Skip to main content
Log in

Effects of Silver Nanoparticles on Hematological Parameters and Hepatorenal Functions in Laying Japanese Quails

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Silver nanoparticles (AgNPs) have recently emerged as a powerful agents for disinfection in the poultry industry. AgNPs are capable of epithelial barriers passing from the route of exposure to the vital organs and cells. This study evaluated the effects of AgNPs on organs weights, blood biochemical, hematological, and coagulation parameters, antioxidant enzyme activities, and histopathological changes and silver concentrations of liver and kidney tissues in laying Japanese quails after exposure to the nanoparticles. The layer quails were randomly assigned to 4 groups, consisting of six replicates, three quails each. The treatments included 0, 4, 8, and 12 mg/L of AgNPs in daily drinking water for 30 weeks. AgNPs decreased the relative weight of liver, ileum and large intestine (P < 0.05). Administration of AgNPs elevated plasma fibrinogen while decreased serum aspartate aminotransferase activity (P < 0.05). The antioxidant status of the liver showed that malondialdehyde level, an end product of lipid peroxidation, was higher (P < 0.05) and catalase activity was lower (P < 0.05) in the quails exposed to AgNPs. The accumulation of silver in the liver and kidney tissues were increased in a dose-dependent manner after exposure to AgNPs (P < 0.05). Histopathological findings showed reduced lipid vacuolization of hepatocytes in the 12 mg/L AgNPs treatment. In conclusion, the results indicated that AgNPs administration to drinking water can lead to oxidative stress and liver damage in laying quails which may be a predisposing for liver dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ahamed M, AlSalhi MS, Siddiqui MKJ (2010) Silver nanoparticle applications and human health. Clin Chim Acta 411:1841–1848. https://doi.org/10.1016/j.cca.2010.08.016

    Article  PubMed  CAS  Google Scholar 

  2. Ognik K, Cholewińska E, Czech A, Kozłowski K, Wlazło L, Nowakowicz-Dębek B, Szlązak R, Tutaj K (2016) Effect of silver nanoparticles on the immune, redox, and lipid status of chicken blood. Czech J Anim Sci 61:450–461. https://doi.org/10.17221/80/2015-CJAS

    Article  CAS  Google Scholar 

  3. Buzea C, Pacheco II, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2:17–172. https://doi.org/10.1116/1.2815690

    Article  Google Scholar 

  4. Kim YS, Kim JS, Cho HS, Rha DS, Kim JM, Park JD, Choi BS, Lim R, Chang HK, Chung YH, Kwon IH, Jeong J, Han BS, Yu IJ (2008) Twenty-eight-day oral toxicity, genotoxicity, and gender–related tissue distribution of silver nanoparticles in Sprague–Dawley rats. Inhal Toxicol 20:575–583. https://doi.org/10.1080/08958370701874663

    Article  PubMed  CAS  Google Scholar 

  5. Kim YS, Song MY, Park JD, Song KS, Ryu HR, Chung YH, Chang HK, Lee JH, Oh KH, Kelman BJ, Hwang IK, Yu IJ (2010) Subchronic oral toxicity of silver nanoparticles. Part Fibre Toxicol 7:1–11. https://doi.org/10.1186/1743-8977-7-20

    Article  CAS  Google Scholar 

  6. Jun EA, Lim KM, Kim K, Bae ON, Noh JY, Chung KH, Chung JH (2011) Silver nanoparticles enhance thrombus formation through increased platelet aggregation and procoagulant activity. Nanotoxicology 5:157–167. https://doi.org/10.3109/17435390.2010.506250

    Article  PubMed  CAS  Google Scholar 

  7. Tang J, Xiong L, Wang S, Wang J, Liu L, Li J, Yuan F, Xi T (2009) Distribution, translocation and accumulation of silver nanoparticles in rats. J Nanosci Nanotechnol 9:1–9. https://doi.org/10.1166/jnn.2009.1269

    Article  CAS  Google Scholar 

  8. Korani M, Rezayat SM, Gilani K, Arbabi Bidgoli S, Adeli S (2011) Acute and subchronic dermal toxicity of nanosilver in guinea pig. Int J Nanomedicine 6:855–861. https://doi.org/10.2147/IJN.S17065

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Ema M, Okuda H, Gamo M, Honda K (2017) A review of reproductive and developmental toxicity of silver nanoparticles in laboratory animals. Reprod Toxicol 67:149–164. https://doi.org/10.1016/j.reprotox.2017.01.005

    Article  PubMed  CAS  Google Scholar 

  10. Hussain MS, Hess KL, Gearhart JM, Geiss KT, Schlager JJ (2005) In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol in Vitro 19:975–983. https://doi.org/10.2147/IJN.S17065

    Article  PubMed  CAS  Google Scholar 

  11. Kim S, Choi JE, Choi J, Chung KH, Park K, Yi J, Ryu DY (2009) Oxidative stress–dependent toxicity of silver nanoparticles in human hepatoma cells. Toxicol in Vitro 23:1076–1084. https://doi.org/10.1016/j.tiv.2009.06.001

    Article  PubMed  CAS  Google Scholar 

  12. Tiwari DK, Jin T, Behari J (2010) Dose–dependent in–vivo toxicity assessment of silver nanoparticle in Wistar rats. Toxicol Mech Methods 21:13–24. https://doi.org/10.3109/15376516.2010.529184

    Article  PubMed  CAS  Google Scholar 

  13. van der Zende M, Vanderbriel RJ, Van Doren E et al (2012) Distribution, elimination, and toxicity of silver nanoparticles and silver ions in rats after 28–day oral exposure. ACS Nano 6:7427–7442. https://doi.org/10.1021/nn302649p

    Article  CAS  Google Scholar 

  14. Gaiser BK, Hirn S, Kermanizadeh A, Kanase N, Fytianos K, Wenk A, Haberl N, Brunelli A, Kreyling WG, Stone V (2013) Effects of silver nanoparticles on the liver and hepatocytes in vitro. Toxicol Sci 131:537–547. https://doi.org/10.1093/toxsci/kfs306

    Article  PubMed  CAS  Google Scholar 

  15. Milić M, Leitinger G, Pavičić I, Zebić Avdičević M, Dobrović S, Goessler W, Vinković Vrček I (2014) Cellular uptake and toxicity effects of silver nanoparticles in mammalian kidney cells. J Appl Toxicol 35:581–592. https://doi.org/10.1002/jat.3081

    Article  PubMed  CAS  Google Scholar 

  16. Alarifi A, Ali D, Al Ghurabi MA, Alkahtani S (2016) Determination of nephrotoxicity and genotoxic potential of silver nanoparticles in Swiss albino mice. Toxicol Environ Chem 99:294–301. https://doi.org/10.1080/02772248.2016.1175153

    Article  CAS  Google Scholar 

  17. AshaRani PV, Low Kah Mun G, Hande MP, Valiyaveettil S (2009) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3:279–290. https://doi.org/10.1021/nn800596w

    Article  PubMed  CAS  Google Scholar 

  18. Wu Y, Zhou Q (2013) Silver nanoparticles caused oxidative damage and histological changes in Medaka (Oryzias Latipes) after 14 days of exposure. Environ Toxicol Chem 32:165–173. https://doi.org/10.1002/etc.2038

    Article  PubMed  CAS  Google Scholar 

  19. Adeyemi OS, Adewumi I (2014) Biochemical evaluation of silver nanoparticles in Wistar rats. Int Sch Res Notices 2014:1–8. https://doi.org/10.1155/2014/196091

    Article  Google Scholar 

  20. Xin L, Wang J, Wu Y, Gue S, Tong J (2014) Increased oxidative stress and activated heat shock proteins in human cell lianes by silver nanoparticles. Hum Exp Toxicol 34:315–323. https://doi.org/10.1177/0960327114538988

    Article  PubMed  CAS  Google Scholar 

  21. Sawosz E, Binek M, Grodzik M, Zielinska M, Sysa P, Szmidt M, Niemiec T, Chwalibog A (2007) Influence of hydrocolloidal silver nanoparticles on gastrointestinal microflora and morphology of enterocytes of quails. Arch Anim Nutr 61:444–451. https://doi.org/10.1080/17450390701664314

    Article  PubMed  CAS  Google Scholar 

  22. Sawosz E, Grodzik M, Zielinska M, Niemiec T, Olszanska B, Chwalibog A (2009) Nanoparticles of silver do not affect growth, development and DNA oxidative damage in chicken embryos. Europ Poult Sci 73:208–216. doi: https://doi.org/10.1399/eps.2008.73.0

  23. Chmielowiec-Korzeniowska A, Tymczyna L, Dobrowolska M, Banach M, Nowakowicz-Dębek B, Bryl M, Drabik A, Tymczyna-Sobotka M, Kolejko M (2015) Silver (Ag) in tissues and eggshells, biochemical parameters and oxidative stress in chickens. Open Chem 13:1269–1274. https://doi.org/10.1515/chem-2015-0140

    Article  CAS  Google Scholar 

  24. National Research Council (1994) Nutrient requirements of poultry, 9th edn. National Academy Press, Washington DC

    Google Scholar 

  25. Rahman Nia J (2009) Preparation of colloidal nanosilver. US Patent application docket 20090013825, 15 January 2009

  26. Cherian G, Holsonbake TB, Goeger MP, Bildfell R (2002) Dietary CLA alters yolk and tissue FA composition and hepatic histopathology of laying hens. Lipids 37:751–757. https://doi.org/10.1007/s11745-002-0957-4

    Article  PubMed  CAS  Google Scholar 

  27. Wan AT, Conyers RA, Coombos CJ, Masterton JP (1991) Determination of silver in blood, urine, and tissues of volunteers and burn patients. Clin Chem 37:1683–1687. https://doi.org/10.0000/PMID1914165

    Article  PubMed  CAS  Google Scholar 

  28. Campbell TW (1988) Avian hematology and cytology. Iowa State University Press, Ames

    Google Scholar 

  29. Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47:469–474. https://doi.org/10.1111/j.1432-1033.1974.tb03714.x

    Article  PubMed  CAS  Google Scholar 

  30. Pagila DE, Valentine WNJ (1967) Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 70:158–169

    Google Scholar 

  31. Satoh K (1978) Serum lipid peroxide in cerebrovascular disorders determined by a new colorimetric method. Clin Chim Acta 90:37–43. https://doi.org/10.1016/0009-8981(78)90081-5

    Article  PubMed  CAS  Google Scholar 

  32. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    Article  PubMed  CAS  Google Scholar 

  33. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126. https://doi.org/10.1016/S0076-6879(84)05016-3

    Article  PubMed  CAS  Google Scholar 

  34. SAS Institute (2003) SAS Users Guide. Version 9.1 reviews. SAS Institute Inc, Cary

    Google Scholar 

  35. Loeschner K, Hadrup N, Qvortup K, Larsen A, Gao X, Vogel U, Mortensen A, Lam HR, Larsen EH (2011) Distribution of silver in rats following 28 days of repeated oral exposure to silver nanoparticles or silver acetate. Part Fibre Toxicol 8:1–14. https://doi.org/10.1186/1743-8977-8-18

    Article  CAS  Google Scholar 

  36. Jeong GN, Jo UB, Ryo HY, Kim YS, Song KS, Yu IJ (2010) Histochemical study of intestinal mucins after administration of silver nanoparticles in Sprague–Dawley rats. Arch Toxicol 84:63–69. https://doi.org/10.1007/s00204-009-0469-0

    Article  PubMed  CAS  Google Scholar 

  37. Williams K, Milner J, Boudreau MD, Gokulan K, Cerniglia CE, Khare S (2014) Effects of subchronic exposure of silver nanoparticles on intestinal microbiota and gut–associated immune responses in the ileum of Sprague–Dawley rats. Nanotoxicology 9:279–289. https://doi.org/10.3109/17435390.2014.921346

    Article  PubMed  CAS  Google Scholar 

  38. Williams KM, Gokulan K, Cerniglia CE, Khare S (2016) Size and dose dependent effects of silver nanoparticle exposure on intestinal permeability in an in vitro model of the human gut epithelium. J Nanobiotechnology 14:1–13. https://doi.org/10.1186/s12951-016-0214-9

    Article  CAS  Google Scholar 

  39. Böhmert L, Niemann B, Lichtenstein D, Juling S, Lampen A (2015) Molecular mechanism of silver nanoparticles in human intestinal cells. Nanotoxicology 9:852–860. https://doi.org/10.3109/17435390.2014.980760

    Article  PubMed  CAS  Google Scholar 

  40. Shahare B, Yashpal M, Singh G (2013) Toxic effects of repeated oral exposure of silver nanoparticles on small intestine mucosa of mice. Toxicol Mech Methods 23:161–167. https://doi.org/10.3109/15376516.2013.764950

    Article  PubMed  CAS  Google Scholar 

  41. Harr KE (2002) Clinical chemistry of companion avian species: a review. Vet Clin Pathol 31:140–151. https://doi.org/10.1111/j.1939-165x.2002.tb00295.x

    Article  PubMed  Google Scholar 

  42. Sulaiman FA, Adeyemi OS, Akanji MA, Oloyede HOB, Sulaiman AA, Olatunde A, Hoseni AA, Olowolafe YV, Nlebedim RN, Muritala H, Nafiu MO, Salawu MO (2015) Biochemical and morphological alterations caused by silver nanoparticles in Wistar rats. J Acute Med 5:96–102. https://doi.org/10.1016/j.jacme.2015.09.005

    Article  Google Scholar 

  43. Huang H, Lai W, Cui M, Liang L, Lin Y, Fang Q, Liu Y, Xie L (2016) An evaluation of blood compatibility of silver nanoparticles. Sci Rep 6:1–15. https://doi.org/10.1038/srep25518

    Article  CAS  Google Scholar 

  44. Martínez-Gutierrez F, Thi EP, Silverman JM, de Oliveira CC, Svensson SL, Hoek AV, Sánchez EM, Reiner NE, Gaynor EC, Pryzdial ELG, Conway EM, Orrantia E, Ruiz F, Av-Gay Y, Bach H (2012) Antibacterial activity, inflammatory response, coagulation and cytotoxicity effects of silver nanoparticles. Nanomedicine 8:328–336. https://doi.org/10.1016/j.nano.2011.06.014

    Article  PubMed  CAS  Google Scholar 

  45. Laloy J, Minet V, Alpan L, Mullier F, Beken S, Toussaint O, Lucas S, Dogné JM (2014) Impact of silver nanoparticles on haemolysis, platelet function and coagulation. Nano 4:1–9. https://doi.org/10.5772/59346

    Article  Google Scholar 

  46. Ilinskaya AN, Dobrovolskaia MA (2013) Nanoparticles and the blood coagulation system. Part II: safety concerns. Nanomedicine 8:969–981. https://doi.org/10.2217/nnm. 13.49

  47. Jiang L, Li Y, Li Y, Guo C, Yu Y, Zou Y, Yang Y, Yu Y, Duan J, Geng W, Li Q, Sun Z (2015) Silica nanoparticles induced the pre–thrombotic state in rats via activation of coagulation factor XII and the JNK-NF-κB/AP-1 pathway. Toxicol Res 4:1453–1464. https://doi.org/10.1039/c5tx00118h

    Article  CAS  Google Scholar 

  48. Julian RJ (2005) Production and growth related disorders and other metabolic diseases of poultry—a review. Vet J 169:350–369. https://doi.org/10.1016/j.tvjl.2004.04.015

    Article  PubMed  CAS  Google Scholar 

  49. Adeyemi OS, Faniyan TO (2014) Antioxidant status of rats administered silver nanoparticles orally. J Taibah Univ Sci 9:182–186. https://doi.org/10.1016/j.jtumed.2014.03.002

    Article  Google Scholar 

  50. Sung JH, Ji JH, Park JD, Yoon JU, Kim DS, Jeon KS, Song MY, Jeong J, Han BS, Han JH, Chung YH, Chang HK, Lee JH, Cho MH, Kelman BJ, Yu IJ (2009) Subchronic inhalation toxicity of silver nanoparticles. Toxicol Sci 108:452–461. https://doi.org/10.1093/toxsci/kfn246

    Article  PubMed  CAS  Google Scholar 

  51. Genter MB, Newman NC, Shertzer HG, Ali SF, Bolon B (2012) Distribution and systemic effects of intranasally administered 25 nm silver nanoparticles in adult mice. Toxicol Patol 40:1004–1013. https://doi.org/10.1177/0192623312444470

    Article  CAS  Google Scholar 

  52. Riddell C (1987) Avian histopathology. American Association of Avian Pathologists, Philadelphia, PA

  53. Park EJ, Bae E, Yi J, Kim Y, Choi K, Lee SH, Yoon J, Lee BC, Park K (2010) Repeated–dose toxicity and inflammatory responses in mice by oral administration of silver nanoparticles. Environ Toxicol Pharmacol 30:162–168. https://doi.org/10.1016/j.etap.2010.05.004

    Article  PubMed  CAS  Google Scholar 

  54. Jia J, Li F, Zhou H, Bai Y, Liu S, Jiang Y, Jiang G, Yan B (2017) Oral exposure to silver nanoparticles or silver ions may aggravate fatty liver disease in overweight mice. Environ Sci Technol 51:9334–9343. https://doi.org/10.1021/acs.est.7b02752

    Article  PubMed  CAS  Google Scholar 

  55. Farzinpour A, Karashi N (2013) The effects of nano–silver on egg quality traits in laying Japanese quail. Appl Nanosci 3:95–99. https://doi.org/10.1007/s13204-012-0097-5

    Article  CAS  Google Scholar 

  56. Fournier E, Peresson P, Guy G, Hermier D (1997) Relationships between storage and secretion of hepatic lipids in two breeds of geese with different susceptibility to liver steatosis. Poult Sci 76:599–607. https://doi.org/10.1093/ps/76.4.599

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to appreciate University of Kurdistan and Iranian Nanotechnology Initiative Council for financial supports of this research. This work would not have been completed without the support of the Nano Nasb Pars Company, Tehran, Iran, for TEM and DLS examinations to characterize the applied AgNPs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amjad Farzinpour.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezaei, A., Farzinpour, A., Vaziry, A. et al. Effects of Silver Nanoparticles on Hematological Parameters and Hepatorenal Functions in Laying Japanese Quails. Biol Trace Elem Res 185, 475–485 (2018). https://doi.org/10.1007/s12011-018-1267-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-018-1267-4

Keywords

Navigation