Skip to main content
Log in

Long Non-coding RNA ZFAS1 Regulates Fibrosis and Scortosis in the Cell Model of Diabetic Nephropathy Through miR-525-5p/SGK1 Axis

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Diabetic nephropathy (DN) is a common clinical syndrome in diabetic patients. Functional characterization of non-coding (ncRNAs) involved in the progression of DN can provide insights into the diagnosis and therapeutic management of DN. Human kidney proximal tubular epithelial cells (HK-2) were challenged by high glucose (HG, 50 mM) as a cell model of DN. The expression level of long non-coding RNA (lncRNA) ZFAS1 was quantified by qRT-PCR. The proteins and cytokines related to fibrosis and scortosis in DN (NLRP3, GSDMD-N, IL-1β and Caspase 1, fibronectin, collagen I, collagen III, IL-1β, and IL-18) were examined by western blot or ELISA. RNA precipitation and luciferase reporter activity experiments were conducted to assess the molecular associations. ZFAS1 and SGK1 were highly induced in HK-2 cells challenged with HG, while miR-525-5p downregulated upon HG treatment. ZFAS1 knockdown attenuated HG-induced fibrosis and scortosis in HK-2 cells by reducing the levels of NLRP3, GSDMD-N, Caspase 1, fibronectin, collagen I/III, IL-1β, and IL-18. Mechanically, ZFAS1 knockdown protected HK-2 cells from HG-induced injury by upregulating miR-525-5p and repressing SGK1 expression. Overall, our results suggest that knocking down ZFAS1 may be formulated as a protective strategy in ameliorating DN progression through regulating miR-525-5p/SGK1 pathway. Targeting ZFAS1 could be further explored as a potential approach for the management of DN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The experimental data present in the manuscript can be obtained from the corresponding author upon reasonable request.

References

  1. Ma, R. C. W. (2018). Epidemiology of diabetes and diabetic complications in China. Diabetologia, 61(6), 1249–1260.

    Article  PubMed  Google Scholar 

  2. Valenti, G., & Tamma, G. (2016). History of diabetes insipidus. Giornale Italiano di Nefrologia., 33 Suppl 66(33), S66 1.

    Google Scholar 

  3. Forbes, J. M., Fukami, K., & Cooper, M. E. (2007). Diabetic nephropathy: Where hemodynamics meets metabolism. Experimental and Clinical Endocrinology & Diabetes, 115(2), 69–84.

    Article  CAS  Google Scholar 

  4. Kanasaki, K., Taduri, G., & Koya, D. (2013). Diabetic nephropathy: The role of inflammation in fibroblast activation and kidney fibrosis. Front Endocrinol (Lausanne)., 4, 7.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Shi, G. J., Shi, G. R., Zhou, J. Y., Zhang, W. J., Gao, C. Y., et al. (2018). Involvement of growth factors in diabetes mellitus and its complications: A general review. Biomedicine & Pharmacotherapy, 101, 510–527.

    Article  CAS  Google Scholar 

  6. Tang, J., Liu, F., Cooper, M. E., & Chai, Z. (2022). Renal fibrosis as a hallmark of diabetic kidney disease: Potential role of targeting transforming growth factor-beta (TGF-β) and related molecules. Expert Opinion on Therapeutic Targets, 26(8), 721–738.

    Article  CAS  PubMed  Google Scholar 

  7. Kashihara, N., Haruna, Y., Kondeti, V. K., & Kanwar, Y. S. (2010). Oxidative stress in diabetic nephropathy. Current Medicinal Chemistry, 17(34), 4256–4269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Matoba, K., Takeda, Y., Nagai, Y., Kawanami, D., Utsunomiya, K., & Nishimura, R. (2019). Unraveling the role of inflammation in the pathogenesis of diabetic kidney disease. International Journal of Molecular Sciences, 20(14), 3393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang, Y., Jin, D., Duan, Y., Zhang, Y., Duan, L., Lian, F., & Tong, X. (2022). Bibliometric analysis of renal fibrosis in diabetic kidney disease from 1985 to 2020. Frontiers in Public Health, 10, 767591.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Piccoli, G. B., Grassi, G., Cabiddu, G., Nazha, M., Roggero, S., Capizzi, I., De Pascale, A., Priola, A. M., Di Vico, C., Maxia, S., Loi, V., Asunis, A. M., Pani, A., & Veltri, A. (2015). Diabetic kidney disease: A syndrome rather than a single disease. The Review of Diabetic Studies, 12(1–2), 87–109.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ponting, C. P., Oliver, P. L., & Reik, W. (2009). Evolution and functions of long noncoding RNAs. Cell, 136(4), 629–641.

    Article  CAS  PubMed  Google Scholar 

  12. Mercer, T. R., Dinger, M. E., & Mattick, J. S. (2009). Long non-coding RNAs: Insights into functions. Nature Reviews Genetics, 10(3), 155–159.

    Article  CAS  PubMed  Google Scholar 

  13. Qiu, X., Li, C., & Chen, H. (2021). Long noncoding RNA ZFAS1 promotes progression of oral squamous cell carcinoma through targeting miR-6499-3p/CCL5 axis. In Vivo, 35(6), 3211–3220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Deng, H., Wang, M., Xu, Q., & Yao, H. (2021). ZFAS1 promotes colorectal cancer metastasis through modulating miR-34b/SOX4 targeting. Cell Biochemistry and Biophysics, 79(2), 387–396.

    Article  CAS  PubMed  Google Scholar 

  15. Zhang, B., Chen, J., Cui, M., & Jiang, Y. (2020). LncRNA ZFAS1/miR-1271-5p/HK2 promotes glioma development through regulating proliferation, migration, invasion and apoptosis. Neurochemical Research, 45(12), 2828–2839.

    Article  CAS  PubMed  Google Scholar 

  16. Wang, M., Ji, Y. Q., Song, Z. B., Ma, X. X., Zou, Y. Y., & Li, X. S. (2019). Knockdown of lncRNA ZFAS1 inhibits progression of nasopharyngeal carcinoma by sponging miR-135a. Neoplasma, 66(6), 939–945.

    Article  CAS  PubMed  Google Scholar 

  17. Han, C. G., Huang, Y., & Qin, L. (2019). Long non-coding RNA ZFAS1 as a novel potential biomarker for predicting the prognosis of thyroid cancer. Medical Science Monitor, 25, 2984–2992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. He, A., He, S., Li, X., & Zhou, L. (2019). ZFAS1: A novel vital oncogenic lncRNA in multiple human cancers. Cell Proliferation, 52(1), e12513.

    Article  PubMed  Google Scholar 

  19. He, C., Su, C., Zhang, W., Zhou, Q., Shen, X., Yang, J., et al. (2021). Modulatory potential of lncRNA Zfas1 for inflammation and neuronal apoptosis in temporal lobe epilepsy. Yonsei Medical Journal, 62(3), 215–223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yang, S., Yin, W., Ding, Y., & Liu, F. (2020). Lnc RNA ZFAS1 regulates the proliferation, apoptosis, inflammatory response and autophagy of fibroblast-like synoviocytes via miR-2682-5p/ADAMTS9 axis in rheumatoid arthritis. Biosci Rep., 40(8), BSR20201273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tang, X., Yin, R., Shi, H., Wang, X., Shen, D., Wang, X., et al. (2020). LncRNA ZFAS1 confers inflammatory responses and reduces cholesterol efflux in atherosclerosis through regulating miR-654-3p-ADAM10/RAB22A axis. International Journal of Cardiology, 315, 72–80.

    Article  PubMed  Google Scholar 

  22. Ni, T., Huang, X., Pan, S., & Lu, Z. (2021). Inhibition of the long non-coding RNA ZFAS1 attenuates ferroptosis by sponging miR-150-5p and activates CCND2 against diabetic cardiomyopathy. Journal of Cellular and Molecular Medicine, 25(21), 9995–10007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wu, T., Wu, D., Wu, Q., Zou, B., Huang, X., Cheng, X., et al. (2017). Knockdown of long non-coding RNA-ZFAS1 protects cardiomyocytes against acute myocardial infarction via anti-apoptosis by regulating miR-150/CRP. Journal of Cellular Biochemistry, 118(10), 3281–3289.

    Article  CAS  PubMed  Google Scholar 

  24. Artunc, F., & Lang, F. (2014). Mineralocorticoid and SGK1-sensitive inflammation and tissue fibrosis. Nephron. Physiology, 128(1–2), 35–39.

    Article  CAS  PubMed  Google Scholar 

  25. Feng, Y., Wang, Q., Wang, Y., Yard, B., & Lang, F. (2005). SGK1-mediated fibronectin formation in diabetic nephropathy. Cellular Physiology and Biochemistry, 16(4–6), 237–244.

    Article  CAS  PubMed  Google Scholar 

  26. Jiang, M., Zhang, H., Zhai, L., Ye, B., Cheng, Y., & Zhai, C. (2017). ALA/LA ameliorates glucose toxicity on HK-2 cells by attenuating oxidative stress and apoptosis through the ROS/p38/TGF-β1 pathway. Lipids in Health and Disease, 16(1), 216.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Lin, H. C., Paul, C. R., Kuo, C. H., Chang, Y. H., Chen, W. S., et al. (2022). Glycyrrhiza uralensis root extract ameliorates high glucose-induced renal proximal tubular fibrosis by attenuating tubular epithelial-myofibroblast transdifferentiation by targeting TGF-β1/Smad/Stat3 pathway. Journal of Food Biochemistry, 46(5), e14041.

    Article  CAS  PubMed  Google Scholar 

  28. Doshi, S. M., & Friedman, A. N. (2017). Diagnosis and management of type 2 diabetic kidney disease. Clinical Journal of the American Society of Nephrology, 12(8), 1366–1373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Adler, S. (2004). Diabetic nephropathy: Linking histology, cell biology, and genetics. Kidney International, 66(5), 2095–2106.

    Article  PubMed  Google Scholar 

  30. Liu, H., Zhang, X., Jin, X., Yang, Y., Liang, G., Ma, Y., et al. (2020). Long noncoding RNA VPS9D1-AS1 sequesters microRNA-525-5p to promote the oncogenicity of colorectal cancer cells by upregulating HMGA1. Cancer Manag Res., 12, 9915–9928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shen, H. Y., Shi, L. X., Wang, L., Fang, L. P., Xu, W., Xu, J. Q., et al. (2021). Correction to: Hsa_circ_0001361 facilitates the progress of lung adenocarcinoma cells via targeting miR-525-5p/VMA21 axis. Journal of Translational Medicine, 19(1), 476.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Chen, M., & Liu, L. X. (2020). MiR-525-5p repressed metastasis and anoikis resistance in cervical cancer via blocking UBE2C/ZEB1/2 signal axis. Digestive Diseases and Sciences, 65(8), 2442–2451.

    Article  CAS  PubMed  Google Scholar 

  33. Xie, P., Han, Q., Liu, D., Yao, D., Lu, X., Wang, Z., et al. (2020). miR-525-5p modulates proliferation and epithelial-mesenchymal transition of glioma by targeting stat-1. Oncotargets and Therapy, 13, 9957–9966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang, Y., Hou, Y. M., Gao, F., Xiao, J. W., Li, C. C., & Tang, Y. (2019). lncRNA GAS5 regulates myocardial infarction by targeting the miR-525-5p/CALM2 axis. Journal of Cellular Biochemistry, 120(11), 18678–18688.

    Article  CAS  PubMed  Google Scholar 

  35. Wang, Y., Cao, R., Yang, W., & Qi, B. (2019). SP1-SYNE1-AS1-miR-525-5p feedback loop regulates Ang-II-induced cardiac hypertrophy. Journal of Cellular Physiology, 234(8), 14319–14329.

    Article  CAS  PubMed  Google Scholar 

  36. Lang, F., Gorlach, A., & Vallon, V. (2009). Targeting SGK1 in diabetes. Expert Opinion on Therapeutic Targets, 13(11), 1303–1311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang, Q., Zhang, A., Li, R., Liu, J., Xie, J., Deng, A., et al. (2008). High glucose promotes the CTGF expression in human mesangial cells via serum and glucocorticoid-induced kinase 1 pathway. Journal of Huazhong University of Science and Technology. Medical Sciences, 28(5), 508–512.

    Article  Google Scholar 

Download references

Funding

Specialization in Translational Medicine: Translational Medicine Program of Bengbu Medical College (NO. BYTM2019032). Natural Science Research Project of Anhui Educational Committee 2022AH051468;Scientific Research project of Anhui Provincial Health Commission AHWJ2022b056.

Author information

Authors and Affiliations

Authors

Contributions

Langen Zhuang and Guoxi Jin conceived and designed the experiments; Langen Zhuang, Guoxi Jin, and Qiong Wang conducted the experiments and prepared the manuscript; Langen Zhuang, Xiaoxu Ge, and Xiaoyan Pei analyzed the data. All authors proofread the final draft and agreed with the submission.

Corresponding author

Correspondence to Langen Zhuang.

Ethics declarations

Ethics Approval

This study does not require any ethics approval since the experimental works were conducted using cell lines.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Fig. S1

Screening of potential downstream targets of ZFAS1 and miR-525-5p. (A) Starbase prediction of potential binding miRNAs of ZFAS1. (B) RNA-pull down analysis of the interacting miRNAs using biotin-ZFAS1 probe or control oligo in HK-2 cells. Data were normalized to the input sample. (C) Starbase prediction results of mRNA targets of miR-525-5p. (D) RNA-pull down assay of the interacting mRNA targets using biotin-miR-525-5p probe or control oligo in HK-2 cells. Data were normalized to the input sample. *** stands for P < 0.001. (PNG 1523 kb)

High Resolution (TIF 2208 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuang, L., Jin, G., Wang, Q. et al. Long Non-coding RNA ZFAS1 Regulates Fibrosis and Scortosis in the Cell Model of Diabetic Nephropathy Through miR-525-5p/SGK1 Axis. Appl Biochem Biotechnol (2023). https://doi.org/10.1007/s12010-023-04721-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12010-023-04721-5

Keywords

Navigation