  PubMed  PubMed Central  Google Scholar 

  58. Fernandez CDB, Porto EM, Arena AC, Kempinas WDG (2008) Effects of altered epididymal sperm transit time on sperm quality. Int J Androl 31:427–437. https://doi.org/10.1111/j.1365-2605.2007.00788.x

    Article  PubMed  Google Scholar 

  59. Habeebu SS (2000) Metallothionein-null mice are more sensitive than wild-type mice to liver injury induced by repeated exposure to cadmium. Toxicol Sci 55:223–232. https://doi.org/10.1093/toxsci/55.1.223

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Bioclin Laboratories for kindly providing biochemical kits used in this work, and Enedina Sacramento for the English proofreading; this work was supported by Universidade Federal de Viçosa (UFV), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viviane Gorete Silveira Mouro.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mouro, V.G.S., Ladeira, L.C.M., Lozi, A.A. et al. Different Routes of Administration Lead to Different Oxidative Damage and Tissue Disorganization Levels on the Subacute Cadmium Toxicity in the Liver. Biol Trace Elem Res 199, 4624–4634 (2021). https://doi.org/10.1007/s12011-020-02570-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-020-02570-5

Keywords

Navigation