Skip to main content
Log in

Cuminaldehyde and Tobramycin Forestall the Biofilm Threats of Staphylococcus aureus: A Combinatorial Strategy to Evade the Biofilm Challenges

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Staphylococcus aureus, an opportunistic Gram-positive pathogen, is known for causing various infections in humans, primarily by forming biofilms. The biofilm-induced antibiotic resistance has been considered a significant medical threat. Combinatorial therapy has been considered a reliable approach to combat antibiotic resistance by using multiple antimicrobial agents simultaneously, targeting bacteria through different mechanisms of action. To this end, we examined the effects of two molecules, cuminaldehyde (a natural compound) and tobramycin (an antibiotic), individually and in combination, against staphylococcal biofilm. Our experimental observations demonstrated that cuminaldehyde (20 μg/mL) in combination with tobramycin (0.05 μg/mL) exhibited efficient reduction in biofilm formation compared to their individual treatments (p < 0.01). Additionally, the combination showed an additive interaction (fractional inhibitory concentration value 0.66) against S. aureus. Further analysis revealed that the effective combination accelerated the buildup of reactive oxygen species (ROS) and increased the membrane permeability of the bacteria. Our findings also specified that the cuminaldehyde in combination with tobramycin efficiently reduced biofilm-associated pathogenicity factors of S. aureus, including fibrinogen clumping ability, hemolysis property, and staphyloxanthin production. The selected concentrations of tobramycin and cuminaldehyde demonstrated promising activity against the biofilm development of S. aureus on catheter models without exerting antimicrobial effects. In conclusion, the combination of tobramycin and cuminaldehyde presented a successful strategy for combating staphylococcal biofilm-related healthcare threats. This combinatorial approach holds the potential for controlling biofilm-associated infections caused by S. aureus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets generated during the current study may be available from the corresponding author on reasonable request.

Code Availability

Software Minitab 19 (trial version) was used for the present study.

References

  1. Gebreyohannes, G., Nyerere, A., Bii, C., & Sbhatu, D. B. (2019). Challenges of intervention, treatment, and antibiotic resistance of biofilm-forming microorganisms. Heliyon, 5(8)

  2. Chakraborty, P., Dastidar, D. G., Paul, P., Dutta, S., Basu, D., Sharma, S. R., & Tribedi, P. (2020). Inhibition of biofilm formation of Pseudomonas aeruginosa by caffeine: a potential approach for sustainable management of biofilm. Arch Microbiol, 202, 623–635.

    Article  CAS  PubMed  Google Scholar 

  3. Khan, F., Lee, J. W., Pham, D. T. N., Lee, J. H., Kim, H. W., Kim, Y. K., & Kim, Y. M. (2020). Streptomycin mediated biofilm inhibition and suppression of virulence properties in Pseudomonas aeruginosa PAO1. Applied Microbiology and Biotechnology, 104, 799–816.

    Article  CAS  PubMed  Google Scholar 

  4. Gupta, P., Sarkar, S., Das, B., Bhattacharjee, S., & Tribedi, P. (2016). Biofilm, pathogenesis and prevention—a journey to break the wall: A review. Archives of Microbiology, 198, 1–15.

    Article  CAS  PubMed  Google Scholar 

  5. Paul, P., Roy, R., Das, S., Sarkar, S., Chatterjee, S., Mallik, M., & Tribedi, P. (2023). The combinatorial applications of 1, 4-naphthoquinone and tryptophan inhibit the biofilm formation of Staphylococcus aureus. Folia Microbiologica, 68(5), 801–11.

    Article  CAS  PubMed  Google Scholar 

  6. Goel, N., Fatima, S. W., Kumar, S., Sinha, R., & Khare, S. K. (2021). Antimicrobial resistance in biofilms: Exploring marine actinobacteria as a potential source of antibiotics and biofilm inhibitors. Biotechnology Reports, 30, e00613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Percival, S. L., Emanuel, C., Cutting, K. F., & Williams, D. W. (2012). Microbiology of the skin and the role of biofilms in infection. International Wound Journal, 9(1), 14–32.

    Article  PubMed  Google Scholar 

  8. Moreira, C. S., Silva, A. C. J. A., Novais, J. S., Sá Figueiredo, A. M., Ferreira, V. F., Da Rocha, D. R., & Castro, H. C. (2017). Searching for a potential antibacterial lead structure against bacterial biofilms among new naphthoquinone compounds. Journal of Applied Microbiology, 122(3), 651–662.

    Article  CAS  PubMed  Google Scholar 

  9. Das, S., Roy, R., Paul, P., Chakraborty, P., Chatterjee, S., Malik, M., & Tribedi, P. (2023). Piperine, a plant alkaloid, exhibits efficient disintegration of the pre-existing biofilm of Staphylococcus aureus: a step towards effective management of biofilm threats. Applied Biochemistry and Biotechnology, 196(3), 1272–91.

    Article  PubMed  Google Scholar 

  10. Askoura, M., Yousef, N., Mansour, B., & Yehia, F. A. Z. A. (2022). Antibiofilm and staphyloxanthin inhibitory potential of terbinafine against Staphylococcus aureus: In vitro and in vivo studies. Annals of Clinical Microbiology and Antimicrobials, 21(1), 1–17.

    Article  Google Scholar 

  11. Paul, P., Das, S., Chatterjee, S., Shukla, A., Chakraborty, P., Sarkar, S., & Tribedi, P. (2021). 1, 4-Naphthoquinone disintegrates the pre-existing biofilm of Staphylococcus aureus by accumulating reactive oxygen species. Archives of Microbiology, 203, 4981–4992.

    Article  CAS  PubMed  Google Scholar 

  12. Das, S., Paul, P., Chatterjee, S., Chakraborty, P., Sarker, R. K., Das, A., & Tribedi, P. (2022). Piperine exhibits promising antibiofilm activity against Staphylococcus aureus by accumulating reactive oxygen species (ROS). Archives of Microbiology, 204(1), 59.

    Article  CAS  Google Scholar 

  13. Monteiro-Neto, V., de Souza, C. D., Gonzaga, L. F., da Silveira, B. C., Sousa, N. C., Pontes, J. P., & Fernandes, E. S. (2020). Cuminaldehyde potentiates the antimicrobial actions of ciprofloxacin against Staphylococcus aureus and Escherichia coli. PLoS One, 15(5), e0232987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Waryah, C. B., Gogoi-Tiwari, J., Wells, K., Eto, K. Y., Masoumi, E., Costantino, P., & Mukkur, T. (2016). Diversity of virulence factors associated with West Australian methicillin-sensitive Staphylococcus aureus isolates of human origin. BioMed Research International, 2016, 8651918.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Murugaiyan, J., Kumar, P. A., Rao, G. S., Iskandar, K., Hawser, S., Hays, J. P., & van Dongen, M. B. (2022). Progress in alternative strategies to combat antimicrobial resistance: focus on antibiotics. Antibiotics, 11(2), 200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chatterjee, S., Das, S., Paul, P., Chakraborty, P., Sarkar, S., Das, A., & Tribedi, P. (2023). Synergistic interaction of tobramycin and cuminaldehyde: A potential strategy for the efficient management of biofilm caused by Pseudomonas aeruginosa. Folia Microbiologica, 68(1), 151–163.

    Article  CAS  PubMed  Google Scholar 

  17. Lowry, O., Rosebrough, N., Farr, A. L., & Randall, R. (1951). Protein measurement with the Folin phenol reagent. J BiolChem., 193(1), 265–275.

    CAS  Google Scholar 

  18. Hobley, L., Harkins, C., MacPhee, C. E., & Stanley-Wall, N. R. (2015). Giving structure to the biofilm matrix: an overview of individual strategies and emerging common themes. FEMS Microbiology Reviews, 39(5), 649–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dubios, M., Gilles, K., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Phenol sulphuric acid calorimetric estimation of carbohydrates. Analytical Chemistry, 28(3), 350–356.

    Google Scholar 

  20. Das, T., Sehar, S., & Manefield, M. (2013). The roles of extracellular DNA in the structural integrity of extracellular polymeric substance and bacterial biofilm development. Environmental Microbiology Reports, 5(6), 778–786.

    Article  CAS  PubMed  Google Scholar 

  21. Sahu, P. K., Iyer, P. S., Oak, A. M., Pardesi, K. R., & Chopade, B. A. (2012). Characterization of eDNA from the clinical strain Acinetobacter baumannii AIIMS 7 and its role in biofilm formation. The Scientific World Journal, 2012, 973436.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Chakraborty, P., Paul, P., Kumari, M., Bhattacharjee, S., Singh, M., Maiti, D., & Tribedi, P. (2021). Attenuation of Pseudomonas aeruginosa biofilm by thymoquinone: an individual and combinatorial study with tetrazine-capped silver nanoparticles and tryptophan. Microbiologica, 66, 255–271.

    CAS  Google Scholar 

  23. Bouyahya, A., Abrini, J., Dakka, N., & Bakri, Y. (2019). Essential oils of Origanum compactum increase membrane permeability, disturb cell membrane integrity, and suppress quorum-sensing phenotype in bacteria. Journal of Pharmaceutical Analysis, 9(5), 301–311.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Choi, N. Y., Bae, Y. M., & Lee, S. Y. (2015). Cell surface properties and biofilm formation of pathogenic bacteria. Food Science and Biotechnology, 24, 2257–2264.

    Article  CAS  Google Scholar 

  25. Chakraborty, P., & Tribedi, P. (2019). Functional diversity performs a key role in the isolation of nitrogen-fixing and phosphate-solubilizing bacteria from soil. Folia Microbiologica, 64(3), 461–470.

    Article  CAS  PubMed  Google Scholar 

  26. Chakraborty, P., Joardar, S., Ray, S., Biswas, P., Maiti, D., & Tribedi, P. (2018). 3, 6-Di (pyridin-2-yl)-1, 2, 4, 5-tetrazine (pytz)-capped silver nanoparticles (TzAgNPs) inhibit biofilm formation of Pseudomonas aeruginosa: A potential approach toward breaking the wall of biofilm through reactive oxygen species (ROS) generation. Folia Microbiologica, 63, 763–772.

    Article  CAS  PubMed  Google Scholar 

  27. Sullivan, L. E., & Rice, K. C. (2021). Measurement of Staphylococcus aureus pigmentation by methanol extraction. In Staphylococcus aureus (pp. 1–7) Humana, New York, NY

  28. Ridder, M. J., Daly, S. M., Hall, P. R., & Bose, J. L. (2021). Quantitative hemolysis assays. Staphylococcus aureus: In Staphylococcus aureus 2021 (pp. 25–30). Humana, New York, NY

  29. Crosby HA, Kwiecinski JM, Horswill AR. In vitro assay for quantifying clumping of Staphylococcus aureus. In Staphylococcus aureus 2021 (pp. 31–36). Humana, New York, NY

  30. Tyers, M., & Wright, G. D. (2019). Drug combinations: A strategy to extend the life of antibiotics in the 21st century. Nature Reviews Microbiology, 17(3), 141–155.

    Article  CAS  PubMed  Google Scholar 

  31. Kwiatkowski, P., Łopusiewicz, Ł, Pruss, A., Kostek, M., Sienkiewicz, M., Bonikowski, R., & Dołęgowska, B. (2020). Antibacterial activity of selected essential oil compounds alone and in combination with β-lactam antibiotics against MRSA strains. International Journal of Molecular Sciences, 21(19), 7106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kumar, S. N., Siji, J. V., Nambisan, B., & Mohandas, C. (2012). Activity and synergistic interactions of stilbenes and antibiotic combinations against bacteria in vitro. World Journal of Microbiology & Biotechnology, 28, 3143–3150.

    Article  CAS  Google Scholar 

  33. Weinstein, Z. B., Kuru, N., Kiriakov, S., Palmer, A. C., Khalil, A. S., Clemons, P. A., & Cokol, M. (2018). Modeling the impact of drug interactions on therapeutic selectivity. Nat Commun, 9(1), 3452.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ciofu, O., Moser, C., Jensen, P. Ø., & Høiby, N. (2022). Tolerance and resistance of microbial biofilms. Nature Reviews Microbiology, 20(10), 621–635.

    Article  CAS  PubMed  Google Scholar 

  35. Chang, R. Y. K., Nang, S. C., Chan, H. K., & Li, J. (2022). Novel antimicrobial agents for combating antibiotic-resistant bacteria. Advanced Drug Delivery Reviews, 187, 114378.

    Article  CAS  PubMed  Google Scholar 

  36. Chatterjee, S., Paul, P., Chakraborty, P., Das, S., Sarker, R. K., Sarkar, S., & Tribedi, P. (2021). Cuminaldehyde exhibits potential antibiofilm activity against Pseudomonas aeruginosa involving reactive oxygen species (ROS) accumulation: a way forward towards sustainable biofilm management. 3 Biotech, 11(11), 485.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Shivaprasad, D. P., Taneja, N. K., Lakra, A., & Sachdev, D. (2021). In vitro and in situ abrogation of biofilm formation in E. coli by vitamin C through ROS generation, disruption of quorum sensing and exopolysaccharide production. Food Chemistry, 341, 128171.

    Article  CAS  PubMed  Google Scholar 

  38. Jacques, M., Aragon, V., & Tremblay, Y. D. (2010). Biofilm formation in bacterial pathogens of veterinary importance. Animal Health Research Reviews, 11(2), 97–121.

    Article  PubMed  Google Scholar 

  39. Liu, Y., Yang, S. F., Tay, J. H., Liu, Q. S., Qin, L., & Li, Y. (2004). Cell hydrophobicity is a triggering force of biogranulation. Enyzme and Microbial Technology, 34(5), 371–379.

    Article  CAS  Google Scholar 

  40. Arciola, C. R., Campoccia, D., Ravaioli, S., & Montanaro, L. (2015). Polysaccharide intercellular adhesin in biofilm: Structural and regulatory aspects. Frontiers in Cellular and Infection Microbiology, 10(5), 7.

    Google Scholar 

  41. De la Fuente-Núñez, C., Reffuveille, F., Fernández, L., & Hancock, R. E. (2013). Bacterial biofilm development as a multicellular adaptation: Antibiotic resistance and new therapeutic strategies. Current Opinion in Microbiology, 16(5), 580–589.

    Article  PubMed  Google Scholar 

  42. Haley, K. P., & Skaar, E. P. (2012). A battle for iron: Host sequestration and Staphylococcus aureus acquisition. Microbes and Infection, 14(3), 217–227.

    Article  CAS  PubMed  Google Scholar 

  43. Liu, C., Zhao, Y., Su, W., Chai, J., Xu, L., Cao, J., & Liu, Y. (2020). Encapsulated DNase improving the killing efficiency of antibiotics in staphylococcal biofilms. J Mater Chem. B., 8(20), 4395–4401.

    Article  CAS  PubMed  Google Scholar 

  44. Zheng, Y., He, L., Asiamah, T. K., & Otto, M. (2018). Colonization of medical devices by staphylococci. Environmental Microbiology, 20(9), 3141–3153.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors would like to thank The Neotia University for providing the financial assistance through sanctioning minor grant (R&D/2020/F2) in carrying out the shared research activity.

Author information

Authors and Affiliations

Authors

Contributions

RR, PP, PC, MM, SD, SC, AM, MD, RKS, SS, and ADG performed the experiments, analyzed the results, and wrote the manuscript. PT conceived the idea, designed the experiments, and analyzed the results.

Corresponding author

Correspondence to Prosun Tribedi.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 176 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, R., Paul, P., Chakraborty, P. et al. Cuminaldehyde and Tobramycin Forestall the Biofilm Threats of Staphylococcus aureus: A Combinatorial Strategy to Evade the Biofilm Challenges. Appl Biochem Biotechnol (2024). https://doi.org/10.1007/s12010-024-04914-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12010-024-04914-6

Keywords

Navigation