Skip to main content

Advertisement

Log in

Polyethylene Glycol–Based Polymer-Drug Conjugates: Novel Design and Synthesis Strategies for Enhanced Therapeutic Efficacy and Targeted Drug Delivery

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Due to their potential to enhance therapeutic results and enable targeted drug administration, polymer-drug conjugates that use polyethylene glycol (PEG) as both the polymer and the linker for drug conjugation have attracted much research. This study seeks to investigate recent developments in the design and synthesis of PEG-based polymer-drug conjugates, emphasizing fresh ideas that fill in existing knowledge gaps and satisfy the increasing need for more potent drug delivery methods. Through an extensive review of the existing literature, this study identifies key challenges and proposes innovative strategies for future investigations. The paper presents a comprehensive framework for designing and synthesizing PEG-based polymer-drug conjugates, including rational molecular design, linker selection, conjugation methods, and characterization techniques. To further emphasize the importance and adaptability of PEG-based polymer-drug conjugates, prospective applications are highlighted, including cancer treatment, infectious disorders, and chronic ailments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Not applicable.

Abbreviations

PEG:

Poly ethylene glycol

PDC:

Polymer Drug conjugates

DSPE-PEG:

1,2-Distearyl-sn-glycero-3-phosphoethanolamine-Poly(ethylene glycol)

SiRNA:

Small interfering RNA

PEG-PCL:

Poly(ethylene glycol)-Poly(ε-caprolactone)copolymers

RNA:

Ribonucleic acid

DNA:

Deoxy ribonucleic acid

PEG-PLA:

Poly(ethylene glycol)-polyactide-poly(ethylene glycol)

References

  1. Liechty, W. B., Kryscio, D. R., Slaughter, B. V., & Peppas, N. A. (2010). Polymers for drug delivery systems. Annual Review of Chemical and Biomolecular Engineering, 1, 149–173. https://doi.org/10.1146/ANNUREV-CHEMBIOENG-073009-100847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Larson, N., & Ghandehari, H. (2012). Polymeric conjugates for drug delivery. Chemistry of Materials: A Publication of the American Chemical Society, 24(5), 840. https://doi.org/10.1021/CM2031569

    Article  CAS  PubMed  Google Scholar 

  3. Thakor, P., Bhavana, V., Sharma, R., Srivastava, S., Singh, S. B., & Mehra, N. K. (2020). Polymer–drug conjugates recent advances and future perspectives. Drug Discovery Today, 25(9), 1718–1726. https://doi.org/10.1016/J.DRUDIS.2020.06.028

    Article  CAS  PubMed  Google Scholar 

  4. Negut, I., & Bita, B. (2023). Polymeric Micellar Systems—A special emphasis on Smart. Drug Delivery Pharmaceutics, 15(976), 1–49. https://doi.org/10.3390/pharmaceutics15030976

    Article  CAS  Google Scholar 

  5. Greenwald, R. B., Conover, C. D., & Choe, Y. H. (2000). Poly(ethylene glycol) conjugated drugs and prodrugs: A comprehensive review. Critical Reviews in Therapeutic Drug Carrier Systems, 17(2), 61–101. Retrieved from https://pubmed.ncbi.nlm.nih.gov/10820646/

  6. Milton Harris, J., & Chess, R. B. (2003). Effect of pegylation on pharmaceuticals. Nature Reviews Drug Discovery, 2(3), 214–221. https://doi.org/10.1038/nrd1033

  7. Torchilin, V. P. (2001). Structure and design of polymeric surfactant-based drug delivery systems. Journal of Controlled Release, 73(2–3), 137–172. https://doi.org/10.1016/S0168-3659(01)00299-1

    Article  CAS  PubMed  Google Scholar 

  8. Kumari, A., Yadav, S. K., & Yadav, S. C. (2010). Biodegradable polymeric nanoparticle-based based drug delivery systems. Colloids and Surfaces B Biointerfaces, 75(1), 1–18. https://doi.org/10.1016/J.COLSURFB.2009.09.001

    Article  CAS  PubMed  Google Scholar 

  9. Veronese, F. M., & Pasut, G. (2005). PEGylation, successful approach to drug delivery. Drug Discovery Today, 10(21), 1451–1458. https://doi.org/10.1016/S1359-6446(05)03575-0

    Article  CAS  PubMed  Google Scholar 

  10. Ibeanu, N., Egbu, R., Onyekuru, L., Javaheri, H., Khaw, P. T., Williams, G. R., … Awwad, S. (2020). Injectables and depots to prolong drug action of proteins and peptides. Pharmaceutics, 12(10), 1–42. https://doi.org/10.3390/PHARMACEUTICS12100999

  11. Kratz, F. (2008). Albumin as a drug carrier: Design of prodrugs, drug conjugates and nanoparticles. Journal of Controlled Release: Official Journal of the Controlled Release Society, 132(3), 171–183. https://doi.org/10.1016/J.JCONREL.2008.05.010

    Article  CAS  PubMed  Google Scholar 

  12. Moghimi, S. M., Hunter, A. C., & Murray, J. C. (2001). Long-circulating and target-specific nanoparticles: Theory to practice. Pharmacological Reviews, 53(2), 283–318. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11356986

  13. Duncan, R. (2014). Polymer therapeutics: Top 10 selling pharmaceuticals - what next? Journal of Controlled Release: Official Journal of the Controlled Release Society, 190, 371–380. https://doi.org/10.1016/J.JCONREL.2014.05.001

    Article  CAS  PubMed  Google Scholar 

  14. Torchilin, V. P. (2010). Passive and active drug targeting: Drug delivery to tumours as an example. Handbook of Experimental Pharmacology, 197(197), 3–53. https://doi.org/10.1007/978-3-642-00477-3_1

    Article  CAS  Google Scholar 

  15. Peer, D., Karp, J. M., Hong, S., Farokhzad, O. C., Margalit, R., & Langer, R. (2007). Nanocarriers as an emerging platform for cancer therapy. Nature Nanotechnology, 2(12), 751–760. https://doi.org/10.1038/NNANO.2007.387

    Article  CAS  PubMed  Google Scholar 

  16. Shi, J., Kantoff, P. W., Wooster, R., & Farokhzad, O. C. (2017). Cancer nanomedicine: Progress, challenges and opportunities. Nature Reviews Cancer, 17(1), 20–37. https://doi.org/10.1038/nrc.2016.108

    Article  CAS  PubMed  Google Scholar 

  17. Feng, Q., & Tong, R. (2016). Anticancer nanoparticulate polymer-drug conjugate. Bioengineering & Translational Medicine, 1(3), 277–296. https://doi.org/10.1002/btm2.10033

    Article  CAS  Google Scholar 

  18. Duncan, R. (2003). The dawning era of polymer therapeutics. Nature Reviews Drug Discovery, 2(5), 347–360. https://doi.org/10.1038/NRD1088

    Article  CAS  PubMed  Google Scholar 

  19. Anselmo, A. C., & Mitragotri, S. (2016). Nanoparticles in the clinic. Bioengineering & Translational Medicine, 1(1), 10–29. https://doi.org/10.1002/btm2.10003

    Article  Google Scholar 

  20. Etrych, T., Šubr, V., Laga, R., Říhová, B., & Ulbrich, K. (2014). Polymer conjugates of doxorubicin bound through an amide and hydrazone bond: Impact of the carrier structure onto synergistic action in the treatment of solid tumours. European Journal of Pharmaceutical Sciences, 58, 1–12. https://doi.org/10.1016/j.ejps.2014.02.016

    Article  CAS  PubMed  Google Scholar 

  21. Maeda, H. (2001). The enhanced permeability and retention (EPR) effect in tumour vasculature: The key role of tumor-selective macromolecular drug targeting. Advances in Enzyme Regulation, 41(1), 189–207. https://doi.org/10.1016/S0065-2571(00)00013-3

    Article  CAS  PubMed  Google Scholar 

  22. Dozier, J. K., & Distefano, M. D. (2015). Site-specific PEGylation of therapeutic proteins. International Journal of Molecular Sciences, 16(10), 25831–25864. https://doi.org/10.3390/IJMS161025831

  23. Zelphati, O., Wang, Y., Kitada, S., Reed, J. C., Felgner, P. L., & Corbeil, J. (2001). Intracellular delivery of proteins with a new lipid-mediated delivery system. Journal of Biological Chemistry, 276(37), 35103–35110. https://doi.org/10.1074/JBC.M104920200

    Article  CAS  PubMed  Google Scholar 

  24. Lee, E. S., Oh, K. T., Kim, D., Youn, Y. S., & Bae, Y. H. (2007). Tumor pH-responsive flower-like micelles of poly(l-lactic acid)-b-poly(ethylene glycol)-b-poly(l-histidine). Journal of Controlled Release, 123(1), 19–26. https://doi.org/10.1016/J.JCONREL.2007.08.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Polyak, D., Eldar-Boock, A., Baabur-Cohen, H., & Satchi-Fainaro, R. (2013). Polymer conjugates for focal and targeted delivery of drugs. Polymers for Advanced Technologies, 24(9), 777–790. https://doi.org/10.1002/PAT.3158

    Article  CAS  Google Scholar 

  26. Tsuchikama, K., & An, Z. (2018). Antibody-drug conjugates recent advances in conjugation and linker chemistries. Protein & Cell, 9(1), 33–46. https://doi.org/10.1007/s13238-016-0323-0

    Article  CAS  Google Scholar 

  27. Duncan, R., Vicent, M. J., Greco, F., & Nicholson, R. I. (2005). Polymer-drug conjugates: Towards a novel approach for the treatment of endocrine-related cancer. Endocrine-Related Cancer, 12(SUPPL. 1), 189–199. https://doi.org/10.1677/erc.1.01045

  28. Aldewachi, H., Al-Zidan, R. N., Conner, M. T., & Salman, M. M. (2021). High-throughput screening platforms in the Discovery of Novel drugs for neurodegenerative diseases. Bioengineering, 8(2), 30. https://doi.org/10.3390/bioengineering8020030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Begines, B., Ortiz, T., Pérez-Aranda, M., Martínez, G., Merinero, M., Argüelles-Arias, F., & Alcudia, A. (2020). Polymeric nanoparticles for drug delivery: Recent developments and future prospects. Nanomaterials, 10(7), 1403(1–38). https://doi.org/10.3390/nano10071403

  30. Auriemma, G., Russo, P., Del Gaudio, P., García-González, C. A., Landín, M., & Aquino, R. P. (2020). Technologies and formulation design of polysaccharide-based hydrogels for drug delivery. Molecules, 25(14), 3156. https://doi.org/10.3390/molecules25143156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lallana, E., Sousa-Herves, A., Fernandez-Trillo, F., Riguera, R., & Fernandez-Megia, E. (2011). Click chemistry for drug delivery nanosystems. Pharmaceutical Research, 29:1(1), 1–34. https://doi.org/10.1007/S11095-011-0568-5

    Article  Google Scholar 

  32. Javia, A., Vanza, J., Bardoliwala, D., Ghosh, S., Misra, L. A., Patel, M., & Thakkar, H. (2022). Polymer-drug conjugates design principles, emerging synthetic strategies and clinical overview. International Journal of Pharmaceutics, 623, 121863. https://doi.org/10.1016/J.IJPHARM.2022.121863

    Article  CAS  PubMed  Google Scholar 

  33. Li, J., & Kao, W. J. (2003). Synthesis of polyethylene glycol (PEG) derivatives and PEGylated - peptide biopolymer conjugates. Biomacromolecules, 4(4), 1055–1067. https://doi.org/10.1021/BM034069L

    Article  CAS  PubMed  Google Scholar 

  34. Kharkar, P. M., Rehmann, M. S., Skeens, K. M., Maverakis, E., & Kloxin, A. M. (2016). Thiol-ene click hydrogels for therapeutic delivery. ACS Biomaterials Science & Engineering, 2(2), 165–179. https://doi.org/10.1021/ACSBIOMATERIALS.5B00420

    Article  CAS  Google Scholar 

  35. Hossen, S., Hossain, M. K., Basher, M. K., Mia, M. N. H., Rahman, M. T., & Uddin, M. J. (2019). Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: A review. Journal of Advanced Research, 15, 1–18. https://doi.org/10.1016/j.jare.2018.06.005

    Article  CAS  PubMed  Google Scholar 

  36. Milla, P., Dosio, F., & Cattel, L. (2011). PEGylation of proteins and liposomes: A powerful and flexible strategy to improve the drug delivery. Current Drug Metabolism, 13, 105–119. https://doi.org/10.2174/138920012798356934

    Article  Google Scholar 

  37. Cai, K., Wang, A. Z., Yin, L., & Cheng, J. (2017). Bio-nano interface: the impact of biological environment on nanomaterials and their delivery properties. Journal of Controlled Release, 263, 211–222. https://doi.org/10.1016/j.jconrel.2016.11.034

    Article  CAS  PubMed  Google Scholar 

  38. Kondengadan, S. M., Bansal, S., Yang, C., Liu, D., Fultz, Z., & Wang, B. (2023). Click chemistry and drug delivery: A bird’s-eye view. Acta Pharmaceutica Sinica B, 13(5), 1990–2016. https://doi.org/10.1016/j.apsb.2022.10.015

    Article  CAS  PubMed  Google Scholar 

  39. Torchilin, V. P. (2012). Multifunctional nanocarriers. Advanced Drug Delivery Reviews, 64(SUPPL.), 302–315. https://doi.org/10.1016/j.addr.2012.09.031

  40. Kadam, R. U., Bergmann, M., Hurley, M., Garg, D., Cacciarini, M., Swiderska, M. A., … Reymond, J. L. (2011). A glycopeptide dendrimer inhibitor of the galactose-specific lectin LecA and pseudomonas aeruginosa biofilms. Angewandte Chemie - International Edition, 50(45), 10631–10635. https://doi.org/10.1002/anie.201104342

  41. Dhaneshwar, S., Kandpal, M., Gairola, N., & Kadam, S. (2006). Dextran: A promising macromolecular drug carrier. Indian Journal of Pharmaceutical Sciences, 68(6), 705–714. https://doi.org/10.4103/0250-474X.31000

    Article  CAS  Google Scholar 

  42. Fu, C., Zhu, C., Synatschke, C. V., & Zhang, X. (2021). Editorial: design, synthesis and biomedical applications of functional polymers. Frontiers in Chemistry, 9, 1–2. https://doi.org/10.3389/fchem.2021.681189

    Article  Google Scholar 

  43. Widjaja, L. K., Bora, M., Chan, P. N. P. H., Lipik, V., Wong, T. T. L., & Venkatraman, S. S. (2014). Hyaluronic acid-based nanocomposite hydrogels for ocular drug delivery applications. Journal of Biomedical Materials Research - Part A, 102(9), 3056–3065. https://doi.org/10.1002/jbm.a.34976

    Article  CAS  PubMed  Google Scholar 

  44. Qi, R., Gao, Y., Tang, Y., He, R. R., Liu, T. Le, He, Y., … Liu, G. (2009). PEG-conjugated PAMAM dendrimers mediate efficient intramuscular gene expression. AAPS Journal, 11(3), 395–405. https://doi.org/10.1208/s12248-009-9116-1

  45. De Paula, D., Bentley, M. V. L. B., & Mahato, R. I. (2007). Hydrophobization and bioconjugation for enhanced siRNA delivery and targeting. RNA, 13(4), 431–456. https://doi.org/10.1261/rna.459807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Duncan, R. (2011). Polymer therapeutics as nanomedicines: New perspectives. Current Opinion in Biotechnology, 22(4), 492–501. https://doi.org/10.1016/j.copbio.2011.05.507

    Article  CAS  PubMed  Google Scholar 

  47. Alley, S. C., Okeley, N. M., & Senter, P. D. (2010). Antibody–drug conjugates: Targeted drug delivery for cancer. Current Opinion in Chemical Biology, 14(4), 529–537. https://doi.org/10.1016/j.cbpa.2010.06.170

    Article  CAS  PubMed  Google Scholar 

  48. Sahu, A., Bora, U., Kasoju, N., & Goswami, P. (2008). Synthesis of novel biodegradable and self-assembling methoxy poly(ethylene glycol)-palmitate nanocarrier for curcumin delivery to cancer cells. Acta Biomaterialia, 4(6), 1752–1761. https://doi.org/10.1016/j.actbio.2008.04.021

    Article  CAS  PubMed  Google Scholar 

  49. Gao, W., Chan, J. M., & Farokhzad, O. C. (2010). pH-Responsive nanoparticles for drug delivery. Molecular Pharmaceutics, 7(6), 1913–1920. https://doi.org/10.1021/mp100253e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Junutula, J. R., Raab, H., Clark, S., Bhakta, S., Leipold, D. D., Weir, S., … Mallet, W. (2008). Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nature Biotechnology, 26(8), 925–932. https://doi.org/10.1038/nbt.1480

  51. Kopeček, J. (2013). Polymer–drug conjugates: Origins, progress to date and future directions. Advanced Drug Delivery Reviews, 65(1), 49–59. https://doi.org/10.1016/j.addr.2012.10.014

    Article  CAS  PubMed  Google Scholar 

  52. Jao, D., Xue, Y., Medina, J., & Hu, X. (2017). Protein-based drug-delivery materials. Materials (Basel), 10(5), 517(1–24). https://doi.org/10.3390/ma10050517

  53. Hale, C. R., Zhao, P., Olson, S., Duff, M. O., Graveley, B. R., Wells, L., … Terns, M. P. (2009). RNA-Guided RNA Cleavage by a CRISPR RNA-Cas Protein Complex. Cell, 139(5), 945–956. https://doi.org/10.1016/j.cell.2009.07.040

  54. Zhang, Y., Hsu, B. Y. W., Ren, C., Li, X., & Wang, J. (2014). Silica-based nanocapsules: Synthesis, structure control and biomedical applications. Chemical Society Reviews, 44(1), 315–335. https://doi.org/10.1039/C4CS00199K

    Article  PubMed  Google Scholar 

  55. Manandhar, S., Sjöholm, E., Bobacka, J., Rosenholm, J. M., & Bansal, K. K. (2021). Polymer-drug conjugates as Nanotheranostic agents. Journal of Nanotheranostics, 2(1), 63–81. https://doi.org/10.3390/jnt2010005

    Article  Google Scholar 

  56. Pasut, G., & Veronese, F. M. (2012). State of the art in PEGylation: The great versatility achieved after forty years of research. Journal of Controlled Release: Official Journal of the Controlled Release Society, 161(2), 461–472. https://doi.org/10.1016/J.JCONREL.2011.10.037

    Article  CAS  PubMed  Google Scholar 

  57. Hartung, K. M., & Sletten, E. M. (2023). Bioorthogonal chemistry: Bridging chemistry, biology, and medicine. Chem, 9(8), 2095–2109. https://doi.org/10.1016/j.chempr.2023.05.016

    Article  CAS  Google Scholar 

  58. Qin, L. H., Hu, W., & Long, Y. Q. (2018). Bioorthogonal chemistry: Optimization and application updates during 2013–2017. Tetrahedron Letters, 59(23), 2214–2228. https://doi.org/10.1016/j.tetlet.2018.04.058

    Article  CAS  Google Scholar 

  59. Mehvar, R. (2000). Modulation of the pharmacokinetics and pharmacodynamics of proteins by polyethylene glycol conjugation. Journal of Pharmacy & Pharmaceutical Sciences: a publication of the Canadian Society for Pharmaceutical Sciences, Societe canadienne des sciences pharmaceutiques, 3(1), 125–36. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10954682

  60. Chan, S. K., & Lim, T. S. (2019). Bioengineering of microbial transglutaminase for biomedical applications. Applied Microbiology and Biotechnology, 103(7), 2973–2984. https://doi.org/10.1007/s00253-019-09669-3

    Article  CAS  PubMed  Google Scholar 

  61. Roberts, M. J., Bentley, M. D., & Harris, J. M. (2002). Chemistry for peptide and protein PEGylation. Advanced Drug Delivery Reviews, 54(4), 459–476. https://doi.org/10.1016/S0169-409X(02)00022-4

    Article  CAS  PubMed  Google Scholar 

  62. Banerjee, S. S., Aher, N., Patil, R., & Khandare, J. (2012). Poly(ethylene glycol)-prodrug conjugates: Concept, design, and applications. Journal of Drug Delivery, 2012, 1–17. https://doi.org/10.1155/2012/103973

  63. Belén, L. H., Rangel-Yagui, C. de O., Beltrán Lissabet, J. F., Effer, B., Lee-Estevez, M., Pessoa, A., … Farías, J. G. (2019). From synthesis to characterization of site-selective PEGylated proteins. Frontiers in Pharmacology, 10, 1450. https://doi.org/10.3389/fphar.2019.01450

  64. Zacchigna, M., Cateni, F., Drioli, S., & Bonora, G. M. (2011). Multimeric, multifunctional derivatives of poly(ethylene glycol). Polymers, 3(3), 1076–1090. https://doi.org/10.3390/polym3031076

    Article  CAS  Google Scholar 

  65. Yan, J., Marina, P. F., & Blencowe, A. (2021). A facile strategy for the high yielding, quantitative conversion of polyglycol end-groups to amines. Polymers, 13(9), 1403. https://doi.org/10.3390/polym13091403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hoppenz, P., Els-Heindl, S., & Beck-Sickinger, A. G. (2020). Peptide-drug conjugates and their targets in advanced cancer therapies. Frontiers in Chemistry, 8. https://doi.org/10.3389/fchem.2020.00571

  67. Hoffman, A. S. (2012). Hydrogels for biomedical applications. Advanced Drug Delivery Reviews, 64(SUPPL.), 18–23. https://doi.org/10.1016/J.ADDR.2012.09.010

  68. Arseneault, M., Wafer, C., & Morin, J. F. (2015). Recent advances in click chemistry applied to dendrimer synthesis. Molecules, 20(5), 9263–9294. https://doi.org/10.3390/molecules20059263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lee, J. H. (2018). Injectable hydrogels deliver therapeutic agents for disease treatment and tissue engineering. Biomaterials Research, 22(1), 27. https://doi.org/10.1186/s40824-018-0138-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Cicalese, M. P., Ferrua, F., Castagnaro, L., Pajno, R., Barzaghi, F., Giannelli, S., … Aiuti, A. (2016). Update on the safety and efficacy of retroviral gene therapy for immunodeficiency due to adenosine deaminase deficiency. Blood, 128(1), 45–54. https://doi.org/10.1182/blood-2016-01-688226

  71. Wang, Z., Li, H., Gou, L., Li, W., & Wang, Y. (2023). Antibody–drug conjugates: Recent advances in payloads. Acta Pharmaceutica Sinica B, 13(10), 4025–4059. https://doi.org/10.1016/j.apsb.2023.06.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Raza, F., Zafar, H., Zhu, Y., Ren, Y., Ullah, A., Khan, A. U., … Ge, L. (2018). A review of recent advances in stabilizing peptides/proteins upon fabrication in hydrogels from biodegradable polymers. Pharmaceutics, 10(1), 16. https://doi.org/10.3390/PHARMACEUTICS10010016

  73. Butt, H., Eid, A., Ali, Z., Atia, M. A. M., Mokhtar, M. M., Hassan, N., … Mahfouz, M. M. (2017). Efficient CRISPR/Cas9-mediated genome editing using a chimeric single-guide RNA molecule. Frontiers in Plant Science, 8, 1441. https://doi.org/10.3389/fpls.2017.01441

  74. Jasinski, D., Haque, F., Binzel, D. W., & Guo, P. (2017). Advancement of the emerging field of RNA nanotechnology. ACS Nano, 11(2), 1142–1164. https://doi.org/10.1021/acsnano.6b05737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Vargason, A. M., Anselmo, A. C., & Mitragotri, S. (2021). The evolution of commercial drug delivery technologies. Nature Biomedical Engineering, 5(9), 951–967. https://doi.org/10.1038/S41551-021-00698-W

    Article  PubMed  Google Scholar 

  76. Yao, Y., Zhou, Y., Liu, L., Xu, Y., Chen, Q., Wang, Y., … Shao, A. (2020). Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance. Frontiers in Molecular Biosciences, 7, 193. https://doi.org/10.3389/fmolb.2020.00193

  77. Mukherjee, A., Waters, A. K., Kalyan, P., Achrol, A. S., Kesari, S., & Yenugonda, V. M. (2019). Lipid-polymer hybrid nanoparticles as a next-generation drug delivery platform: State of the art, emerging technologies, and perspectives. International Journal of Nanomedicine, 14, 1937–1952. https://doi.org/10.2147/IJN.S198353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Bhattacharya, S., Prajapati, B. G., & Singh, S. (2023). A critical review on the dissemination of PH and stimuli-responsive polymeric nanoparticular systems to improve drug delivery in cancer therapy. Critical Reviews in Oncology/Hematology, 185, 103961. https://doi.org/10.1016/J.CRITREVONC.2023.103961

    Article  PubMed  Google Scholar 

  79. Cheng, X., Xie, Q., & Sun, Y. (2023). Advances in nanomaterial-based targeted drug delivery systems. Frontiers in Bioengineering and Biotechnology, 11, 1177151. https://doi.org/10.3389/fbioe.2023.1177151

    Article  PubMed  PubMed Central  Google Scholar 

  80. Miao, Y., Yang, T., Yang, S., Yang, M., & Mao, C. (2022). Protein nanoparticles directed cancer imaging and therapy. Nano Convergence, 9(1), 2. https://doi.org/10.1186/s40580-021-00293-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Xia, W., Tao, Z., Zhu, B., Zhang, W., Liu, C., Chen, S., & Song, M. (2021). Targeted delivery of drugs and genes using polymer nanocarriers for Cancer Therapy. International Journal of Molecular Sciences, 22(17), 9118. https://doi.org/10.3390/ijms22179118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Diamantis, N., & Banerji, U. (2016). Antibody-drug conjugates—an emerging class of cancer treatment. British Journal of Cancer, 114(4), 362. https://doi.org/10.1038/BJC.2015.435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Rassu, G., Sorrenti, M., Catenacci, L., Pavan, B., Ferraro, L., Gavini, E., … Dalpiaz, A. (2023). Conjugation, prodrug, and co-administration strategies in support of nanotechnologies to improve the therapeutic efficacy of phytochemicals in the central nervous system. Pharmaceutics, 15(6), 1–42. https://doi.org/10.3390/pharmaceutics15061578

  84. Haney, M. J., Klyachko, N. L., Zhao, Y., Gupta, R., Plotnikova, E. G., He, Z., … Batrakova, E. V. (2015). Exosomes as drug delivery vehicles for Parkinson’s disease therapy. Journal of Controlled Release, 207, 18–30. https://doi.org/10.1016/j.jconrel.2015.03.033

  85. Xu, M., Yang, Q., Sun, X., & Wang, Y. (2020). Recent advancements in the loading and modification of therapeutic exosomes. Frontiers in Bioengineering and Biotechnology, 8, 586130. https://doi.org/10.3389/FBIOE.2020.586130

    Article  PubMed  PubMed Central  Google Scholar 

  86. Hu, Y., Liu, C., & Muyldermans, S. (2017). Nanobody-based delivery systems for diagnosis and targeted tumour therapy. Frontiers in Immunology, 8(NOV), 1442. https://doi.org/10.3389/FIMMU.2017.01442

    Article  PubMed  PubMed Central  Google Scholar 

  87. Neeraj Agrawal, R., & Alok Mukerji, A. J. (2013). Polymeric prodrugs: Recent achievements and general strategies. Journal of Antivirals & Antiretrovirals, s15, 1–12. https://doi.org/10.4172/jaa.S15-007

  88. Habault, J., & Poyet, J. L. (2019). Recent advances in cell penetrating peptide-based Anticancer therapies. Molecules (Basel Switzerland), 24(5), 927. https://doi.org/10.3390/MOLECULES24050927

    Article  PubMed  Google Scholar 

  89. Bechara, C., & Sagan, S. (2013). Cell-penetrating peptides: 20 years later, where do we stand? FEBS Letters, 587(12), 1693–1702. https://doi.org/10.1016/J.FEBSLET.2013.04.031

    Article  CAS  PubMed  Google Scholar 

  90. Materón, E. M., Miyazaki, C. M., Carr, O., Joshi, N., Picciani, P. H. S., Dalmaschio, C. J., … Shimizu, F. M. (2021). Magnetic nanoparticles in biomedical applications: A review. Applied Surface Science Advances, 6, 100163. https://doi.org/10.1016/J.APSADV.2021.100163

  91. Siddique, S., & Chow, J. C. L. (2020). Gold nanoparticles for drug delivery and cancer therapy. Applied Sciences, 10(11), 3824. https://doi.org/10.3390/APP10113824

    Article  CAS  Google Scholar 

  92. Tiwari, P. M., Vig, K., Dennis, V. A., & Singh, S. R. (2011). Functionalized Gold nanoparticles and their biomedical applications. Nanomaterials (Basel Switzerland), 1(1), 31–63. https://doi.org/10.3390/NANO1010031

    Article  CAS  PubMed  Google Scholar 

  93. Vardaxi, A., Kafetzi, M., & Pispas, S. (2022). Polymeric nanostructures containing proteins and peptides for Pharmaceutical Applications. Polymers, 14(4), 1–22. https://doi.org/10.3390/polym14040777

    Article  CAS  Google Scholar 

  94. Verhoef, J. J. F., & Anchordoquy, T. J. (2013). Questioning the use of PEGylation for drug delivery. Drug Delivery and Translational Research, 3(6), 499. https://doi.org/10.1007/S13346-013-0176-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Liu, Z., Tabakman, S., Welsher, K., & Dai, H. (2009). Carbon nanotubes in biology and medicine: In vitro and in vivo detection, imaging and drug delivery. Nano Research, 2(2), 85–120. https://doi.org/10.1007/s12274-009-9009-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Pei, B., Wang, W., Dunne, N., & Li, X. (2019). Applications of Carbon nanotubes in Bone tissue regeneration and Engineering: Superiority, concerns, current advancements, and prospects. Nanomaterials, 9(10), 1501. https://doi.org/10.3390/nano9101501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Florkiewicz, W., Słota, D., Placek, A., Pluta, K., Tyliszczak, B., Douglas, T. E. L., & Sobczak-Kupiec, A. (2021). Synthesis and characterization of polymer-based Coatings modified with Bioactive ceramic and bovine serum albumin. Journal of Functional Biomaterials, 12(2), 21. https://doi.org/10.3390/JFB12020021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Fu, C.-P., Cai, X.-Y., Chen, S.-L., Yu, H.-W., Fang, Y., Feng, X.-C., … Li, C.-Y. (2023). Hyaluronic acid-based nanocarriers for anticancer drug delivery. Polymers, 15(10), 2317. https://doi.org/10.3390/polym15102317

  99. Pathak, P., Zarandi, M. A., Zhou, X., & Jayawickramarajah, J. (2021). Synthesis and applications of porphyrin-biomacromolecule conjugates. Frontiers in Chemistry, 9, 764137. https://doi.org/10.3389/FCHEM.2021.764137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Sarbadhikary, P., George, B. P., & Abrahamse, H. (2021). Recent advances in Photosensitizers as multifunctional theranostic agents for imaging-guided photodynamic therapy of Cancer. Theranostics, 11(18), 9054–9088. https://doi.org/10.7150/THNO.62479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Markovic, M., Ben-Shabat, S., & Dahan, A. (2020). Prodrugs for Improved Drug Delivery: Lessons learned from recently developed and marketed products. Pharmaceutics, 12(11), 1–12. https://doi.org/10.3390/PHARMACEUTICS12111031

    Article  Google Scholar 

  102. Suk, J. S., Xu, Q., Kim, N., Hanes, J., & Ensign, L. M. (2016). PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Advanced Drug Delivery Reviews, 99, 28–51. https://doi.org/10.1016/J.ADDR.2015.09.012

    Article  CAS  PubMed  Google Scholar 

  103. Salih, S., Alkatheeri, A., Alomaim, W., & Elliyanti, A. (2022). Radiopharmaceutical treatments for cancer therapy, radionuclides characteristics, applications, and challenges. Molecules, 27(16), 5231. https://doi.org/10.3390/molecules27165231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Holz, E., Darwish, M., Tesar, D. B., & Shatz-Binder, W. (2023). A review of protein- and peptide-based chemical conjugates: past, present, and future. Pharmaceutics, 15(2), 600. https://doi.org/10.3390/pharmaceutics15020600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hussain, Z., Khan, S., Imran, M., Sohail, M., Shah, S. W. A., & de Matas, M. (2019). PEGylation: A promising strategy to overcome challenges to cancer-targeted nanomedicines: A review of challenges to clinical transition and promising resolution. Drug Delivery and Translational Research, 9(3), 721–734. https://doi.org/10.1007/s13346-019-00631-4

    Article  CAS  PubMed  Google Scholar 

  106. Zloh, M. (2019). NMR spectroscopy in drug discovery and development: Evaluation of physico-chemical properties. ADMET & DMPK, 7(4), 242. https://doi.org/10.5599/ADMET.737

    Article  Google Scholar 

  107. Campanale, C., Savino, I., Massarelli, C., & Uricchio, V. F. (2023). Fourier transform infrared spectroscopy to assess the degree of alteration of artificially aged and environmentally weathered microplastics. Polymers, 15(4), 1–16. https://doi.org/10.3390/polym15040911

    Article  CAS  Google Scholar 

  108. Stetefeld, J., McKenna, S. A., & Patel, T. R. (2016). Dynamic light scattering: A practical guide and applications in biomedical sciences. Biophysical Reviews, 8(4), 409. https://doi.org/10.1007/S12551-016-0218-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Iwamoto, C., Ohtani, Y., & Hamada, K. (2023). Microstructure variation in the ultrasonic bonding process between Al sheets observed by in-situ transmission electron microscopy. Scripta Materialia, 234. https://doi.org/10.1016/j.scriptamat.2023.115560

  110. Geraili, A., Xing, M., & Mequanint, K. (2021). Design and fabrication of drug-delivery systems toward adjustable release profiles for personalized treatment. Polymers, 2(5), 20200126. https://doi.org/10.1002/VIW.20200126

    Article  Google Scholar 

  111. Messner, C. B., Demichev, V., Wang, Z., Hartl, J., Kustatscher, G., Mülleder, M., & Ralser, M. (2023). Mass spectrometry-based high-throughput proteomics and its role in biomedical studies and systems biology. Proteomics, 23(7–8), 1–15. https://doi.org/10.1002/PMIC.202200013

    Article  Google Scholar 

  112. Dikecoglu, F. B., Topal, A. E., Ozkan, A. D., Tekin, E. D., Tekinay, A. B., Guler, M. O., & Dana, A. (2018). Force and time-dependent self-assembly, disruption and recovery of supramolecular peptide amphiphile nanofibers. Nanotechnology, 29(28), 285701. https://doi.org/10.1088/1361-6528/AABEB4

    Article  PubMed  Google Scholar 

  113. Fu, Y., & Kao, W. J. (2010). Drug release kinetics and transport mechanisms of non-degradable and degradable polymeric delivery systems. Expert Opinion on drug Delivery, 7(4), 429–444. https://doi.org/10.1517/17425241003602259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Elvira, C., Gallardo, A., San Roman, J., & Cifuentes, A. (2005). Covalent polymer-drug conjugates. Molecules 2005, 10(1), 114–125. https://doi.org/10.3390/10010114

    Article  CAS  Google Scholar 

  115. Harbers, G. M., Emoto, K., Greef, C., Metzger, S. W., Woodward, H. N., Mascali, J. J., … Lochhead, M. J. (2007). A functionalized poly(ethylene glycol)-based bioassay surface chemistry that facilitates bio-immobilization and inhibits non-specific protein, bacterial, and mammalian cell adhesion. Chemistry of materials: a publication of the American Chemical Society, 19(18), 4405. https://doi.org/10.1021/CM070509U

  116. Chen, B. M., Cheng, T. L., & Roffler, S. R. (2021). Polyethylene glycol immunogenicity: Theoretical, clinical, and practical aspects of Anti-polyethylene Glycol antibodies. Acs Nano, 15(9), 14022–14048. https://doi.org/10.1021/acsnano.1c05922

    Article  CAS  PubMed  Google Scholar 

  117. Luo, T., Magnusson, J., Préat, V., Frédérick, R., Alexander, C., Bosquillon, C., & Vanbever, R. (2016). Synthesis and in vitro evaluation of polyethylene glycol-paclitaxel conjugates for lung cancer therapy. Pharmaceutical Research, 33(7), 1671–1681. https://doi.org/10.1007/s11095-016-1908-2

    Article  CAS  PubMed  Google Scholar 

  118. Khan, J., Alexander, A., Ajazuddin, Saraf, S., & Saraf, S. (2018). Exploring the role of polymeric conjugates toward anti-cancer drug delivery: Current trends and future projections. International Journal of Pharmaceutics, 548(1), 500–514. https://doi.org/10.1016/j.ijpharm.2018.06.060

    Article  CAS  PubMed  Google Scholar 

  119. Yang, K., Feng, L., & Liu, Z. (2016). Stimuli-responsive drug delivery systems based on nano-graphene for cancer therapy. Advanced Drug Delivery Reviews, 105, 228–241. https://doi.org/10.1016/J.ADDR.2016.05.015

    Article  CAS  PubMed  Google Scholar 

  120. Junyaprasert, V. B., & Thummarati, P. (2023). Innovative design of targeted nanoparticles: Polymer–drug conjugates for enhanced Cancer Therapy. Pharmaceutics, 15(9), 2216. https://doi.org/10.3390/pharmaceutics15092216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Wu, P., Chen, H., Jin, R., Weng, T., Ho, J. K., You, C., … Han, C. (2018). Non-viral gene delivery systems for tissue repair and regeneration. Journal of Translational Medicine. BioMed Central Ltd. https://doi.org/10.1186/s12967-018-1402-1

  122. Sahu, P., Sharma, G., Sagar Verma, V., Mishra, A., Deshmukh, N., Pandey, A., … Chauhan, P. (2022). Statistical optimization of microwave assisted acrylamide grafting of Linum usitatissimum Gum. NeuroQuantology, 20(11), 4008–4026. https://doi.org/10.14704/NQ.2022.20.11.NQ66404

  123. Verma, V. S., Mishra, A., Badwaik, H. R., Alexander, A., & Ajazuddin, A. (2022). Molecular docking for rationalizing the use of linkers in polymer-drug conjugates design for pegylated anti-inflammatory drug delivery. International Journal of Health Sciences, 6626–6646. https://doi.org/10.53730/IJHS.V6NS6.11216

  124. Zhai, Y., Zhou, Y., Li, X., & Feng, G. (2015). Immune-enhancing effect of nano-DNA vaccine encoding a gene of the prME protein of Japanese encephalitis virus and BALB/c mouse granulocyte-macrophage colony-stimulating factor. Molecular Medicine Reports, 12(1), 199–209. https://doi.org/10.3892/mmr.2015.3419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Brannon, E. R., Guevara, M. V., Pacifici, N. J., Lee, J. K., Lewis, J. S., & Eniola-Adefeso, O. (2022). Polymeric particle-based therapies for acute inflammatory diseases. Nature Reviews Materials, 7:10(10), 796–813. https://doi.org/10.1038/s41578-022-00458-5

    Article  CAS  Google Scholar 

  126. Fan, Y., & Zhang, Q. (2013). Development of liposomal formulations: From concept to clinical investigations. Asian Journal of Pharmaceutical Sciences, 8(2), 81–87. https://doi.org/10.1016/j.ajps.2013.07.010

    Article  CAS  Google Scholar 

  127. Paranjpe, P. V., Stein, S., & Sinko, P. J. (2005). Tumor-targeted and activated bioconjugates for improved camptothecin delivery. Anti-cancer Drugs, 16(7), 763–775. https://doi.org/10.1097/01.CAD.0000172834.78068.7C

    Article  CAS  PubMed  Google Scholar 

  128. Song, B., Liu, X., Dong, H., & Roy, R. (2023). Mir-140-3P induces chemotherapy resistance in esophageal carcinoma by targeting the NFYA-MDR1 axis. Applied Biochemistry and Biotechnology, 195(2), 973–991. https://doi.org/10.1007/S12010-022-04139-5

    Article  CAS  PubMed  Google Scholar 

  129. Maradana, M. R., Thomas, R., & O’Sullivan, B. J. (2013). Targeted delivery of curcumin for treating type 2 diabetes. Molecular Nutrition & food Research, 57(9), 1550–1556. https://doi.org/10.1002/MNFR.201200791

    Article  CAS  Google Scholar 

  130. Alven, S., Nqoro, X., Buyana, B., & Aderibigbe, B. A. (2020). Polymer-drug conjugate, a potential therapeutic to combat breast and lung cancer. Pharmaceutics, 12(5), 406. https://doi.org/10.3390/pharmaceutics12050406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Novio, F. (2020). Design of targeted nanostructured coordination polymers (NCPs) for Cancer Therapy. Molecules, 25(15), 3449. https://doi.org/10.3390/MOLECULES25153449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. van der Meel, R., Vehmeijer, L., Kok, R., Storm, G., & van Gaal, E. (2013). Ligand-targeted particulate nanomedicines undergoing clinical evaluation: Current status. Advanced Drug Delivery Reviews, 65(10), 163–200. https://doi.org/10.1016/j.addr.2013.08.012

    Article  CAS  Google Scholar 

  133. Wang, Y. C., Wang, F., Sun, T. M., & Wang, J. (2011). Redox-responsive nanoparticles from the single disulfide bond-bridged block copolymer as drug carriers for overcoming multidrug resistance in cancer cells. Bioconjugate Chemistry, 22(10), 1939–1945. https://doi.org/10.1021/bc200139n

    Article  CAS  PubMed  Google Scholar 

  134. Santos-Carballal, B., Fernández Fernández, E., & Goycoolea, F. (2018). Chitosan in non-viral gene delivery: role of structure, characterization methods, and insights in cancer and rare diseases therapies. Polymers, 10(4), 444. https://doi.org/10.3390/polym10040444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Barua, S., Ramos, J., Potta, T., Taylor, D., Huang, H. C., Montanez, G., & Rege, K. (2011). Discovery of Cationic polymers for non-viral gene delivery using combinatorial approaches. Combinatorial Chemistry & High Throughput Screening, 14, 908–932. https://doi.org/10.2174/138620711797537076

    Article  CAS  Google Scholar 

  136. Janakiraman, K., Krishnaswami, V., Rajendran, V., Natesan, S., & Kandasamy, R. (2018). Novel nano therapeutic materials for the effective treatment of rheumatoid arthritis-recent insights. Materials Today Communications, 17, 200–213. https://doi.org/10.1016/j.mtcomm.2018.09.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Holley, A. K., Bakthavatchalu, V., Velez-Roman, J. M., & Clair, S. (2011). Manganese superoxide dismutase: Guardian of the powerhouse. International Journal of Molecular Sciences, 12(10), 7114–7162. https://doi.org/10.3390/IJMS12107114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Su, Q., Dong, J., Zhang, D., Yang, L., & Roy, R. (2022). Protective effects of the Bilobalide on Retinal oxidative stress and inflammation in Streptozotocin-Induced Diabetic rats. Applied Biochemistry and Biotechnology, 194(12), 6407–6422. https://doi.org/10.1007/S12010-022-04012-5

    Article  CAS  PubMed  Google Scholar 

  139. Cremolini, C., Vitale, E., Rastaldo, R., & Giachino, C. (2021). Advanced nanotechnology for enhancing immune checkpoint blockade therapy. Nanomaterials, 11(3), 1–26. https://doi.org/10.3390/NANO11030661

    Article  Google Scholar 

  140. Siedenbiedel, F., & Tiller, J. C. (2012). Antimicrobial polymers in solution and on surfaces: Overview and functional principles. Polymers, 4(1), 46–71. https://doi.org/10.3390/polym4010046

    Article  CAS  Google Scholar 

  141. Deslouches, B., Montelaro, R. C., Urish, K. L., & Di, Y. P. (2020). Engineered Cationic antimicrobial peptides (eCAPs) to combat multidrug-resistant bacteria. Pharmaceutics, 12(6), 501. https://doi.org/10.3390/pharmaceutics12060501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Parveen, S., Sur, T., Sarkar, S., & Roy, R. (2023). Antagonist impact of selenium-based nanoparticles against Mycobacterium tuberculosis. Applied Biochemistry and Biotechnology, 195(6), 3606–3614. https://doi.org/10.1007/S12010-023-04315-1

    Article  CAS  PubMed  Google Scholar 

  143. Zenych, A., Fournier, L., & Chauvierre, C. (2020). Nanomedicine progress in thrombolytic therapy. Biomaterials, 258, 120297. https://doi.org/10.1016/J.BIOMATERIALS.2020.120297

    Article  CAS  PubMed  Google Scholar 

  144. Sun, Y., & Davis, E. (2021). Nanoplatforms for targeted stimuli-responsive drug delivery: A review of platform materials and stimuli-responsive release and targeting mechanisms. Nanomaterials, 11(3), 746. https://doi.org/10.3390/nano11030746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Bajwa, N., Mahal, S., Singh, P. A., Jyoti, K., Dewangan, P., Madan, J., & Baldi, A. (2023). Drug–polymer conjugates: Challenges, opportunities, and prospects in clinical trials. Polymer-Drug Conjugates: Linker Chemistry Protocols and Applications, 389–469. https://doi.org/10.1016/B978-0-323-91663-9.00011-4

  146. Chaudhuri, A., Ramesh, K., Kumar, D. N., Dehari, D., Singh, S., Kumar, D., & Agrawal, A. K. (2022). Polymeric micelles: A novel drug delivery system for the treatment of breast cancer. Journal of Drug Delivery Science and Technology, 77, 103886. https://doi.org/10.1016/J.JDDST.2022.103886

    Article  CAS  Google Scholar 

  147. Ordanini, S., & Cellesi, F. (2018). Complex polymeric architectures self-assembling in unimolecular micelles: Preparation, characterization and drug nanoencapsulation. Pharmaceutics, 10(4), 209. https://doi.org/10.3390/pharmaceutics10040209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Gong, J., Chen, M., Zheng, Y., Wang, S., & Wang, Y. (2012). Polymeric micelles drug delivery system in oncology. Journal of Controlled Release: Official Journal of the Controlled Release Society, 159(3), 312–323. https://doi.org/10.1016/J.JCONREL.2011.12.012

    Article  CAS  PubMed  Google Scholar 

  149. Yadav, D., Sandeep, K., Pandey, D., & Dutta, R. K. (2017). Liposomes for drug delivery. Journal of Biotechnology & Biomaterials, 7(4), 1–8. https://doi.org/10.4172/2155-952X.1000276

    Article  Google Scholar 

  150. Biswas, S., Kumari, P., Lakhani, P. M., & Ghosh, B. (2016). Recent advances in polymeric micelles for anti-cancer drug delivery. European Journal of Pharmaceutical Sciences: Official Journal of the European Federation for Pharmaceutical Sciences, 83, 184–202. https://doi.org/10.1016/J.EJPS.2015.12.031

    Article  CAS  PubMed  Google Scholar 

  151. Danhier, F., Ansorena, E., Silva, J. M., Coco, R., Le Breton, A., & Préat, V. (2012). PLGA-based nanoparticles: An overview of biomedical applications. Journal of Controlled Release: Official Journal of the Controlled Release Society, 161(2), 505–522. https://doi.org/10.1016/J.JCONREL.2012.01.043

    Article  CAS  PubMed  Google Scholar 

  152. Dristant, U., Mukherjee, K., Saha, S., & Maity, D. (2023). An overview of polymeric nanoparticles-based drug delivery system in Cancer Treatment. Technology in Cancer Research & Treatment, 22, 153303382311520. https://doi.org/10.1177/15330338231152083

    Article  CAS  Google Scholar 

  153. Mudigunda, S. V., Pemmaraju, D. B., Paradkar, S., Puppala, E. R., Gawali, B., Upadhyayula, S. M., … Rengan, A. K. (2022). Multifunctional polymeric nanoparticles for chemo/phototheranostics of retinoblastoma. ACS Biomaterials Science & Engineering, 8(1), 151–160. https://doi.org/10.1021/acsbiomaterials.1c01234

  154. Coolich, M. K., Lanier, O. L., Cisneros, E., & Peppas, N. A. (2023). PEGylated insulin-loaded complexation hydrogels for protected oral delivery. Journal of Controlled Release: Official Journal of the Controlled Release Society, 364, 216–226. https://doi.org/10.1016/J.JCONREL.2023.10.020

    Article  CAS  PubMed  Google Scholar 

  155. Phelps, E. A., Enemchukwu, N. O., Fiore, V. F., Sy, J. C., Murthy, N., Sulchek, T. A., … García, A. J. (2012). Maleimide cross‐linked bioactive PEG hydrogel exhibits improved reaction kinetics and cross‐linking for cell encapsulation and in situ delivery. Advanced Materials, 24(1), 64–70. https://doi.org/10.1002/adma.201103574

  156. Biswas, S., Dodwadkar, N. S., Deshpande, P. P., & Torchilin, V. P. (2012). Liposomes loaded with paclitaxel and modified with novel triphenylphosphonium-PEG-PE conjugate possess low toxicity, target mitochondria and demonstrate enhanced antitumor effects in vitro and in vivo. Journal of Controlled Release, 159(3), 393–402. https://doi.org/10.1016/J.JCONREL.2012.01.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Ashtary-Larky, D., Rezaei Kelishadi, M., Bagheri, R., Moosavian, S. P., Wong, A., Davoodi, S. H., … Asbaghi, O. (2021). The effects of nano-curcumin supplementation on risk factors for cardiovascular disease: A GRADE-assessed systematic review and meta-analysis of clinical trials.  Antioxidants, 10(7), 1015. https://doi.org/10.3390/antiox10071015

  158. Ang, M. J., Kang, S., & Moon, C. (2020). Melatonin alters neuronal architecture and increases cysteine-rich protein 1 signalling in the male mouse hippocampus. Journal of Neuroscience Research, 98(11), 2333–2348. https://doi.org/10.1002/JNR.24708

    Article  CAS  PubMed  Google Scholar 

  159. Anushiravani, M., Bakhshaee, M., Taghipour, A., & Mehri, M. R. (2018). Comparison of the therapeutic effect of the Persian Medicine Protocol with the common treatment of chronic rhinosinusitis: A randomized clinical trial. Electronic Physician, 10(7), 7017. https://doi.org/10.19082/7017

    Article  PubMed  PubMed Central  Google Scholar 

  160. Chaisi, M. E., Osinubi, S. T., Dalton, D. L., & Suleman, E. (2019). Occurrence and diversity of avian haemosporidia in afrotropical landbirds. International Journal for Parasitology: Parasites and Wildlife, 8, 36. https://doi.org/10.1016/J.IJPPAW.2018.12.002

    Article  PubMed  Google Scholar 

  161. Hossain, S., Imai, Y., Suzuki, D., Choi, W., Chen, Z., Suzuki, T., … Negishi, Y. (2019). Elucidating ligand effects in thiolate-protected metal clusters using Au24Pt(TBBT)18 as a model cluster. Nanoscale, 11(45), 22089–22098. https://doi.org/10.1039/C9NR07117B

  162. Shellmer, D. A., Dabbs, A. D., & Dew, M. A. (2011). Medical adherence in pediatric organ transplantation: What are the next steps? Current Opinion in Organ Transplantation, 16(5), 509. https://doi.org/10.1097/MOT.0B013E32834A8C89

    Article  PubMed  PubMed Central  Google Scholar 

  163. Cen, J., Hou, M., & Liu, S. (2023). Discrete polyethylene glycol derivatives as a potent impetus for next-generation biomedicines. Giant, 15, 100169. https://doi.org/10.1016/j.giant.2023.100169

    Article  CAS  Google Scholar 

  164. Duncan, R., Ringsdorf, H., & Satchi-Fainaro, R. (2008). Polymer therapeutics—Polymers as drugs, drug and protein conjugates and gene delivery systems: Past, present and future opportunities. Journal of Drug Targeting, 14(6), 337–341. https://doi.org/10.1080/10611860600833856

  165. Shaik, B. B., Katari, N. K., & Jonnalagadda, S. B. (2023). Internal stimuli-responsive nanocarriers for controlled anti-cancer drug release: A review. Therapeutic Delivery, 14(9), 595–613. https://doi.org/10.4155/tde-2023-0041

    Article  CAS  PubMed  Google Scholar 

  166. Bai, X., Smith, Z., Wang, Y., Butterworth, S., & Tirella, A. (2022). Sustained drug release from Smart nanoparticles in Cancer Therapy: A comprehensive review. Micromachines, 13(10), 1623. https://doi.org/10.3390/mi13101623

    Article  PubMed  PubMed Central  Google Scholar 

  167. Molineux, G. (2004). The design and development of Pegfilgrastim (PEG-rmetHuG-CSF, Neulasta ®). Current Pharmaceutical Design, 10(11), 1235–1244.

    Article  CAS  PubMed  Google Scholar 

  168. Farokhzad, O. C., Cheng, J., Teply, B. A., Sherifi, I., Jon, S., Kantoff, P. W., … Langer, R. (2006). Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proceedings of the National Academy of Sciences of the United States of America, 103(16), 6315–6320. https://doi.org/10.1073/PNAS.0601755103

  169. Bobo, D., Robinson, K. J., Islam, J., Thurecht, K. J., & Corrie, S. R. (2016). Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharmaceutical Research, 33(10), 2373–2387. https://doi.org/10.1007/S11095-016-1958-5/METRICS

    Article  CAS  PubMed  Google Scholar 

  170. Sebak, A. A. (2018). Limitations of Pegylated nanocarriers: unfavourable physicochemical properties, biodistribution patterns and cellular and subcellular fates. International Journal of Applied Pharmaceutics, 10(5), 6. https://doi.org/10.22159/ijap.2018v10i5.27568

    Article  CAS  Google Scholar 

  171. Bae, Y. H., & Park, K. (2020). Advanced drug delivery 2020 and beyond perspectives on the future. Advanced Drug Delivery Reviews, 158, 4–16. https://doi.org/10.1016/J.ADDR.2020.06.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Hatakeyama, H., Akita, H., & Harashima, H. (2013). The Polyethyleneglycol Dilemma: Advantage and disadvantage of PEGylation of liposomes for systemic genes and nucleic acids delivery to tumors. Biological and Pharmaceutical Bulletin, 36(6), 892–899. https://doi.org/10.1248/bpb.b13-00059

    Article  CAS  PubMed  Google Scholar 

  173. Sanchez Armengol, E., Unterweger, A., & Laffleur, F. (2022). PEGylated drug delivery systems in the pharmaceutical field: Past, present and future perspective. Drug Development and Industrial Pharmacy, 48(4), 129–139. https://doi.org/10.1080/03639045.2022.2101062

    Article  CAS  PubMed  Google Scholar 

  174. Cheng, C. C., Lee, D. J., Liao, Z. S., & Huang, J. J. (2016). Stimuli-responsive single-chain polymeric nanoparticles towards the development of efficient drug delivery systems. Polymer Chemistry, 7(40), 6164–6169. https://doi.org/10.1039/C6PY01623E

    Article  CAS  Google Scholar 

  175. Grewal, I. K., Singh, S., Arora, S., & Sharma, N. (2020). Polymeric nanoparticles for breast Cancer therapy: A Comprehensive Review. Biointerface Research in Applied Chemistry, 11(4), 11151–11171. https://doi.org/10.33263/BRIAC114.1115111171

    Article  Google Scholar 

  176. Molineux, G. (2003). Pegylation: Engineering improved biopharmaceuticals for oncology. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy, 23(8P2). https://doi.org/10.1592/phco.23.9.3S.32886

  177. Tarentino, A. L., Phelan, A. W., & Plummer, T. H. (1993). 2-Iminothiolane: A reagent for the introduction of sulphydryl groups into oligosaccharides derived from asparagine-linked glycans. Glycobiology, 3(3), 279–285. https://doi.org/10.1093/GLYCOB/3.3.279

    Article  CAS  PubMed  Google Scholar 

  178. Shao, Y., Huang, W., Shi, C., Atkinson, S. T., & Luo, J. (2012). Reversibly crosslinked nanocarriers for on-demand drug delivery in cancer treatment. Therapeutic Delivery, 3(12), 1409–1427. https://doi.org/10.4155/tde.12.106

    Article  CAS  PubMed  Google Scholar 

  179. Chauhan, A. S. (2018). Dendrimers for drug delivery. Molecules, 23(4), 1–9. https://doi.org/10.3390/molecules23040938

    Article  CAS  Google Scholar 

  180. Zheng, Y., Li, S., Weng, Z., & Gao, C. (2015). Hyperbranched polymers: Advances from synthesis to applications. Chemical Society Reviews, 44(12), 4091–4130. https://doi.org/10.1039/C4CS00528G

    Article  CAS  PubMed  Google Scholar 

  181. Wang, X., Li, C., Wang, Y., Chen, H., Zhang, X., Luo, C., … Wang, J. (2022). Smart drug delivery systems for precise cancer therapy. Acta Pharmaceutica Sinica. B, 12(11), 4098. https://doi.org/10.1016/J.APSB.2022.08.013

  182. Courrier, H. M., Butz, N., & Vandamme, T. F. (2002). Pulmonary drug delivery systems: recent developments and prospects.  Critical Reviews™ in Therapeutic Drug Carrier Systems, 19(4–5), 425–498. https://doi.org/10.1615/CRITREVTHERDRUGCARRIERSYST.V19.I45.40

  183. Sutanto, F., Konstantinidou, M., & Dömling, A. (2020). Covalent inhibitors: A rational approach to drug discovery. RSC Medicinal Chemistry, 11(8), 876. https://doi.org/10.1039/D0MD00154F

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Xiao, R. Z., Zeng, Z. W., Zhou, G. L., Wang, J. J., Li, F. Z., & Wang, A. M. (2010). Recent advances in PEG–PLA block copolymer nanoparticles. International Journal of Nanomedicine, 5(1), 1057. https://doi.org/10.2147/IJN.S14912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Eras, A., Castillo, D., Suárez, M., Vispo, N. S., Albericio, F., & Rodriguez, H. (2022). Chemical Conjugation in Drug Delivery systems. Frontiers in Chemistry, 10, 889083. https://doi.org/10.3389/fchem.2022.889083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Ezike, T. C., Okpala, U. S., Onoja, U. L., Nwike, C. P., Ezeako, E. C., Okpara, O. J., … Nwanguma, B. C. (2023). Advances in drug delivery systems, challenges and future directions. Heliyon, 9(6), e17488. https://doi.org/10.1016/J.HELIYON.2023.E17488

  187. Pacheco, C., Baião, A., Ding, T., Cui, W., & Sarmento, B. (2023). Recent advances in long-acting drug delivery systems for anticancer drugs. Advanced Drug Delivery Reviews, 194, 114724. https://doi.org/10.1016/j.addr.2023.114724

    Article  CAS  PubMed  Google Scholar 

  188. Sung, Y. K., & Kim, S. W. (2020). Recent advances in polymeric drug delivery systems. Biomaterials Research, 24(1), 12. https://doi.org/10.1186/s40824-020-00190-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Hong, L., Li, W., Li, Y., & Yin, S. (2023). Nanoparticle-based drug delivery systems targeting cancer cell surfaces. RSC Advances, 13(31), 21365–21382. https://doi.org/10.1039/D3RA02969G

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Verma, V. S., Sakure, K., & Badwaik, H. R. (2017). Xanthan Gum a Versatile Biopolymer: Current status and future Prospectus in Hydro Gel Drug Delivery. Current Chemical Biology, 11(1), 10–20. https://doi.org/10.2174/2212796810666161110152815

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One author wish to acknowledge DST FIST project Level-0 (SR/FST/College-2018-431-C) for providing infrastructural facility. 

Author information

Authors and Affiliations

Authors

Contributions

All the authors have equal contributions to the reported study.

Corresponding authors

Correspondence to Hemant Kumar Ramchandra Badwaik or Ajazuddin.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participation

All the authors had their consent for participation in the reported study.

Consent for Publication

All the authors had their consent for the publication of the reported study.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, V.S., Pandey, A., Jha, A.K. et al. Polyethylene Glycol–Based Polymer-Drug Conjugates: Novel Design and Synthesis Strategies for Enhanced Therapeutic Efficacy and Targeted Drug Delivery. Appl Biochem Biotechnol (2024). https://doi.org/10.1007/s12010-024-04895-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12010-024-04895-6

Keywords

Navigation