Skip to main content

Advertisement

Log in

PEGylation: a promising strategy to overcome challenges to cancer-targeted nanomedicines: a review of challenges to clinical transition and promising resolution

  • Review Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

On account of heterogeneity, intrinsic ability of drug resistance, and the potential to invade to other parts of the body (malignancy), the development of a rational anticancer regimen is dynamically challenging. Chemotherapy is considered the gold standard for eradication of malignancy and mitigation of its reoccurrence; nevertheless, it has also been associated with detrimental effects to normal tissues owing to its nonselectivity and nominal penetration into the tumor tissues. In recent decades, nanotechnology-guided interventions have been well-acclaimed due to their ability to facilitate target-specific delivery of drugs, avoidance of nontarget distribution, alleviated systemic toxicity, and maximized drug internalization into cancer cells. Despite their numerous biomedical advantages, clinical translation of nanotechnology-mediated regimens is challenging due to their short plasma half-life and early clearance. PEGylation of nanomedicines has been adapted as an efficient strategy to extend plasma half-life and diminished early plasma clearance via alleviating the opsonization (uptake by monocytes and macrophages) of drug nanocarriers. PEGylation provides “stealth” properties to nanocarrier’s surfaces which diminished their recognition or uptake by cellular immune system, leading to longer circulation time, reduced dosage and frequency, and superior site-selective delivery of drugs. Therefore, this review aims to present a comprehensive overview of the pharmaceutical advantages and therapeutic feasibility of PEGylation of nanocarriers in improving tumor-specific targetability, reversing drug resistance, and improving pharmacokinetic profile of drugs and anticancer efficacy. Challenges to PEGylated cancer nanomedicines, possible adaptations to resolve those challenges, and pivotal requirement for interdisciplinary research for development of rational anticancer regimen have also been pondered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Zhou L, Wang H, Li Y. Stimuli-responsive nanomedicines for overcoming cancer multidrug resistance. Theranostics. 2018;8(4):1059–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sutradhar KB, Amin ML. Nanotechnology in cancer drug delivery and selective targeting. ISRN Nanotechnology. 2014;2014:1–12.

    Article  CAS  Google Scholar 

  3. Nguyen, K.T., Targeted nanoparticles for cancer therapy: promises and challenge. 2011.

    Google Scholar 

  4. Coates A, Abraham S, Kaye SB, Sowerbutts T, Frewin C, Fox RM, et al. On the receiving end—patient perception of the side-effects of cancer chemotherapy. Eur J Cancer Clin Oncol. 1983;19(2):203–8.

    Article  CAS  PubMed  Google Scholar 

  5. Davis ME, Shin DM. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov. 2008;7(9):771–82.

    Article  CAS  PubMed  Google Scholar 

  6. Tannock IF, Lee CM, Tunggal JK, Cowan DS, Egorin MJ. Limited penetration of anticancer drugs through tumor tissue: a potential cause of resistance of solid tumors to chemotherapy. Clin Cancer Res. 2002;8(3):878–84.

    CAS  PubMed  Google Scholar 

  7. Jabir NR, et al. Nanotechnology-based approaches in anticancer research. Int J Nanomedicine. 2012;7:4391.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Gao X, Guo L, Li J, Thu HE, Hussain Z. Nanomedicines guided nanoimaging probes and nanotherapeutics for early detection of lung cancer and abolishing pulmonary metastasis: critical appraisal of newer developments and challenges to clinical transition. J Control Release. 2018;292:29–57.

    Article  CAS  PubMed  Google Scholar 

  9. Khan S, Imran M, Butt TT, Shah SWA, Sohail M, Malik A, et al. Curcumin based nanomedicines as efficient nanoplatform for treatment of cancer: new developments in reversing cancer drug resistance, rapid internalization, and improved anticancer efficacy. Trends Food Sci Technol. 2018;80:8–22.

    Article  CAS  Google Scholar 

  10. Choudhury H, Pandey M, Chin PX, Phang YL, Cheah JY, Ooi SC, et al. Transferrin receptors-targeting nanocarriers for efficient targeted delivery and transcytosis of drugs into the brain tumors: a review of recent advancements and emerging trends. Drug Deliv Transl Res. 2018;8(5):1545–63.

    Article  CAS  PubMed  Google Scholar 

  11. Hussain Z, Arooj M, Malik A, Hussain F, Safdar H, Khan S, et al. Nanomedicines as emerging platform for simultaneous delivery of cancer therapeutics: new developments in overcoming drug resistance and optimizing anticancer efficacy. Artif Cells Nanomed Biotechnol. 2018;6:1–10. https://doi.org/10.1080/21691401.2018.1478420.

    Article  CAS  Google Scholar 

  12. Md S, Kuldeep Singh JKA, Waqas M, Pandey M, Choudhury H, Habib H, et al. Nanoencapsulation of betamethasone valerate using high pressure homogenization-solvent evaporation technique: optimization of formulation and process parameters for efficient dermal targeting. Drug Dev Ind Pharm. 2019;45(2):323–32.

    Article  CAS  PubMed  Google Scholar 

  13. Ndlovu ST, Ullah N, Khan S, Ramharack P, Soliman M, de Matas M, et al. Domperidone nanocrystals with boosted oral bioavailability: fabrication, evaluation and molecular insight into the polymer-domperidone nanocrystal interaction. Drug Deliv Transl Res. 2019;9(1):284–97.

    Article  CAS  PubMed  Google Scholar 

  14. Gorain B, Choudhury H, Pandey M, Kesharwani P, Abeer MM, Tekade RK, et al. Carbon nanotube scaffolds as emerging nanoplatform for myocardial tissue regeneration: a review of recent developments and therapeutic implications. Biomed Pharmacother. 2018;104:496–508.

    Article  CAS  PubMed  Google Scholar 

  15. Hussain Z, Thu HE, Amjad MW, Hussain F, Ahmed TA, Khan S. Exploring recent developments to improve antioxidant, anti-inflammatory and antimicrobial efficacy of curcumin: a review of new trends and future perspectives. Mater Sci Eng C Mater Biol Appl. 2017;77:1316–26.

    Article  CAS  PubMed  Google Scholar 

  16. Hussain Z, Thu HE, Ng SF, Khan S, Katas H. Nanoencapsulation, an efficient and promising approach to maximize wound healing efficacy of curcumin: a review of new trends and state-of-the-art. Colloids Surf B Biointerfaces. 2017;150:223–41.

    Article  CAS  PubMed  Google Scholar 

  17. Howard MD, Jay M, Dziubla TD, Lu X. PEGylation of nanocarrier drug delivery systems: state of the art. J Biomed Nanotechnol. 2008;4(2):133–48.

    Article  CAS  Google Scholar 

  18. Xia H-j, et al. A novel drug–phospholipid complex enriched with micelles: preparation and evaluation in vitro and in vivo. Int J Nanomedicine. 2013;8:545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Owens DE III, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm. 2006;307(1):93–102.

    Article  CAS  PubMed  Google Scholar 

  20. Suk JS, Xu Q, Kim N, Hanes J, Ensign LM. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev. 2016;99:28–51.

    Article  CAS  PubMed  Google Scholar 

  21. Tenzer S, Docter D, Kuharev J, Musyanovych A, Fetz V, Hecht R, et al. Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat Nanotechnol. 2013;8(10):772–81.

    Article  CAS  PubMed  Google Scholar 

  22. Vllasaliu D, Fowler R, Stolnik S. PEGylated nanomedicines: recent progress and remaining concerns. Expert Opin Drug Deliv. 2014;11(1):139–54.

    Article  CAS  PubMed  Google Scholar 

  23. Knop K, Hoogenboom R, Fischer D, Schubert US. Poly (ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew Chem Int Ed. 2010;49(36):6288–308.

    Article  CAS  Google Scholar 

  24. Abuchowski A, van Es T, Palczuk NC, Davis FF. Alteration of immunological properties of bovine serum albumin by covalent attachment of polyethylene glycol. J Biol Chem. 1977;252(11):3578–81.

    CAS  PubMed  Google Scholar 

  25. Stolnik S, Illum L, Davis S. Long circulating microparticulate drug carriers. Adv Drug Deliv Rev. 1995;16(2–3):195–214.

    Article  CAS  Google Scholar 

  26. Harris JM, Chess RB. Effect of pegylation on pharmaceuticals. Nat Rev Drug Discov. 2003;2(3):214–21.

    Article  CAS  PubMed  Google Scholar 

  27. Israelachvili J. The different faces of poly (ethylene glycol). Proc Natl Acad Sci. 1997;94(16):8378–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pasut G, Veronese FM. State of the art in PEGylation: the great versatility achieved after forty years of research. J Control Release. 2012;161(2):461–72.

    Article  CAS  PubMed  Google Scholar 

  29. Gref R, Minamitake Y, Peracchia M, Trubetskoy V, Torchilin V, Langer R. Biodegradable long-circulating polymeric nanospheres. Science. 1994;263(5153):1600–3.

    Article  CAS  PubMed  Google Scholar 

  30. Peracchia M, et al. Stealth® PEGylated polycyanoacrylate nanoparticles for intravenous administration and splenic targeting. J Control Release. 1999;60(1):121–8.

    Article  CAS  PubMed  Google Scholar 

  31. Torchilin VP, Trubetskoy VS. Which polymers can make nanoparticulate drug carriers long-circulating? Adv Drug Deliv Rev. 1995;16(2–3):141–55.

    Article  CAS  Google Scholar 

  32. Otsuka H, Nagasaki Y, Kataoka K. PEGylated nanoparticles for biological and pharmaceutical applications. Adv Drug Deliv Rev. 2012;64:246–55.

    Article  Google Scholar 

  33. Jo S, Park K. Surface modification using silanated poly (ethylene glycol) s. Biomaterials. 2000;21(6):605–16.

    Article  CAS  PubMed  Google Scholar 

  34. Yoncheva K, Gómez S, Campanero MA, Gamazo C, Irache JM. Bioadhesive properties of pegylated nanoparticles. Expert Opin Drug Deliv. 2005;2(2):205–18.

    Article  CAS  PubMed  Google Scholar 

  35. Peracchia MT, Vauthier C, Passirani C, Couvreur P, Labarre D. Complement consumption by poly (ethylene glycol) in different conformations chemically coupled to poly (isobutyl 2-cyanoacrylate) nanoparticles. Life Sci. 1997;61(7):749–61.

    Article  CAS  PubMed  Google Scholar 

  36. Bazile D, Prud’homme C, Bassoullet MT, Marlard M, Spenlehauer G, Veillard M. Stealth Me.PEG-PLA nanoparticles avoid uptake by the mononuclear phagocytes system. J Pharm Sci. 1995;84(4):493–8.

    Article  CAS  PubMed  Google Scholar 

  37. Torchilin V. Polymer-coated long-circulating microparticulate pharmaceuticals. J Microencapsul. 1998;15(1):1–19.

    Article  CAS  PubMed  Google Scholar 

  38. Kolishetti N, Dhar S, Valencia PM, Lin LQ, Karnik R, Lippard SJ, et al. Engineering of self-assembled nanoparticle platform for precisely controlled combination drug therapy. Proc Natl Acad Sci. 2010;107(42):17939–44.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Gu F, Zhang L, Teply BA, Mann N, Wang A, Radovic-Moreno AF, et al. Precise engineering of targeted nanoparticles by using self-assembled biointegrated block copolymers. Proc Natl Acad Sci. 2008;105(7):2586–91.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Dhar S, Kolishetti N, Lippard SJ, Farokhzad OC. Targeted delivery of a cisplatin prodrug for safer and more effective prostate cancer therapy in vivo. Proc Natl Acad Sci. 2011;108(5):1850–5.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Dhar S, Gu FX, Langer R, Farokhzad OC, Lippard SJ. Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt (IV) prodrug-PLGA–PEG nanoparticles. Proc Natl Acad Sci. 2008;105:17356–61.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Xu Q, Ensign LM, Boylan NJ, Schön A, Gong X, Yang JC, et al. Impact of surface polyethylene glycol (PEG) density on biodegradable nanoparticle transport in mucus ex vivo and distribution in vivo. ACS Nano. 2015;9(9):9217–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hrkach J, et al. Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated pharmacological profile. Sci Transl Med. 2012;4(128):128ra39–128ra39.

    Article  Google Scholar 

  44. Yang M, Lai SK, Wang YY, Zhong W, Happe C, Zhang M, et al. Biodegradable nanoparticles composed entirely of safe materials that rapidly penetrate human mucus. Angew Chem. 2011;123(11):2645–8.

    Article  Google Scholar 

  45. Yang M, Yu T, Wang YY, Lai SK, Zeng Q, Miao B, et al. Vaginal delivery of paclitaxel via nanoparticles with non-mucoadhesive surfaces suppresses cervical tumor growth. Adv Healthc Mater. 2014;3(7):1044–52.

    Article  CAS  PubMed  Google Scholar 

  46. Wang H, Zhao P, Su W, Wang S, Liao Z, Niu R, et al. PLGA/polymeric liposome for targeted drug and gene co-delivery. Biomaterials. 2010;31(33):8741–8.

    Article  CAS  PubMed  Google Scholar 

  47. Pulkkinen M, et al. Three-step tumor targeting of paclitaxel using biotinylated PLA-PEG nanoparticles and avidin–biotin technology: formulation development and in vitro anticancer activity. Eur J Pharm Biopharm. 2008;70(1):66–74.

    Article  CAS  PubMed  Google Scholar 

  48. Cu Y, Saltzman WM. Controlled surface modification with poly (ethylene) glycol enhances diffusion of PLGA nanoparticles in human cervical mucus. Mol Pharm. 2008;6(1):173–81.

    Article  CAS  Google Scholar 

  49. Nance EA, et al. A dense poly (ethylene glycol) coating improves penetration of large polymeric nanoparticles within brain tissue. Sci Transl Med. 2012;4(149):149ra119–149ra119.

    Article  CAS  Google Scholar 

  50. Kim Y, Hechler B́, Gao ZG, Gachet C, Jacobson KA. PEGylated dendritic unimolecular micelles as versatile carriers for ligands of G protein-coupled receptors. Bioconjug Chem. 2009;20(10):1888–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Perrault SD, Chan WC. Synthesis and surface modification of highly monodispersed, spherical gold nanoparticles of 50–200 nm. J Am Chem Soc. 2009;131(47):17042–3.

    Article  CAS  PubMed  Google Scholar 

  52. Uster PS, Allen TM, Daniel BE, Mendez CJ, Newman MS, Zhu GZ. Insertion of poly (ethylene glycol) derivatized phospholipid into pre-formed liposomes results in prolonged in vivo circulation time. FEBS Lett. 1996;386(2–3):243–6.

    Article  CAS  PubMed  Google Scholar 

  53. Saba TM. Physiology and physiopathology of the reticuloendothelial system. Arch Intern Med. 1970;126(6):1031–52.

    Article  CAS  PubMed  Google Scholar 

  54. Jokerst JV, Lobovkina T, Zare RN, Gambhir SS. Nanoparticle PEGylation for imaging and therapy. Nanomedicine. 2011;6(4):715–28.

    Article  CAS  PubMed  Google Scholar 

  55. Allen TM, Hansen C, Rutledge J. Liposomes with prolonged circulation times: factors affecting uptake by reticuloendothelial and other tissues. Biochim Biophys Acta (BBA)-Biomembr. 1989;981(1):27–35.

    Article  CAS  Google Scholar 

  56. Casals E, Pfaller T, Duschl A, Oostingh GJ, Puntes V. Time evolution of the nanoparticle protein corona. ACS Nano. 2010;4(7):3623–32.

    Article  CAS  PubMed  Google Scholar 

  57. Tirosh O, Barenholz Y, Katzhendler J, Priev A. Hydration of polyethylene glycol-grafted liposomes. Biophys J. 1998;74(3):1371–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bukhari SNA, Roswandi NL, Waqas M, Habib H, Hussain F, Khan S, et al. Hyaluronic acid, a promising skin rejuvenating biomedicine: a review of recent updates and pre-clinical and clinical investigations on cosmetic and nutricosmetic effects. Int J Biol Macromol. 2018;120(Pt B):1682–95.

    Article  CAS  PubMed  Google Scholar 

  59. Chen LH, Xue JF, Zheng ZY, Shuhaidi M, Thu HE, Hussain Z. Hyaluronic acid, an efficient biomacromolecule for treatment of inflammatory skin and joint diseases: a review of recent developments and critical appraisal of preclinical and clinical investigations. Int J Biol Macromol. 2018;116:572–84.

    Article  CAS  PubMed  Google Scholar 

  60. Hussain Z, Thu HE, Katas H, Bukhari SNA. Hyaluronic acid-based biomaterials: a versatile and smart approach to tissue regeneration and treating traumatic, surgical, and chronic wounds. Polym Rev. 2017;57(4):594–630.

    Article  CAS  Google Scholar 

  61. Zhuo F, Abourehab MAS, Hussain Z. Hyaluronic acid decorated tacrolimus-loaded nanoparticles: efficient approach to maximize dermal targeting and anti-dermatitis efficacy. Carbohydr Polym. 2018;197:478–89.

    Article  CAS  PubMed  Google Scholar 

  62. Dong J, Tao L, Abourehab MAS, Hussain Z. Design and development of novel hyaluronate-modified nanoparticles for combo-delivery of curcumin and alendronate: fabrication, characterization, and cellular and molecular evidences of enhanced bone regeneration. Int J Biol Macromol. 2018;116:1268–81.

    Article  CAS  PubMed  Google Scholar 

  63. Pandey M, Choudhury H, Gunasegaran TAP, Nathan SS, Md S, Gorain B, et al. Hyaluronic acid-modified betamethasone encapsulated polymeric nanoparticles: fabrication, characterisation, in vitro release kinetics, and dermal targeting. Drug Deliv Transl Res. 2018. https://doi.org/10.1007/s13346-018-0480-1.

  64. Safdar MH, Hussain Z, Abourehab MAS, Hasan H, Afzal S, Thu HE. New developments and clinical transition of hyaluronic acid-based nanotherapeutics for treatment of cancer: reversing multidrug resistance, tumour-specific targetability and improved anticancer efficacy. Artif Cells Nanomed Biotechnol. 2018;46(8):1967–80.

    CAS  PubMed  Google Scholar 

  65. Choi KY, Min KH, Yoon HY, Kim K, Park JH, Kwon IC, et al. PEGylation of hyaluronic acid nanoparticles improves tumor targetability in vivo. Biomaterials. 2011;32(7):1880–9.

    Article  CAS  PubMed  Google Scholar 

  66. Cho H-J, Yoon IS, Yoon HY, Koo H, Jin YJ, Ko SH, et al. Polyethylene glycol-conjugated hyaluronic acid-ceramide self-assembled nanoparticles for targeted delivery of doxorubicin. Biomaterials. 2012;33(4):1190–200.

    Article  CAS  PubMed  Google Scholar 

  67. Yang T, Cui FD, Choi MK, Cho JW, Chung SJ, Shim CK, et al. Enhanced solubility and stability of PEGylated liposomal paclitaxel: in vitro and in vivo evaluation. Int J Pharm. 2007;338(1–2):317–26.

    Article  CAS  PubMed  Google Scholar 

  68. Ramasamy T, Haidar ZS, Tran TH, Choi JY, Jeong JH, Shin BS, et al. Layer-by-layer assembly of liposomal nanoparticles with PEGylated polyelectrolytes enhances systemic delivery of multiple anticancer drugs. Acta Biomater. 2014;10(12):5116–27.

    Article  CAS  PubMed  Google Scholar 

  69. Konerding M, Fait E, Gaumann A. 3D microvascular architecture of pre-cancerous lesions and invasive carcinomas of the colon. Br J Cancer. 2001;84(10):1354–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Baban DF, Seymour LW. Control of tumour vascular permeability. Adv Drug Deliv Rev. 1998;34(1):109–19.

    Article  CAS  PubMed  Google Scholar 

  71. Jang SH, Wientjes MG, Lu D, Au JLS. Drug delivery and transport to solid tumors. Pharm Res. 2003;20(9):1337–50.

    Article  CAS  PubMed  Google Scholar 

  72. Hobbs SK, Monsky WL, Yuan F, Roberts WG, Griffith L, Torchilin VP, et al. Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci. 1998;95(8):4607–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release. 2000;65(1–2):271–84.

    Article  CAS  PubMed  Google Scholar 

  74. Maeda H, Matsumura Y. Tumoritropic and lymphotropic principles of macromolecular drugs. Crit Rev Ther Drug Carrier Syst. 1989;6(3):193–210.

    CAS  PubMed  Google Scholar 

  75. Huynh NT, Roger E, Lautram N, Benoît JP, Passirani C. The rise and rise of stealth nanocarriers for cancer therapy: passive versus active targeting. Nanomedicine. 2010;5(9):1415–33.

    Article  CAS  PubMed  Google Scholar 

  76. Koo OM, Rubinstein I, Onyuksel H. Role of nanotechnology in targeted drug delivery and imaging: a concise review. Nanomedicine. 2005;1(3):193–212.

    Article  CAS  PubMed  Google Scholar 

  77. Moghimi SM, Hunter AC, Murray JC. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev. 2001;53(2):283–318.

    CAS  PubMed  Google Scholar 

  78. Akiyama Y, Mori T, Katayama Y, Niidome T. The effects of PEG grafting level and injection dose on gold nanorod biodistribution in the tumor-bearing mice. J Control Release. 2009;139(1):81–4.

    Article  CAS  PubMed  Google Scholar 

  79. Okuda T, Kawakami S, Akimoto N, Niidome T, Yamashita F, Hashida M. PEGylated lysine dendrimers for tumor-selective targeting after intravenous injection in tumor-bearing mice. J Control Release. 2006;116(3):330–6.

    Article  CAS  PubMed  Google Scholar 

  80. Zhang Y, Yang C, Wang W, Liu J, Liu Q, Huang F, et al. Co-delivery of doxorubicin and curcumin by pH-sensitive prodrug nanoparticle for combination therapy of cancer. Sci Rep. 2016;6:21225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lila ASA, et al. Sequential administration with oxaliplatin-containing PEG-coated cationic liposomes promotes a significant delivery of subsequent dose into murine solid tumor. J Control Release. 2010;142(2):167–73.

    Article  CAS  PubMed  Google Scholar 

  82. Kim T-H, Mount CW, Gombotz WR, Pun SH. The delivery of doxorubicin to 3-D multicellular spheroids and tumors in a murine xenograft model using tumor-penetrating triblock polymeric micelles. Biomaterials. 2010;31(28):7386–97.

    Article  CAS  PubMed  Google Scholar 

  83. Seleci DA, et al. Tumor homing and penetrating peptide-conjugated niosomes as multi-drug carriers for tumor-targeted drug delivery. RSC Adv. 2017;7(53):33378–84.

    Article  Google Scholar 

  84. Cheng J, et al. Formulation of functionalized PLGA–PEG nanoparticles for in vivo targeted drug delivery. Biomaterials. 2007;28(5):869–76.

    Article  CAS  PubMed  Google Scholar 

  85. Wei M, et al. Lactoferrin-modified PEGylated liposomes loaded with doxorubicin for targeting delivery to hepatocellular carcinoma. Int J Nanomedicine. 2015;10:5123.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Hu C-MJ, Zhang L. Therapeutic nanoparticles to combat cancer drug resistance. Curr Drug Metab. 2009;10(8):836–41.

    Article  CAS  PubMed  Google Scholar 

  87. Dong X, Mumper RJ. Nanomedicinal strategies to treat multidrug-resistant tumors: current progress. Nanomedicine. 2010;5(4):597–615.

    Article  CAS  PubMed  Google Scholar 

  88. Mayer LD, Shabbits JA. The role for liposomal drug delivery in molecular and pharmacological strategies to overcome multidrug resistance. Cancer Metastasis Rev. 2001;20(1–2):87–93.

    Article  CAS  PubMed  Google Scholar 

  89. Yu J, Deng H, Xie F, Chen W, Zhu B, Xu Q. The potential of pH-responsive PEG-hyperbranched polyacylhydrazone micelles for cancer therapy. Biomaterials. 2014;35(9):3132–44.

    Article  CAS  PubMed  Google Scholar 

  90. Abouzeid AH, Patel NR, Torchilin VP. Polyethylene glycol-phosphatidylethanolamine (PEG-PE)/vitamin E micelles for co-delivery of paclitaxel and curcumin to overcome multi-drug resistance in ovarian cancer. Int J Pharm. 2014;464(1–2):178–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Liu Y, Huang L, Liu F. Paclitaxel nanocrystals for overcoming multidrug resistance in cancer. Mol Pharm. 2010;7(3):863–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hu Z, et al. Arg-Gly-Asp (RGD) peptide conjugated poly (lactic acid)–poly (ethylene oxide) micelle for targeted drug delivery. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials. J Biomed Mater Res A. 2008;85(3):797–807.

  93. Khalid MN, Simard P, Hoarau D, Dragomir A, Leroux JC. Long circulating poly (ethylene glycol)-decorated lipid nanocapsules deliver docetaxel to solid tumors. Pharm Res. 2006;23(4):752–8.

    Article  CAS  PubMed  Google Scholar 

  94. Mattheolabakis G, Taoufik E, Haralambous S, Roberts ML, Avgoustakis K. In vivo investigation of tolerance and antitumor activity of cisplatin-loaded PLGA-mPEG nanoparticles. Eur J Pharm Biopharm. 2009;71(2):190–5.

    Article  CAS  PubMed  Google Scholar 

  95. Matsumura Y, Hamaguchi T, Ura T, Muro K, Yamada Y, Shimada Y, et al. Phase I clinical trial and pharmacokinetic evaluation of NK911, a micelle-encapsulated doxorubicin. Br J Cancer. 2004;91(10):1775–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Seetharamu N, Kim E, Hochster H, Martin F, Muggia F. Phase II study of liposomal cisplatin (SPI-77) in platinum-sensitive recurrences of ovarian cancer. Anticancer Res. 2010;30(2):541–5.

    CAS  PubMed  Google Scholar 

  97. Boulikas T. Clinical overview on Lipoplatin™: a successful liposomal formulation of cisplatin. Expert Opin Investig Drugs. 2009;18(8):1197–218.

    Article  CAS  PubMed  Google Scholar 

  98. Hofheinz R-D, Gnad-Vogt SU, Beyer U, Hochhaus A. Liposomal encapsulated anti-cancer drugs. Anti-Cancer Drugs. 2005;16(7):691–707.

    Article  CAS  PubMed  Google Scholar 

  99. Danhier F, Feron O, Préat V. To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release. 2010;148(2):135–46.

    Article  CAS  PubMed  Google Scholar 

  100. Werner ME, et al. Preclinical evaluation of Genexol-PM, a nanoparticle formulation of paclitaxel, as a novel radiosensitizer for the treatment of non-small cell lung cancer. Int J Radiat Oncol* Biol* Phys. 2013;86(3):463–8.

    Article  CAS  Google Scholar 

  101. Kim T-Y, Kim DW, Chung JY, Shin SG, Kim SC, Heo DS, et al. Phase I and pharmacokinetic study of Genexol-PM, a cremophor-free, polymeric micelle-formulated paclitaxel, in patients with advanced malignancies. Clin Cancer Res. 2004;10(11):3708–16.

    Article  CAS  PubMed  Google Scholar 

  102. Ma P, Mumper RJ. Paclitaxel nano-delivery systems: a comprehensive review. J Nanomed Nanotechnol. 2013;4(2):1000164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Wang T, Yang S, Mei LA, Parmar CK, Gillespie JW, Praveen KP, Petrenko VA, Torchilin VP. Paclitaxel-loaded PEG-PE-based micellar nanopreparations targeted with tumor-specific landscape phage fusion protein enhance apoptosis and efficiently reduce tumors. Mol Cancer Ther. 2014; 13(12):2864-2875

  104. Bocca C, Caputo O, Cavalli R, Gabriel L, Miglietta A, Gasco MR. Phagocytic uptake of fluorescent stealth and non-stealth solid lipid nanoparticles. Int J Pharm. 1998;175(2):185–93.

    Article  CAS  Google Scholar 

  105. Hatakeyama H, Akita H, Kogure K, Oishi M, Nagasaki Y, Kihira Y, et al. Development of a novel systemic gene delivery system for cancer therapy with a tumor-specific cleavable PEG-lipid. Gene Ther. 2007;14(1):68–77.

    Article  CAS  PubMed  Google Scholar 

  106. Chen B, Dai W, He B, Zhang H, Wang X, Wang Y, et al. Current multistage drug delivery systems based on the tumor microenvironment. Theranostics. 2017;7(3):538–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Perche F, Biswas S, Wang T, Zhu L, Torchilin VP. Hypoxia-targeted siRNA delivery. Angew Chem. 2014;126(13):3430–4.

    Article  Google Scholar 

  108. Dong H, Tang M, Li Y, Li Y, Qian D, Shi D. Disulfide-bridged cleavable PEGylation in polymeric nanomedicine for controlled therapeutic delivery. Nanomedicine. 2015;10(12):1941–58.

    Article  CAS  PubMed  Google Scholar 

  109. Xu C-F, Zhang HB, Sun CY, Liu Y, Shen S, Yang XZ, et al. Tumor acidity-sensitive linkage-bridged block copolymer for therapeutic siRNA delivery. Biomaterials. 2016;88:48–59.

    Article  CAS  PubMed  Google Scholar 

  110. Sun C-Y, Shen S, Xu CF, Li HJ, Liu Y, Cao ZT, et al. Tumor acidity-sensitive polymeric vector for active targeted siRNA delivery. J Am Chem Soc. 2015;137(48):15217–24.

    Article  CAS  PubMed  Google Scholar 

  111. Moghimi SM, Hamad I, Andresen TL, Jørgensen K, Szebeni J. Methylation of the phosphate oxygen moiety of phospholipid-methoxy (polyethylene glycol) conjugate prevents PEGylated liposome-mediated complement activation and anaphylatoxin production. FASEB J. 2006;20(14):2591–3.

    Article  CAS  PubMed  Google Scholar 

  112. Hamad I, Hunter AC, Szebeni J, Moghimi SM. Poly (ethylene glycol) s generate complement activation products in human serum through increased alternative pathway turnover and a MASP-2-dependent process. Mol Immunol. 2008;46(2):225–32.

    Article  CAS  PubMed  Google Scholar 

  113. Ishida T, Ichihara M, Wang XY, Yamamoto K, Kimura J, Majima E, et al. Injection of PEGylated liposomes in rats elicits PEG-specific IgM, which is responsible for rapid elimination of a second dose of PEGylated liposomes. J Control Release. 2006;112(1):15–25.

    Article  CAS  PubMed  Google Scholar 

  114. Ishida T, Masuda K, Ichikawa T, Ichihara M, Irimura K, Kiwada H. Accelerated clearance of a second injection of PEGylated liposomes in mice. Int J Pharm. 2003;255(1–2):167–74.

    Article  CAS  PubMed  Google Scholar 

  115. Ishida T, Maeda R, Ichihara M, Irimura K, Kiwada H. Accelerated clearance of PEGylated liposomes in rats after repeated injections. J Control Release. 2003;88(1):35–42.

    Article  CAS  PubMed  Google Scholar 

  116. Amoozgar Z, Yeo Y. Recent advances in stealth coating of nanoparticle drug delivery systems. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2012;4(2):219–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kamaly N, Xiao Z, Valencia PM, Radovic-Moreno AF, Farokhzad OC. Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem Soc Rev. 2012;41(7):2971–3010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Duncan R, Gaspar R. Nanomedicine (s) under the microscope. Mol Pharm. 2011;8(6):2101–41.

    Article  CAS  PubMed  Google Scholar 

  119. Webster R, Didier E, Harris P, Siegel N, Stadler J, Tilbury L, et al. PEGylated proteins: evaluation of their safety in the absence of definitive metabolism studies. Drug Metab Dispos. 2006;35:9–16.

    Article  CAS  PubMed  Google Scholar 

  120. Markovsky E, Baabur-Cohen H, Eldar-Boock A, Omer L, Tiram G, Ferber S, et al. Administration, distribution, metabolism and elimination of polymer therapeutics. J Control Release. 2012;161(2):446–60.

    Article  CAS  PubMed  Google Scholar 

  121. Robert NJ, et al. The role of the liposomal anthracyclines and other systemic therapies in the management of advanced breast cancer. In: Seminars in Oncology. Amsterdam: Elsevier; 2004.

    Google Scholar 

Download references

Acknowledgements

The authors would like to greatly acknowledge the Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Selangor, Malaysia, for their support in accomplishing this review project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahid Hussain.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, Z., Khan, S., Imran, M. et al. PEGylation: a promising strategy to overcome challenges to cancer-targeted nanomedicines: a review of challenges to clinical transition and promising resolution. Drug Deliv. and Transl. Res. 9, 721–734 (2019). https://doi.org/10.1007/s13346-019-00631-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-019-00631-4

Keywords

Navigation