Skip to main content
Log in

Recent Insights into Nanotechnology in Colorectal Cancer

  • Review Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Colorectal cancer (CRC) is the third cancer among the known causes of cancer that impact people. Although CRC drug options are imperfect, primary detection of CRC can play a key role in treating the disease and reducing mortality. Cancer tissues show many molecular markers that can be used as a new way to advance therapeutic methods. Nanotechnology includes a wide range of nanomaterials with high diagnostic and therapeutic power. Several nanomaterials and nanoformulations can be used to treat cancer, especially CRC. In this review, we discuss recent insights into nanotechnology in colorectal cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

All information is available in the article.

References

  1. Rawla, P., Sunkara, T., & Barsouk, A. (2019). Epidemiology of colorectal cancer: Incidence, mortality, survival, and risk factors. Gastroenterology Review/Przegląd Gastroenterologiczny, 14(2), 89–103. https://doi.org/10.5114/pg.2018.81072

    Article  CAS  PubMed  Google Scholar 

  2. Horton, K. M., Corl, F. M., & Fishman, E. K. (2000). CT Evaluation of the colon: Inflammatory disease. Radiographics, 20(2), 399–418. https://doi.org/10.1148/radiographics.20.2.g00mc15399

    Article  CAS  PubMed  Google Scholar 

  3. Santiago, I., Figueiredo, N., Parés, O., & Matos, C. (2020). MRI of rectal cancer—relevant anatomy and staging key points. Insights into Imaging, 11(1), 100. https://doi.org/10.1186/s13244-020-00890-7

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kachlik, D., Baca, V., & Stingl, J. (2010). The spatial arrangement of the human large intestinal wall blood circulation. Journal of Anatomy, 216(3), 335–343. https://doi.org/10.1111/j.1469-7580.2009.01199.x

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wong, S. H., & Yu, J. (2019). Gut microbiota in colorectal cancer: Mechanisms of action and clinical applications. Nature Reviews Gastroenterology & Hepatology, 16(11), 690–704. https://doi.org/10.1038/s41575-019-0209-8

    Article  CAS  Google Scholar 

  6. Thomas, M., Sakoda, L. C., Hoffmeister, M., Rosenthal, E. A., Lee, J. K., van Duijnhoven, F. J. B., Platz, E. A., Wu, A. H., Dampier, C. H., de la Chapelle, A., Wolk, A., Joshi, A. D., Burnett-Hartman, A., Gsur, A., Lindblom, A., Castells, A., Win, A. K., Namjou, B., Van Guelpen, B., … Hsu, L. (2020). Genome-wide modeling of polygenic risk score in colorectal cancer risk. The American Journal of Human Genetics, 107(3), 432–444. https://doi.org/10.1016/j.ajhg.2020.07.006

    Article  CAS  PubMed  Google Scholar 

  7. Bürtin, F., Mullins, C. S., & Linnebacher, M. (2020). Mouse models of colorectal cancer: Past, present and future perspectives. World Journal of Gastroenterology, 26(13), 1394–1426. https://doi.org/10.3748/wjg.v26.i13.1394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Testa, U., Pelosi, E., & Castelli, G. (2018). Colorectal cancer: Genetic abnormalities, tumor progression, tumor heterogeneity, clonal evolution and tumor-initiating cells. Medical Sciences, 6(2), 31.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Arvelo, F., Sojo, F., & Cotte, C. (2015). Biology of colorectal cancer. Ecancermedicalscience, 9, 520. https://doi.org/10.3332/ecancer.2015.520

    Article  PubMed  PubMed Central  Google Scholar 

  10. Zoratto, F., Rossi, L., Verrico, M., Papa, A., Basso, E., Zullo, A., Tomao, L., Romiti, A., Russo, G. L., & Tomao, S. (2014). Focus on genetic and epigenetic events of colorectal cancer pathogenesis: Implications for molecular diagnosis. Tumor Biology, 35(7), 6195–6206. https://doi.org/10.1007/s13277-014-1845-9

    Article  CAS  PubMed  Google Scholar 

  11. Morán, A., Ortega, P., de Juan, C., Fernández-Marcelo, T., Frías, C., Sánchez-Pernaute, A., Torres, A. J., Díaz-Rubio, E., Iniesta, P., & Benito, M. (2010). Differential colorectal carcinogenesis: Molecular basis and clinical relevance. World Journal of Gastrointestinal Oncology, 2(3), 151–158. https://doi.org/10.4251/wjgo.v2.i3.151

    Article  PubMed  PubMed Central  Google Scholar 

  12. Joseph, T. M., Kar Mahapatra, D., Esmaeili, A., Piszczyk, Ł, Hasanin, M. S., Kattali, M., Haponiuk, J., & Thomas, S. (2023). Nanoparticles: Taking a unique position in medicine. Nanomaterials, 13(3), 574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Song, W., Jia, P., Zhang, T., Dou, K., Liu, L., Ren, Y., Liu, F., Xue, J., Hasanin, M. S., Qi, H., & Zhou, Q. (2022). Cell membrane-camouflaged inorganic nanoparticles for cancer therapy. Journal of Nanobiotechnology, 20(1), 289. https://doi.org/10.1186/s12951-022-01475-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Salem, S. S., (2023). A mini review on green nanotechnology and its development in biological effects. Archives of Microbiology 205(4). https://doi.org/10.1007/s00203-023-03467-2

  15. Salem, S. S., Hammad, E. N., Mohamed, A. A., & El-Dougdoug, W. (2023). A comprehensive review of nanomaterials: Types, synthesis, characterization, and applications. Biointerface Research in Applied Chemistry 13(1). https://doi.org/10.33263/BRIAC131.041

  16. Hashem, A. H., Saied, E., Ali, O. M., Selim, S., Al Jaouni, S. K., Elkady, F. M., & El-Sayyad, G. S. (2023). Pomegranate peel extract stabilized selenium nanoparticles synthesis: Promising antimicrobial potential, antioxidant activity, biocompatibility, and hemocompatibility. Applied Biochemistry and Biotechnology. https://doi.org/10.1007/s12010-023-04326-y

    Article  PubMed  Google Scholar 

  17. Hashem, A. H., & El-Sayyad, G. S. (2023). Antimicrobial and anticancer activities of biosynthesized bimetallic silver-zinc oxide nanoparticles (Ag-ZnO NPs) using pomegranate peel extract. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-023-04126-8

    Article  Google Scholar 

  18. Salem, S. S. (2022). Bio-fabrication of selenium nanoparticles using baker’s yeast extract and its antimicrobial efficacy on food borne pathogens. Applied Biochemistry and Biotechnology, 194(5), 1898–1910. https://doi.org/10.1007/s12010-022-03809-8

    Article  CAS  PubMed  Google Scholar 

  19. Salem, S. S., Hashem, A. H., Sallam, A.-A.M., Doghish, A. S., Al-Askar, A. A., Arishi, A. A., & Shehabeldine, A. M. (2022). Synthesis of silver nanocomposite based on carboxymethyl cellulose: Antibacterial, antifungal and anticancer activities. Polymers, 14(16), 3352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Saied, E., Salem, S. S., Al-Askar, A. A., Elkady, F. M., Arishi, A. A., & Hashem, A. H. (2022). Mycosynthesis of hematite (α-Fe2O3) nanoparticles using Aspergillus niger and their antimicrobial and photocatalytic activities. Bioengineering, 9(8), 397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Said, A., Abu-Elghait, M., Atta, H. M., & Salem, S. S. (2023). Antibacterial activity of green synthesized silver nanoparticles using Lawsonia inermis against common pathogens from urinary tract infection. Applied Biochemistry and Biotechnology. https://doi.org/10.1007/s12010-023-04482-1

    Article  PubMed  Google Scholar 

  22. Abdelghany, T. M., Al-Rajhi, A. M. H., Yahya, R., Bakri, M. M., Al Abboud, M. A., Yahya, R., Qanash, H., Bazaid, A. S., & Salem, S. S. (2023). Phytofabrication of zinc oxide nanoparticles with advanced characterization and its antioxidant, anticancer, and antimicrobial activity against pathogenic microorganisms. Biomass Conversion and Biorefinery, 13(1), 417–430. https://doi.org/10.1007/s13399-022-03412-1

    Article  CAS  Google Scholar 

  23. Elakraa, A. A., Salem, S. S., El-Sayyad, G. S., & Attia, M. S. (2022). Cefotaxime incorporated bimetallic silver-selenium nanoparticles: Promising antimicrobial synergism, antibiofilm activity, and bacterial membrane leakage reaction mechanism. RSC Advances, 12(41), 26603–26619. https://doi.org/10.1039/D2RA04717A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Abdelmoneim, H. E. M., Wassel, M. A., Elfeky, A. S., Bendary, S. H., Awad, M. A., Salem, S. S., & Mahmoud, S. A. (2022). Multiple applications of CdS/TiO2 nanocomposites synthesized via microwave-assisted sol–gel. Journal of Cluster Science, 33(3), 1119–1128. https://doi.org/10.1007/s10876-021-02041-4

    Article  CAS  Google Scholar 

  25. Salem, S. S. (2022). Baker’s yeast-mediated silver nanoparticles: Characterisation and antimicrobial biogenic tool for suppressing pathogenic microbes. BioNanoScience, 12(4), 1220–1229. https://doi.org/10.1007/s12668-022-01026-5

    Article  Google Scholar 

  26. Salem, S. S., Badawy, M. S. E. M., Al-Askar, A. A., Arishi, A. A., Elkady, F. M., & Hashem, A. H. (2022). Green biosynthesis of selenium nanoparticles using orange peel waste: Characterization, antibacterial and antibiofilm activities against multidrug-resistant bacteria. Life, 12(6), 893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hammad, E. N., Salem, S. S., Mohamed, A. A., & El-Dougdoug, W. (2022). Environmental impacts of ecofriendly iron oxide nanoparticles on dyes removal and antibacterial activity. Applied Biochemistry and Biotechnology, 194(12), 6053–6067. https://doi.org/10.1007/s12010-022-04105-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Salem, S. S., EL-Belely, E. F., Niedbała, G., Alnoman, M. M., Hassan, S.E.-D., Eid, A. M., Shaheen, T. I., Elkelish, A., & Fouda, A. (2020). Bactericidal and in-vitro cytotoxic efficacy of silver nanoparticles (Ag-NPs) fabricated by endophytic actinomycetes and their use as coating for the textile fabrics. Nanomaterials, 10(10), 2082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Al-Zahrani, F. A. M., Salem, S. S., Al-Ghamdi, H. A., Nhari, L. M., Lin, L., & El-Shishtawy, R. M. (2022). Green synthesis and antibacterial activity of Ag/Fe2O3 nanocomposite using Buddleja lindleyana extract. Bioengineering, 9(9), 452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shaheen, T. I., Fouda, A., & Salem, S. S. (2021). Integration of cotton fabrics with biosynthesized CuO nanoparticles for bactericidal activity in the terms of their cytotoxicity assessment. Industrial & Engineering Chemistry Research, 60(4), 1553–1563. https://doi.org/10.1021/acs.iecr.0c04880

    Article  CAS  Google Scholar 

  31. Hashem, A. H., Selim, T. A., Alruhaili, M. H., Selim, S., Alkhalifah, D. H. M., Al Jaouni, S. K., & Salem, S. S. (2022). Unveiling antimicrobial and insecticidal activities of biosynthesized selenium nanoparticles using prickly pear peel waste. Journal of Functional Biomaterials, 13(3), 112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Al-Rajhi, A. M. H., Salem, S. S., Alharbi, A. A., & Abdelghany, T. M. (2022). Ecofriendly synthesis of silver nanoparticles using Kei-apple (Dovyalis caffra) fruit and their efficacy against cancer cells and clinical pathogenic microorganisms. Arabian Journal of Chemistry, 15(7), 103927. https://doi.org/10.1016/j.arabjc.2022.103927

    Article  CAS  Google Scholar 

  33. Salem, S. S., Ali, O. M., Reyad, A. M., Abd-Elsalam, K. A., & Hashem, A. H. (2022). Pseudomonas indica-mediated silver nanoparticles: Antifungal and antioxidant biogenic tool for suppressing mucormycosis fungi. Journal of Fungi, 8(2), 126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mohamed, A. A., Abu-Elghait, M., Ahmed, N. E., & Salem, S. S. (2021). Correction to: Eco-friendly mycogenic synthesis of ZnO and CuO nanoparticles for in vitro antibacterial, antibiofilm and antifungal applications. Biological Trace Element Research, 199(7), 2800–2801. https://doi.org/10.1007/s12011-020-02391-6

    Article  CAS  PubMed  Google Scholar 

  35. Iranpour, S., Bahrami, A. R., Saljooghi, A. S. H., & Matin, M. M. (2021). Application of smart nanoparticles as a potential platform for effective colorectal cancer therapy. Coordination Chemistry Reviews, 442, 213949. https://doi.org/10.1016/j.ccr.2021.213949

    Article  CAS  Google Scholar 

  36. Deng, S., Gu, J., Jiang, Z., Cao, Y., Mao, F., Xue, Y., Wang, J., Dai, K., Qin, L., Liu, K., Wu, K., He, Q., & Cai, K. (2022). Application of nanotechnology in the early diagnosis and comprehensive treatment of gastrointestinal cancer. Journal of Nanobiotechnology, 20(1), 415. https://doi.org/10.1186/s12951-022-01613-4

    Article  PubMed  PubMed Central  Google Scholar 

  37. Barani, M., Bilal, M., Rahdar, A., Arshad, R., Kumar, A., Hamishekar, H., & Kyzas, G. Z. (2021). Nanodiagnosis and nanotreatment of colorectal cancer: An overview. Journal of Nanoparticle Research, 23(1), 18. https://doi.org/10.1007/s11051-020-05129-6

    Article  CAS  Google Scholar 

  38. Mitchell, M. J., Billingsley, M. M., Haley, R. M., Wechsler, M. E., Peppas, N. A., & Langer, R. (2021). Engineering precision nanoparticles for drug delivery. Nature Reviews Drug Discovery, 20(2), 101–124. https://doi.org/10.1038/s41573-020-0090-8

    Article  CAS  PubMed  Google Scholar 

  39. Verma, J., Warsame, C., Seenivasagam, R. K., Katiyar, N. K., Aleem, E., & Goel, S. (2023). Nanoparticle-mediated cancer cell therapy: Basic science to clinical applications. Cancer and Metastasis Reviews. https://doi.org/10.1007/s10555-023-10086-2

    Article  PubMed  Google Scholar 

  40. Yadav. H. K. S., Al mohammedawi, F.,& Abujarad, R. J.I. (2023). Applications and prospects of nanopharmaceuticals delivery. In: Advances in Novel Formulations for Drug Delivery. 45–66. https://doi.org/10.1002/9781394167708.ch3

  41. Salem, S. S., & Fouda, A. (2021). Green synthesis of metallic nanoparticles and their prospective biotechnological applications: An overview. Biological Trace Element Research, 199(1), 344–370. https://doi.org/10.1007/s12011-020-02138-3

    Article  CAS  PubMed  Google Scholar 

  42. Vaiopoulos, A. G., Kostakis, I. D., Koutsilieris, M., & Papavassiliou, A. G. (2012). Colorectal cancer stem cells. Stem Cells, 30(3), 363–371. https://doi.org/10.1002/stem.1031

    Article  CAS  PubMed  Google Scholar 

  43. Thompson, C. M., Proctor, D. M., Suh, M., Haws, L. C., Kirman, C. R., & Harris, M. A. (2013). Assessment of the mode of action underlying development of rodent small intestinal tumors following oral exposure to hexavalent chromium and relevance to humans. Critical Reviews in Toxicology, 43(3), 244–274. https://doi.org/10.3109/10408444.2013.768596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Colussi, D., Brandi, G., Bazzoli, F., & Ricciardiello, L. (2013). Molecular pathways involved in colorectal cancer: Implications for disease behavior and prevention. International Journal of Molecular Sciences, 14(8), 16365–16385.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Pancione, M., Remo, A., & Colantuoni, V. (2012). Genetic and epigenetic events generate multiple pathways in colorectal cancer progression. Pathology Research International, 2012, 509348. https://doi.org/10.1155/2012/509348

    Article  PubMed  PubMed Central  Google Scholar 

  46. Xie, Y.-H., Chen, Y.-X., & Fang, J.-Y. (2020). Comprehensive review of targeted therapy for colorectal cancer. Signal Transduction and Targeted Therapy, 5(1), 22. https://doi.org/10.1038/s41392-020-0116-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Vries, R. G. J., Huch, M., & Clevers, H. (2010). Stem cells and cancer of the stomach and intestine. Molecular Oncology, 4(5), 373–384. https://doi.org/10.1016/j.molonc.2010.05.001

    Article  PubMed  PubMed Central  Google Scholar 

  48. De Rosa, M., Pace, U., Rega, D., Costabile, V., Duraturo, F., Izzo, P., & Delrio, P. (2015). Genetics, diagnosis and management of colorectal cancer (Review). Oncology Reports, 34(3), 1087–1096. https://doi.org/10.3892/or.2015.4108

    Article  CAS  PubMed  Google Scholar 

  49. Rodriguez-Salas, N., Dominguez, G., Barderas, R., Mendiola, M., García-Albéniz, X., Maurel, J., & Batlle, J. F. (2017). Clinical relevance of colorectal cancer molecular subtypes. Critical Reviews in Oncology/Hematology, 109, 9–19. https://doi.org/10.1016/j.critrevonc.2016.11.007

    Article  PubMed  Google Scholar 

  50. De Robertis, M., Poeta, M. L., Signori, E., & Fazio, V. M. (2018). Current understanding and clinical utility of miRNAs regulation of colon cancer stem cells. Seminars in Cancer Biology, 53, 232–247. https://doi.org/10.1016/j.semcancer.2018.08.008

    Article  CAS  PubMed  Google Scholar 

  51. Lindblom, A. (2001). Different mechanisms in the tumorigenesis of proximal and distal colon cancers. Current Opinion in Oncology, 13(1), 63–69.

    Article  CAS  PubMed  Google Scholar 

  52. Aran, V., Victorino, A. P., Thuler, L. C., & Ferreira, C. G. (2016). Colorectal cancer: Epidemiology, disease mechanisms and interventions to reduce onset and mortality. Clinical Colorectal Cancer, 15(3), 195–203. https://doi.org/10.1016/j.clcc.2016.02.008

    Article  PubMed  Google Scholar 

  53. Del Vecchio, F., Mastroiaco, V., Di Marco, A., Compagnoni, C., Capece, D., Zazzeroni, F., Capalbo, C., Alesse, E., & Tessitore, A. (2017). Next-generation sequencing: Recent applications to the analysis of colorectal cancer. Journal of Translational Medicine, 15(1), 246. https://doi.org/10.1186/s12967-017-1353-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. McDonald, S. A. C., Preston, S. L., Lovell, M. J., Wright, N. A., & Jankowski, J. A. Z. (2006). Mechanisms of disease: From stem cells to colorectal cancer. Nature Clinical Practice Gastroenterology & Hepatology, 3(5), 267–274. https://doi.org/10.1038/ncpgasthep0473

    Article  CAS  Google Scholar 

  55. De Palma, F. D. E., D’Argenio, V., Pol, J., Kroemer, G., Maiuri, M. C., & Salvatore, F. (2019). The molecular hallmarks of the serrated pathway in colorectal cancer. Cancers, 11(7), 1017.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Nistal, E., Fernández-Fernández, N., Vivas, S., Olcoz, J. L. (2015). Factors determining colorectal cancer: The role of the intestinal microbiota. Frontiers in Oncology 5. https://doi.org/10.3389/fonc.2015.00220

  57. Blanco-Calvo, M., Concha, Á., Figueroa, A., Garrido, F., & Valladares-Ayerbes, M. (2015). Colorectal cancer classification and cell heterogeneity: A systems oncology approach. International Journal of Molecular Sciences, 16(6), 13610–13632.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Sameer, A. (2013). Colorectal cancer: Molecular mutations and polymorphisms. Frontiers in Oncology 3. https://doi.org/10.3389/fonc.2013.00114

  59. Kemp, J. A., & Kwon, Y. J. (2021). Cancer nanotechnology: Current status and perspectives. Nano Convergence, 8(1), 34. https://doi.org/10.1186/s40580-021-00282-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hartshorn, C. M., Bradbury, M. S., Lanza, G. M., Nel, A. E., Rao, J., Wang, A. Z., Wiesner, U. B., Yang, L., & Grodzinski, P. (2018). Nanotechnology strategies to advance outcomes in clinical cancer care. ACS Nano, 12(1), 24–43. https://doi.org/10.1021/acsnano.7b05108

    Article  CAS  PubMed  Google Scholar 

  61. Wolfram, J., & Ferrari, M. (2019). Clinical cancer nanomedicine. Nano Today, 25, 85–98. https://doi.org/10.1016/j.nantod.2019.02.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Siamof, C. M., Goel, S.,& Cai, W. (2020). Moving beyond the pillars of cancer treatment: Perspectives from nanotechnology. Frontiers in Chemistry 8. https://doi.org/10.3389/fchem.2020.598100

  63. Zhang, Y., Li, M., Gao, X., Chen, Y., & Liu, T. (2019). Nanotechnology in cancer diagnosis: Progress, challenges and opportunities. Journal of Hematology & Oncology, 12(1), 137. https://doi.org/10.1186/s13045-019-0833-3

    Article  Google Scholar 

  64. Gogoi, P., Kaur, G., & Singh, N. K. (2022). Nanotechnology for colorectal cancer detection and treatment. World journal of gastroenterology, 28(46), 6497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Youns, M., & D. Hoheisel J, Efferth T,. (2011). Therapeutic and diagnostic applications of nanoparticles. Current Drug Targets, 12(3), 357–365. https://doi.org/10.2174/138945011794815257

    Article  CAS  PubMed  Google Scholar 

  66. Combes, G. F., Vučković, A.-M., Perić Bakulić, M., Antoine, R., Bonačić-Koutecky, V., & Trajković, K. (2021). Nanotechnology in tumor biomarker detection: The potential of liganded nanoclusters as nonlinear optical contrast agents for molecular diagnostics of cancer. Cancers, 13(16), 4206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Nazir, S., Hussain, T., Ayub, A., Rashid, U., & MacRobert, A. J. (2014). Nanomaterials in combating cancer: Therapeutic applications and developments. Nanomedicine: Nanotechnology, Biology and Medicine, 10(1), 19–34.

    Article  CAS  PubMed  Google Scholar 

  68. Hashemkhani, M., Demirci, G., Bayir, A., Muti, A., Sennaroglu, A., Mohammad Hadi, L., Yaghini, E., Loizidou, M., MacRobert, A. J., & Yagci Acar, H. (2021). Cetuximab-Ag2S quantum dots for fluorescence imaging and highly effective combination of ALA-based photodynamic/chemo-therapy of colorectal cancer cells. Nanoscale, 13(35), 14879–14899. https://doi.org/10.1039/D1NR03507J

    Article  CAS  PubMed  Google Scholar 

  69. Duman, F. D., Akkoc, Y., Demirci, G., Bavili, N., Kiraz, A., Gozuacik, D., & Acar, H. Y. (2019). Bypassing pro-survival and resistance mechanisms of autophagy in EGFR-positive lung cancer cells by targeted delivery of 5FU using theranostic Ag2S quantum dots. Journal of Materials Chemistry B, 7(46), 7363–7376. https://doi.org/10.1039/C9TB01602C

    Article  CAS  PubMed  Google Scholar 

  70. Ali, O. M., Hasanin, M. S., Suleiman, W. B., Helal, E.E.-H., & Hashem, A. H. (2022). Green biosynthesis of titanium dioxide quantum dots using watermelon peel waste: Antimicrobial, antioxidant, and anticancer activities. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-022-02772-y

    Article  Google Scholar 

  71. Chang, M.-H., Pai, C.-L., Chen, Y.-C., Yu, H.-P., Hsu, C.-Y., & Lai, P.-S. (2018). Enhanced antitumor effects of epidermal growth factor receptor targetable cetuximab-conjugated polymeric micelles for photodynamic therapy. Nanomaterials, 8(2), 121.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Zhu, C.-N., Chen, G., Tian, Z.-Q., Wang, W., Zhong, W.-Q., Li, Z., Zhang, Z.-L., & Pang, D.-W. (2017). Near-infrared fluorescent Ag2Se–cetuximab nanoprobes for targeted imaging and therapy of cancer. Small (Weinheim an der Bergstrasse, Germany), 13(3), 1602309. https://doi.org/10.1002/smll.201602309

    Article  CAS  Google Scholar 

  73. Zhang, Y., Zhao, N., Qin, Y., Wu, F., Xu, Z., Lan, T., Cheng, Z., Zhao, P., & Liu, H. (2018). Affibody-functionalized Ag2S quantum dots for photoacoustic imaging of epidermal growth factor receptor overexpressed tumors. Nanoscale, 10(35), 16581–16590. https://doi.org/10.1039/C8NR02556H

    Article  CAS  PubMed  Google Scholar 

  74. Liu, R., Zheng, S., Yang, C. Y., Yu, Y., Peng, S., Ge, Q., Lin, Q., Li, Q., Shi, W., & Shao, Y. (2021). Prognostic value of aldo-keto reductase family 1 member B10 (AKR1B10) in digestive system cancers: A meta-analysis. Medicine, 100(14), e25454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Palzer, J., Eckstein, L., Slabu, I., Reisen, O., Neumann, U. P., & Roeth, A. A. (2021). Iron oxide nanoparticle-based hyperthermia as a treatment option in various gastrointestinal malignancies. Nanomaterials, 11(11), 3013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hilger, I., & Kaiser, W. A. (2012). Iron oxide-based nanostructures for MRI and magnetic hyperthermia. Nanomedicine, 7(9), 1443–1459. https://doi.org/10.2217/nnm.12.112

    Article  CAS  PubMed  Google Scholar 

  77. Malekigorji, M., Curtis, A. D., & Hoskins, C. (2014). The use of iron oxide nanoparticles for pancreatic cancer therapy. Journal of Nanomedicine Research 1 (1)

  78. Maity, D., Kandasamy, G., & Sudame, A. (2019). Superparamagnetic iron oxide nanoparticles for cancer theranostic applications. In: Rai M, Jamil B (eds) Nanotheranostics: Applications and limitations. Springer International Publishing, Cham, 245–276. https://doi.org/10.1007/978-3-030-29768-8_12

  79. Feng, S.-T., Li, J., Luo, Y., Yin, T., Cai, H., Wang, Y., et al. (2014). pH-Sensitive Nanomicelles for controlled and efficient drug delivery to human colorectal carcinoma LoVo Cells. PLoS ONE, 9(6), e100732. https://doi.org/10.1371/journal.pone.0100732

  80. Dadfar, S. M., Roemhild, K., Drude, N. I., von Stillfried, S., Knüchel, R., Kiessling, F., & Lammers, T. (2019). Iron oxide nanoparticles: Diagnostic, therapeutic and theranostic applications. Advanced Drug Delivery Reviews, 138, 302–325. https://doi.org/10.1016/j.addr.2019.01.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ashikbayeva, Z., Tosi, D., Balmassov, D., Schena, E., Saccomandi, P., & Inglezakis, V. (2019). Application of nanoparticles and nanomaterials in thermal ablation therapy of cancer. Nanomaterials, 9(9), 1195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Laurent, S., Dutz, S., Häfeli, U. O., & Mahmoudi, M. (2011). Magnetic fluid hyperthermia: Focus on superparamagnetic iron oxide nanoparticles. Advances in Colloid and Interface Science, 166(1), 8–23. https://doi.org/10.1016/j.cis.2011.04.003

    Article  CAS  PubMed  Google Scholar 

  83. Ramazanov, M., Karimova, A., & Shirinova, H. (2021). Magnetism for drug delivery, MRI and hyperthermia applications: A review. Biointerface Res Appl Chem, 11, 8654–8668.

    CAS  Google Scholar 

  84. Santhosh, P. B., & Ulrih, N. P. (2013). Multifunctional superparamagnetic iron oxide nanoparticles: Promising tools in cancer theranostics. Cancer Letters, 336(1), 8–17. https://doi.org/10.1016/j.canlet.2013.04.032

    Article  CAS  PubMed  Google Scholar 

  85. Zhu, L., Zhou, Z., Mao, H., & Yang, L. (2017). Magnetic nanoparticles for precision oncology: Theranostic magnetic iron oxide nanoparticles for image-guided and targeted cancer therapy. Nanomedicine, 12(1), 73–87. https://doi.org/10.2217/nnm-2016-0316

    Article  CAS  PubMed  Google Scholar 

  86. Janko, C., Ratschker, T., Nguyen, K., Zschiesche, L., Tietze, R., Lyer, S.,& Alexiou, C. (2019) Functionalized superparamagnetic iron oxide nanoparticles (SPIONs) as platform for the targeted multimodal tumor therapy. Frontiers in Oncology 9. https://doi.org/10.3389/fonc.2019.00059

  87. Handali, S., Moghimipour, E., Rezaei, M., Saremy, S., & Dorkoosh, F. A. (2019). Co-delivery of 5-fluorouracil and oxaliplatin in novel poly(3-hydroxybutyrate-co-3-hydroxyvalerate acid)/poly(lactic-co-glycolic acid) nanoparticles for colon cancer therapy. International Journal of Biological Macromolecules, 124, 1299–1311. https://doi.org/10.1016/j.ijbiomac.2018.09.119

    Article  CAS  PubMed  Google Scholar 

  88. Alshetaili, A. S., Anwer, M. K., Alshahrani, S. M., Alalaiwe, A., Alsulays, B. B., Ansari, M. J., Imam, F., & Alshehri, S. (2018). Characteristics and anticancer properties of sunitinib malate-loaded poly-lactic-co-glycolic acid nanoparticles against human colon cancer HT-29 cells lines. Tropical Journal of Pharmaceutical Research, 17(7), 1263–1269.

    Article  CAS  Google Scholar 

  89. Rajasree, P. H., Paul, W., Sharma, C. P., Osmani, R. A. M., Hani, U., & Srivastava, A. (2018). Eudragit encapsulated cationic poly (lactic-co-glycolic acid) nanoparticles in targeted delivery of capecitabine for augmented colon carcinoma therapy. Journal of Drug Delivery Science and Technology, 46, 302–311. https://doi.org/10.1016/j.jddst.2018.05.025

    Article  CAS  Google Scholar 

  90. Klippstein, R., Wang, J. T. W., El-Gogary, R. I., Bai, J., Mustafa, F., Rubio, N., Bansal, S., Al-Jamal, W. T., & Al-Jamal, K. T. (2015). Passively targeted curcumin-loaded pegylated PLGA nanocapsules for colon cancer therapy in vivo. Small, 11(36), 4704–4722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. González-Domínguez, J. M., Grasa, L., Frontiñán-Rubio, J., Abás, E., Domínguez-Alfaro, A., Mesonero, J. E., Criado, A., & Ansón-Casaos, A. (2022). Intrinsic and selective activity of functionalized carbon nanotube/nanocellulose platforms against colon cancer cells. Colloids and Surfaces B: Biointerfaces, 212, 112363. https://doi.org/10.1016/j.colsurfb.2022.112363

    Article  CAS  PubMed  Google Scholar 

  92. González-Domínguez, J. M., Ansón-Casaos, A., Grasa, L., Abenia, L., Salvador, A., Colom, E., Mesonero, J. E., García-Bordejé, J. E., Benito, A. M., & Maser, W. K. (2019). Unique properties and behavior of nonmercerized type-II cellulose nanocrystals as carbon nanotube biocompatible dispersants. Biomacromolecules, 20(8), 3147–3160. https://doi.org/10.1021/acs.biomac.9b00722

    Article  CAS  PubMed  Google Scholar 

  93. Jin, H., Gao, S., Song, D., Liu, Y., & Chen, X. (2021). Intratumorally CpG immunotherapy with carbon nanotubes inhibits local tumor growth and liver metastasis by suppressing the epithelial–mesenchymal transition of colon cancer cells. Anti-Cancer Drugs, 32(3), 278.

    Article  CAS  PubMed  Google Scholar 

  94. Lee, P.-C., Chiou, Y.-C., Wong, J.-M., Peng, C.-L., & Shieh, M.-J. (2013). Targeting colorectal cancer cells with single-walled carbon nanotubes conjugated to anticancer agent SN-38 and EGFR antibody. Biomaterials, 34(34), 8756–8765.

    Article  CAS  PubMed  Google Scholar 

  95. Sundaram, P., & Abrahamse, H. (2020). Effective photodynamic therapy for colon cancer cells using chlorin e6 coated hyaluronic acid-based carbon nanotubes. International journal of molecular sciences, 21(13), 4745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Sang, R., Stratton, B., Engel, A., & Deng, W. (2021). Liposome technologies towards colorectal cancer therapeutics. Acta Biomaterialia, 127, 24–40. https://doi.org/10.1016/j.actbio.2021.03.055

    Article  CAS  PubMed  Google Scholar 

  97. Krajewska, B. J., Bartoszek, A., & Fichna, J. (2019). New trends in liposome-based drug delivery in colorectal cancer. Mini-Reviews in Medicinal Chemistry, 19(1), 3–11. https://doi.org/10.2174/1389557518666180903150928

    Article  CAS  PubMed  Google Scholar 

  98. Rommasi, F., & Esfandiari, N. (2021). Liposomal nanomedicine: Applications for drug delivery in cancer therapy. Nanoscale Research Letters, 16(1), 95. https://doi.org/10.1186/s11671-021-03553-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Tila, D., Ghasemi, S., Yazdani-Arazi, S. N., & Ghanbarzadeh, S. (2015). Functional liposomes in the cancer-targeted drug delivery. Journal of Biomaterials Applications, 30(1), 3–16. https://doi.org/10.1177/0885328215578111

    Article  CAS  PubMed  Google Scholar 

  100. Filipczak, N., Pan, J., Yalamarty, S. S. K., & Torchilin, V. P. (2020). Recent advancements in liposome technology. Advanced Drug Delivery Reviews, 156, 4–22. https://doi.org/10.1016/j.addr.2020.06.022

    Article  CAS  PubMed  Google Scholar 

  101. Al-Otaibi, W. A., Alkhatib, M. H., & Wali, A. N. (2018). Cytotoxicity and apoptosis enhancement in breast and cervical cancer cells upon coadministration of mitomycin C and essential oils in nanoemulsion formulations. Biomedicine & Pharmacotherapy, 106, 946–955. https://doi.org/10.1016/j.biopha.2018.07.041

    Article  CAS  Google Scholar 

  102. Hsu, H., Huang, R., Kao, T., Inbaraj, B., & Chen, B. (2017). Preparation of carotenoid extracts and nanoemulsions from Lycium barbarum L. and their effects on growth of HT-29 colon cancer cells. Nanotechnology, 28(13), 135103.

    Article  CAS  PubMed  Google Scholar 

  103. Pangeni, R., Choi, S. W., Jeon, O.-C., Byun, Y., & Park, J. W. (2016). Multiple nanoemulsion system for an oral combinational delivery of oxaliplatin and 5-fluorouracil: Preparation and in vivo evaluation. International Journal of Nanomedicine, 11, 6379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Hasanin, M., Swielam, E. M., Atwa, N. A., & Agwa, M. M. (2022). Novel design of bandages using cotton pads, doped with chitosan, glycogen and ZnO nanoparticles, having enhanced antimicrobial and wounds healing effects. International Journal of Biological Macromolecules, 197, 121–130. https://doi.org/10.1016/j.ijbiomac.2021.12.106

    Article  CAS  PubMed  Google Scholar 

  105. Hashem, A. H., Al Abboud, M. A., Alawlaqi, M. M., Abdelghany, T. M., & Hasanin, M. (2022). Synthesis of nanocapsules based on biosynthesized nickel nanoparticles and potato starch: Antimicrobial, antioxidant, and anticancer activity. Starch - Stärke, 74(1–2), 2100165. https://doi.org/10.1002/star.202100165

    Article  CAS  Google Scholar 

  106. Hasanin, M., Al Abboud, M. A., Alawlaqi, M. M., Abdelghany, T. M., & Hashem, A. H. (2022). Ecofriendly synthesis of biosynthesized copper nanoparticles with starch-based nanocomposite: Antimicrobial, antioxidant, and anticancer activities. Biological Trace Element Research, 200(5), 2099–2112. https://doi.org/10.1007/s12011-021-02812-0

    Article  CAS  PubMed  Google Scholar 

  107. D’Amora, U., Dacrory, S., Hasanin, M. S., Longo, A., Soriente, A., Kamel, S., Raucci, M. G., Ambrosio, L., & Scialla, S. (2023). Advances in the physico-chemical, antimicrobial and angiogenic properties of graphene-oxide/cellulose nanocomposites for wound healing. Pharmaceutics, 15(2), 338.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Hasanin, M. S., El-Sakhawy, M., Ahmed, H. Y., & Kamel, S. (2022). Hydroxypropyl methylcellulose/graphene oxide composite as drug carrier system for 5-fluorouracil. Biotechnology Journal, 17(4), 2100183. https://doi.org/10.1002/biot.202100183

    Article  CAS  Google Scholar 

  109. Hasanin, M., Taha, N. F., Abdou, A. R., & Emara, L. H. (2022). Green decoration of graphene oxide nano sheets with gelatin and gum Arabic for targeted delivery of doxorubicin. Biotechnology Reports, 34, e00722. https://doi.org/10.1016/j.btre.2022.e00722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Cornell, H. D., Zhu, Y., Ilic, S., Lidman, N. E., Yang, X., Matson, J. B., & Morris, A. J. (2022). Green-light-responsive metal–organic frameworks for colorectal cancer treatment. Chemical Communications, 58(34), 5225–5228. https://doi.org/10.1039/D2CC00591C

    Article  CAS  PubMed  Google Scholar 

  111. Wu, S., Han, Y., Wang, L., Li, J., Sun, Z., Zhang, M., Liu, P., & Li, G. (2019). Sensor array fabricated with nanoscale metal–organic frameworks for the histopathological examination of colon cancer. Analytical Chemistry, 91(16), 10772–10778. https://doi.org/10.1021/acs.analchem.9b02381

    Article  CAS  PubMed  Google Scholar 

  112. Arab-Bafrani, Z., Shahbazi-Gahrouei, D., & Abbasian, M. (2020). Rapid delivery of gold nanoparticles into colon cancer HT-29 cells by electroporation: In-vitro study. Journal of Biomedical Physics and Engineering, 10(2), 161–166. https://doi.org/10.31661/jbpe.v0i0.579

    Article  Google Scholar 

  113. Soliman, M. K. Y., Abu-Elghait, M., Salem, S. S., & Azab, M. S. (2022). Multifunctional properties of silver and gold nanoparticles synthesis by Fusarium pseudonygamai. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-022-03507-9

    Article  Google Scholar 

  114. Soliman, M. K. Y., Salem, S. S., Abu-Elghait, M., & Azab, M. S. (2023). Biosynthesis of silver and gold nanoparticles and their efficacy towards antibacterial, antibiofilm, cytotoxicity, and antioxidant activities. Applied Biochemistry and Biotechnology, 195(2), 1158–1183. https://doi.org/10.1007/s12010-022-04199-7

    Article  CAS  PubMed  Google Scholar 

  115. Hashem, A. H., Shehabeldine, A. M., Ali, O. M., & Salem, S. S. (2022). Synthesis of chitosan-based gold nanoparticles: Antimicrobial and wound-healing activities. Polymers, 14(11), 2293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Doghish, A. S., Hashem, A. H., Shehabeldine, A. M., Sallam, A.-A.M., El-Sayyad, G. S., & Salem, S. S. (2022). Nanocomposite based on gold nanoparticles and carboxymethyl cellulose: Synthesis, characterization, antimicrobial, and anticancer activities. Journal of Drug Delivery Science and Technology, 77, 103874. https://doi.org/10.1016/j.jddst.2022.103874

    Article  CAS  Google Scholar 

  117. Chithrani, D. B., Jelveh, S., Jalali, F., van Prooijen, M., Allen, C., Bristow, R. G., Hill, R. P., & Jaffray, D. A. (2010). Gold nanoparticles as radiation sensitizers in cancer therapy. Radiation Research, 173(6), 719–728. https://doi.org/10.1667/rr1984.1

    Article  CAS  PubMed  Google Scholar 

  118. Riley, R. S., & Day, E. S. (2017). Gold nanoparticle-mediated photothermal therapy: Applications and opportunities for multimodal cancer treatment. WIREs Nanomedicine and Nanobiotechnology, 9(4), e1449. https://doi.org/10.1002/wnan.1449

    Article  CAS  Google Scholar 

  119. Moore, J. A., & Chow, J. C. (2021). Recent progress and applications of gold nanotechnology in medical biophysics using artificial intelligence and mathematical modeling. Nano Express, 2(2), 022001.

    Article  Google Scholar 

  120. Cai, W., Gao, T., Hong, H., & Sun, J. (2008). Applications of gold nanoparticles in cancer nanotechnology. Nanotechnology, Science and Applications, 1, 17–32. https://doi.org/10.2147/NSA.S3788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Zhang, J. Z. (2010). Biomedical applications of shape-controlled plasmonic nanostructures: A case study of hollow gold nanospheres for photothermal ablation therapy of cancer. The Journal of Physical Chemistry Letters, 1(4), 686–695. https://doi.org/10.1021/jz900366c

    Article  CAS  Google Scholar 

  122. Chithrani, B. D., & Chan, W. C. W. (2007). Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Letters, 7(6), 1542–1550. https://doi.org/10.1021/nl070363y

    Article  CAS  PubMed  Google Scholar 

  123. Azencott, H. R., Peter, G. F., & Prausnitz, M. R. (2007). Influence of the cell wall on intracellular delivery to algal cells by electroporation and sonication. Ultrasound in Medicine & Biology, 33(11), 1805–1817. https://doi.org/10.1016/j.ultrasmedbio.2007.05.008

    Article  Google Scholar 

  124. Hansen, E. L., Sozer, E. B., Romeo, S., Frandsen, S. K., Vernier, P. T., & Gehl, J. (2015). Dose-dependent ATP depletion and cancer cell death following calcium electroporation, relative effect of calcium concentration and electric field strength. Plos One, 10(4), e0122973. https://doi.org/10.1371/journal.pone.0122973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Rezaee, Z., Yadollahpour, A., Bayati, V., & Dehbashi, F. N. (2017). Gold nanoparticles and electroporation impose both separate and synergistic radiosensitizing effects in HT-29 tumor cells: An in vitro study. International Journal of Nanomedicine, 12, 1431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Chithrani, B. D., Ghazani, A. A., & Chan, W. C. W. (2006). Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Letters, 6(4), 662–668. https://doi.org/10.1021/nl052396o

    Article  CAS  PubMed  Google Scholar 

  127. Dokht Khosravi, A., Seyed-Mohammadi, S., Teimoori, A., & Asarehzadegan Dezfuli, A. (2022). The role of microbiota in colorectal cancer. Folia Microbiologica, 67(5), 683–691. https://doi.org/10.1007/s12223-022-00978-1

    Article  CAS  PubMed  Google Scholar 

  128. Cisterna, B. A., Kamaly, N., Choi, W. I., Tavakkoli, A., Farokhzad, O. C., & Vilos, C. (2016). Targeted nanoparticles for colorectal cancer. Nanomedicine, 11(18), 2443–2456. https://doi.org/10.2217/nnm-2016-0194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Si, H., Yang, Q., Hu, H., Ding, C., Wang, H., & Lin, X. (2021). Colorectal cancer occurrence and treatment based on changes in intestinal flora. Seminars in Cancer Biology, 70, 3–10. https://doi.org/10.1016/j.semcancer.2020.05.004

    Article  CAS  PubMed  Google Scholar 

  130. Kesharwani, P., Chadar, R., Sheikh, A., Rizg, WY., & Safhi, AY. (2022). CD44-targeted nanocarrier for cancer therapy. Frontiers in Pharmacology 12. https://doi.org/10.3389/fphar.2021.800481

  131. Han, W., Meng, F., Gan, H., Guo, F., Ke, J., & Wang, L. (2021). Targeting self-assembled F127-peptide polymer with pH sensitivity for release of anticancer drugs. RSC Advances, 11(3), 1461–1471. https://doi.org/10.1039/D0RA09898A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Almoshari, Y. (2022). Development, therapeutic evaluation and theranostic applications of cubosomes on cancers: An updated review. Pharmaceutics, 14(3), 600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aram Asareh Zadegan Dezfuli or Salem S. Salem.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dezfuli, A.A.Z., Abu-Elghait, M. & Salem, S.S. Recent Insights into Nanotechnology in Colorectal Cancer. Appl Biochem Biotechnol (2023). https://doi.org/10.1007/s12010-023-04696-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12010-023-04696-3

Keywords

Navigation