Skip to main content
Log in

The Sustainable Approach of Process Intensification in Biorefinery Through Reactive Extraction Coupled with Regeneration for Recovery of Protocatechuic Acid

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In the current scenario, where environmental degradation, global climate change, and the depletion of petroleum feedstock pose significant challenges, the chemical industry seeks sustainable alternatives for manufacturing chemicals, fuels, and bioplastics. Biorefining processes that integrate biomass conversion and microbial fermentation have emerged as preferred approaches to create value-added compounds. However, commercializing biorefinery products is hindered by dilute concentrations of final products and the demand for high purity goods. To address these challenges, effective separation and recovery procedures are essential to minimize costs and equipment size. This article proposes a biorefinery route for the production of protocatechuic acid (PCA) by focusing on in situ PCA separation and purification from fermentation broth. PCA is a significant phenolic molecule with numerous applications in the pharmaceutical sector for its anti-inflammatory, antiapoptotic, and antioxidant properties, as well as in the food, polymer, and other chemical industries. The chemical approach is predominantly used to produce PCA due to the cost-prohibitive nature of natural extraction techniques. Reactive extraction, a promising technique known for its enhanced extraction efficiency, is identified as a viable strategy for recovering carboxylic acids compared to conventional methods. The extraction of PCA has been explored using various solvents, including natural and conventional solvents, such as aminic and organophosphorous extractants, as well as the potential utilization of ionic liquids as green solvents. Additionally, back extraction techniques like temperature swing and diluent composition swing can be employed for reactive extraction product recovery, facilitating the regeneration of the extractant from the organic phase. By addressing the challenges associated with PCA production and usage, particularly through reactive extraction, this proposed biorefinery route aims to contribute to a more sustainable and environmentally friendly chemical industry. The incorporation of PCA in the biorefinery process allows for the utilization of this valuable compound with diverse industrial applications, thus providing an additional incentive for the development and optimization of efficient separation techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

This is not applicable.

References

  1. Biddy, M. J., Scarlata, C., & Kinchin, C. (2016). Chemicals from biomass: a market assessment of bioproducts with near-term potential (No. NREL/TP-5100-65509). National Renewable Energy Lab. (NREL).

    Book  Google Scholar 

  2. Spaeth J. (2014). “Country report United States.” http://www.iea-bioenergy.task42- biorefineries.com/en/ieabiorefinery/Show-9/Country-report-United-States-2014-available.htm.

  3. Fawzy, S., Osman, A. I., Doran, J., & Rooney, D. W. (2020). Strategies for mitigation of climate change: A review. Environmental Chemistry Letters, 18, 2069–2094.

    Article  CAS  Google Scholar 

  4. Food and Agriculture Organization of the United Nations. (2015). Food wastage footprint & climate change.

    Google Scholar 

  5. Ozturk, B., Winterburn, J., & Gonzalez-Miquel, M. (2019). Orange peel waste valorisation through limonene extraction using bio-based solvents. Biochemical Engineering Journal, 151, 107298.

    Article  CAS  Google Scholar 

  6. Food and Agriculture Organization of the United Nations (FAO). (2019). State of food and agriculture. In Moving forward on food loss and waste production.

    Google Scholar 

  7. WEF. (2010). The future of industrial biorefineries. World Economic Forum Available from: http://www3.weforum.org/docs/WEF_FutureIndustrialBiorefineries_Report_2010.pdf

    Google Scholar 

  8. Cherubini, F., Jungmeier, G., Wellisch, M., Willke, T., Skiadas, I., Van Ree, R., & De Jong, E. (2009). Toward a common classification approach for biorefinery systems. Biofuels, Bioproducts and Biorefining, 3, 534–546.

    Article  CAS  Google Scholar 

  9. Jungmeier G, Cherubini F, Dohy M, de Jong E, Jørgensen H, Mandl M, Willke T. (2009). Definition and classification of biorefinery systems? The approach in IEA Bioenergy Task 42 biorefineries. Presentation held at the biorefinery course adding value to the sustainable utilisation of biomass. .

    Google Scholar 

  10. Riemenschneider, W., & Tanifuji, M. (2000). Carboxylic acids, aliphatic. Ullmann's Encyclopedia of Industrial Chemistry, 99–111.

  11. Worrell E; Phylipsen D, Einstein D, Martin N. (2000) Energy use and energy intensity of the US Chemical Industry. US DOE Report LBNL-44314. Available online: http://ateam.lbl.gov/PUBS/doc/LBNL44314.pdf (accessed on 8 November 2016)

  12. Werpy, T., & Petersen, G. (2004). Top value added chemicals from biomass: volume I--results of screening for potential candidates from sugars and synthesis gas (No. DOE/GO-02004-1992). Golden, CO (United States): National Renewable Energy Lab. (NREL).

  13. Liao, J. C., Mi, L., Pontrelli, S., & Luo, S. (2016). Fuelling the future: microbial engineering for the production of sustainable biofuels. Nature Reviews. Microbiology, 14(5), 288–304.

    Article  CAS  PubMed  Google Scholar 

  14. Murali, N., Fernandez, S., & Ahring, B. K. (2017). Fermentation of wet-exploded corn stover for the production of volatile fatty acids. Bioresource Technology, 227, 197–204.

    Article  CAS  PubMed  Google Scholar 

  15. Honda, H., Toyama, Y., Takahashi, H., Nakazeko, T., & Kobayashi, T. (1995). Effective lactic acid production by two-stage extractive fermentation. Journal of Fermentation and Bioengineering, 79, 589–593.

    Article  CAS  Google Scholar 

  16. Evans, P. J., & Wang, H. Y. (1990). Effects of extractive fermentation on butyric acid production by Clostridium acetobutylicum. Applied Microbiology and Biotechnology, 32, 393–397.

    Article  CAS  Google Scholar 

  17. Hatzinikolaou, D. G., & Wang, H. Y. (1992). Extractive fermentation systems for organic acids production. Canadian Journal of Chemical Engineering, 70, 543–552.

    Article  CAS  Google Scholar 

  18. Yabannavar, V. M., & Wang, D. I. C. (1991). Strategies for reducing solvent toxicity in extractive fermentations. Biotechnology and Bioengineering, 37, 716–722.

    Article  CAS  PubMed  Google Scholar 

  19. Atkinson, B., & Mavituna, F. (1983). Biochemical engineering and biotechnology handbook. The Nature Press-MacMillan.

    Google Scholar 

  20. Boyaval, P., Corre, C., & Terre, S. (1987). Continuous lactic acid fermentation with concentrated product recovery by ultra-filtration and electrodialysis. Biotechnology Letters, 9(3), 207–212.

    Article  CAS  Google Scholar 

  21. Hauer, E., & Marr, R. (1994). Liquid extraction in biotechnology. International Journal of Chemical Engineering, 34(2), 178–187.

    Google Scholar 

  22. Wardell, J. M., & King, C. J. (1978). Solvent equilibria for extraction of carboxylic acids from water. Journal of Chemical & Engineering Data, 23, 144–148.

    Article  CAS  Google Scholar 

  23. Timmer, J. K. M., Kromkamp, J., & Robbertsen, T. (1994). Lactic acid separation from fermentation broth by reverse osmosis and nanofiltration. Journal of Membrane Science, 92, 185–197.

    Article  CAS  Google Scholar 

  24. Cockrem M C M, Johnson P D, (1991) Recovery of lactate and lactic acid from fermentation broth. U.S. Patent 5,210,296.

    Google Scholar 

  25. Hongo, M., Nomura, Y., & Iwahara, M. (1986). Novel method of lactic acid production by electrodialysis fermentation Appl. Environmental Microbiology, 52(2), 314.

    Article  ADS  CAS  Google Scholar 

  26. Sirman, T., Pyle, D. L., & Grandison, A. S. (1991). Extraction of organic acids using a supported liquid membrane. Biochemical Society Transactions, 19(3), 274–279.

    Article  Google Scholar 

  27. Pazouki, M., & Panda, T. (1998). Recovery of citric acid - A review. Bioprocess Engineering, 19, 435–439.

    Article  CAS  Google Scholar 

  28. Cao, X., Yun, H. S., & Koo, Y. M. (2002). Recovery of lactic acid by anion-exchange resin Amberlite IRA-400. Biochemical Engineering Journal, 11, 189–196.

    Article  CAS  Google Scholar 

  29. Kertes, A. S., & King, C. J. (1986). Extraction chemistry of fermentation product carboxylic acids. Biotechnology and Bioengineering, 28(2), 269–282.

    Article  CAS  PubMed  Google Scholar 

  30. Polyphenols market size, share & trends analysis report by product (grape seed, green tea, cocoa), by application (beverages, food, feed, dietary supplements, cosmetics), and segment forecasts, 2019–2025. Available from: https://www.grandviewresearch.com/industry-analysis/polyphenols-market-analysis (2019). Accessed Nov 2022.

  31. Herrmann, K. (1989). Ocurrence and content of hydroxycinnamic and hydroxybenzoic acid compounds in foods. Critical Reviews in Food Science & Nutrition, 28, 315–347.

    Article  CAS  Google Scholar 

  32. Kayano, S., Kikuzaki, H., Fukutsuka, N., Mitani, T., & Nakatani, N. (2002). Antioxidant activity of prune (Prunus domestica L.) constituents and a new synergist. Journal of Agricultural and Food Chemistry, 50, 3708–3712.

    Article  CAS  PubMed  Google Scholar 

  33. Li, H., Hu, X., Zhang, Y., et al. (2015). High-capacity magnetic hollow porous molecularly imprinted polymers for specific extraction of protocatechuic acid. Journal of Chromatography A, 1404, 21–27. https://doi.org/10.1016/j.chroma.2015.05.038

    Article  CAS  PubMed  Google Scholar 

  34. Huang, W. Y., Zhang, H. C., Liu, W. X., & Li, C. Y. (2012). Survey of antioxidant capacity and phenolic composition of blueberry, blackberry, and strawberry in Nanjing. Journal of Zhejiang University. Science. B, 13, 94–102.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. Palafox-Carlos, H., Gil-Chavez, J., Sotelo-Mundo, R. R., Namiesnik, J., Gorinstein, S., & Gonzalez-Aguilar, G. A. (2012). Antioxidant interactions between major phenolic compounds found in ‘Ataulfo’ mango pulp: Chlorogenic, gallic, protocatechuic and vanillic acids. Molecules, 17, 12657–12664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Masella, R., Santangelo, C., D’Archivio, M., Li Volti, G., Giovannini, C., & Galvano, F. (2012). Protocatechuic acid and human disease prevention: Biological activities and molecular mechanisms. Current Medicinal Chemistry, 19, 2901–2917.

    Article  CAS  PubMed  Google Scholar 

  37. Ellnain-Wojtaszek, M. (1997). Phenolic acids from Ginkgo biloba L. Part II. Quantitative analysis of free and liberated by hydrolysis phenolic acids. Acta Poloniae Pharmaceutica, 54, 229–232.

    CAS  PubMed  Google Scholar 

  38. Ali, B. H., Al Wabel, N., & Blunden, G. (2005). Phytochemical, pharmacological and toxicological aspects of Hibiscus sabdariffa L.: A review. Phytotherapy Research, 19, 369–375.

    Article  CAS  PubMed  Google Scholar 

  39. Jurgenliemk, G., & Nahrstedt, A. (2002). Phenolic compounds from Hypericum perforatum. Planta Medica, 68, 88–91.

    Article  PubMed  Google Scholar 

  40. Juurlink, B. H., Azouz, H. J., Aldalati, A. M., AlTinawi, B. M., & Ganguly, P. (2014). Hydroxybenzoic acid isomers and the cardiovascular system. Nutrition Journal, 13(1), 1–10.

    Article  Google Scholar 

  41. de Ferrars, R. M., Czank, C., Zhang, Q., Botting, N. P., Kroon, P. A., Cassidy, A., & Kay, C. D. (2014). The pharmacokinetics of anthocyanins and their metabolites in humans. British Journal of Pharmacology, 171, 3268–3282. https://doi.org/10.1111/bph.12676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Czank, C., Cassidy, A., Zhang, Q., Morrison, D. J., Preston, T., Kroon, P. A., Botting, N. P., & Kay, C. D. (2013). Human metabolism and elimination of the anthocyanin, cyanidin-3-glucoside: a (13)C-tracer study. The American Journal of Clinical Nutrition, 97, 995–1003.

    Article  CAS  PubMed  Google Scholar 

  43. Yang, Y. C., Wei, M. C., Lian, F. Y., & Huang, T. C. (2013). Simultaneous extraction and quantitation of oleanolic acid and ursolic acid from Scutellariabarbata D. Don by ultrasound-assisted extraction and high-performance liquid chromatography. Chemical Engineering Communications, 201, 482–500.

    Article  Google Scholar 

  44. Link, K. P., Angell, H. R., & Walker, J. C. (1929). The isolation of protocatechuic acid from pigmented onion scales and its significance in relation to disease resistance in onions. The Journal of Biological Chemistry, 81(2), 369–375.

    Article  CAS  Google Scholar 

  45. Stanier, R. Y., & Ingraham, J. L. (1954). Protocatechuic acid oxidase. Journal of Biological Chemistry, 210(2), 799–808.

    Article  CAS  PubMed  Google Scholar 

  46. Guenzi, W. D., & McCalla, T. M. (1966). Phytotoxic substances extracted from soil. Soil Science Society of America Journal, 30(2), 214–216.

    Article  ADS  CAS  Google Scholar 

  47. Irwin, B. Y., & Pearl, A. (1946). Reactions of vaillin and its derived compounds. The Caustic fusion of vaillin. Journal of the American Chemical Society, 68, 2180–2184.

    Article  Google Scholar 

  48. Priefert, H., Rabenhorst, J., & Steinbuchel, A. (1997). Molecular characterization of genes of Pseudomonas sp. strain HR199 involved in bioconversion of vanillin to protocatechuate. Journal of Bacteriology, 179, 2595–2607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chaabane Elaoud, S., Abdelhedi, R., & Savall, A. (2001). Oxydation électrochimique de l’acide vanillique sur des oxydes d’or et de plomb. Journal-Societe Chimique De Tunisie, 4, 1029–1042.

    Google Scholar 

  50. Guo, X., Wang, X., Chen, T., et al. (2020). Comparing E. coli monocultures and co-cultures for biosynthesis of protocatechuic acid and hydroquinone. Biochemical Engineering Journal, 156, 107518. https://doi.org/10.1016/j.bej.2020.107518

    Article  CAS  Google Scholar 

  51. Wilson, M. K., Abergel, R. J., Raymond, K. N., Arceneaux, J. E. L., & Byers, B. R. (2006). Siderophores of Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis Biochem. Biochemical and Biophysical Research Communications, 348, 320–325.

    Article  CAS  PubMed  Google Scholar 

  52. Garner, B. L., Arceneaux, J. E., & Byers, B. R. (2004). Temperature control of a 3,4-dihydroxybenzoate (protocatechuate)-based siderophore in Bacillus anthracis. Current Microbiology, 49, 89–94.

    Article  CAS  PubMed  Google Scholar 

  53. Williams, K. M., Martin, W. E., Smith, J., Williams, B. S., & Garner, B. L. (2012). Production of protocatechuic acid in Bacillus thuringiensis ATCC33679. International Journal of Molecular Sciences, 13, 3765–3772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Okai, N., Miyoshi, T., Takeshima, Y., Kuwahara, H., Ogino, C., & Kondo, A. (2016). Production of protocatechuic acid by Corynebacterium glutamicum expressing chorismate-pyruvate lyase from Escherichia coli. Applied Microbiology and Biotechnology, 100, 135–145.

    Article  CAS  PubMed  Google Scholar 

  55. Lubbers, R. J. M., & de Vries, R. P. (2021). Production of protocatechuic acid from phydroxyphenyl (H) units and related aromatic compounds using an Aspergillus niger cell factory. mBio, 12, e00391–e00321. https://doi.org/10.1128/mBio.00391-21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rekik, R., Hamza, M., Jaziri, M., & Abdelhedi, R. (2020). Electrochemical oxidation of vanillic acid by electro-Fenton process: Toward a novel route of protocatechuic acid electrosynthesis. Arabian Journal of Chemistry, 13(1), 357–365.

    Article  CAS  Google Scholar 

  57. Lubbers, R. J. M., Dilokpimol, A., Visser, J., Mäkelä, M. R., Hildén, K. S., & de Vries, R. P. (2019). A comparison between the homocyclic aromatic metabolic pathways from plant-derived compounds by bacteria and fungi. Biotechnology Advances, 37, 107396. https://doi.org/10.1016/j.biotechadv.2019.05.002

    Article  CAS  PubMed  Google Scholar 

  58. Boschloo, J. G., Moonen, E., van Gorcom, R. F. M., Hermes, H. F. M., & Bos, C. J. (1991). Genetic analysis of Aspergillus niger mutants defective in benzoate-4- hydroxylase function. Current Genetics, 19, 261–264. https://doi.org/10.1007/BF00355052

    Article  CAS  PubMed  Google Scholar 

  59. Homma, T., Tsurusaki, Y., Kamimura, N., Masai, E., & Ang, L. Z. P. (2021). Protocatechuic acid fuel cell: A sustainable energy generation system based on microbial metabolism of lignin-derived aromatic compounds. Biomass & Bioenergy, 154, 106254.

    Article  CAS  Google Scholar 

  60. Johnson, C., Salvachua, D., Khanna, P., Smith, H., Peterson, D., & Beckham, G. (2016). Enhancing muconic acid production from glucose and lignin-derived aromatic compounds via increased protocatechuate decarboxylase activity. Metabolic Engineering Communications, 3, 111–119. https://doi.org/10.1016/j.meteno.2016.04.002

    Article  PubMed  PubMed Central  Google Scholar 

  61. Semaming, Y., Pannengpetch, P., Chattipakorn, S. C., & Chattipakorn, N. (2015). Pharmacological properties of protocatechuic Acid and its potential roles as complementary medicine. Evidence-based Complementary and Alternative Medicine, 2015, 593902. https://doi.org/10.1155/2015/593902

    Article  PubMed  PubMed Central  Google Scholar 

  62. Song, J., He, Y., Luo, C., Feng, B., Ran, F., Xu, H., & Zhang, D. (2020). New progress in the pharmacology of protocatechuic acid: A compound ingested in daily foods and herbs frequently and heavily. Pharmacological Research, 161, 105109. https://doi.org/10.1016/j.phrs.2020.105109

    Article  CAS  PubMed  Google Scholar 

  63. Zhong, C., Hou, P. F., Li, Y. X., Yang, W. Y., Shu, M., & Wu, G. P. (2021). Characterization, antioxidant and antibacterial activities of gelatin film incorporated with protocatechuic acid and its application on beef preservation. LWT, 151, 112154. https://doi.org/10.1016/j.lwt.2021.112154

    Article  CAS  Google Scholar 

  64. Liu, J., Liu, S., Wu, Q. Q., Gu, Y. Y., Kan, J., & Jin, C. H. (2017). Effect of protocatechuic acid incorporation on the physical, mechanical, structural and antioxidant properties of chitosan film. Food Hydrocolloids, 73, 90–100. https://doi.org/10.1016/j.foodhyd.2017.06.035

    Article  CAS  Google Scholar 

  65. Tanaka, T., Kawamori, T., Ohnishi, M., Okamoto, K., Mori, H., & Hara, A. (1994). Chemoprevention of 4-nitroquinoline 1-oxide-induced oral carcinogenesis by dietary protocatechuic acid during initiation and postinitiation phases. Cancer Research, 54, 2359–2365.

    CAS  PubMed  Google Scholar 

  66. Simić, A., Manojlović, D., Šegan, D., & Todorović, M. (2007). Electrochemical behavior and antioxidant and prooxidant activity of natural phenolics. Molecules, 12, 2327–2340.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Bock, L. H., & Anderson, J. K. (1958). Linear polyesters derived from protocatechuic acid. Journal of Polymer Science, 28(116), 121–127. https://doi.org/10.1002/pol.1958.1202811611

    Article  ADS  CAS  Google Scholar 

  68. Sun, J. J., Zhou, D. M., Fang, H. Q., & Chen, H. Y. (1998). The electrochemical copolymerization of 3, 4-dihydroxybenzoic acid and aniline at microdisk gold electrode and its amperometric determination for ascorbic acid. Talanta, 45(5), 851–856.

    Article  CAS  PubMed  Google Scholar 

  69. Qin, Y., Song, F., Ai, Z., Zhang, P., & Zhang, L. (2015). Protocatechuic acid promoted alachlor degradation in Fe(III)/H2O2 Fenton system. Environmental Science & Technology, 49(13), 7948–7956. https://doi.org/10.1021/es506110w

    Article  ADS  CAS  Google Scholar 

  70. Whittle, N., Eldridge, H., & Bartley, J. (1999). Identification of polyphenols in barley and beer by HPLC/MS and HPLC/electrochemical detection. Journal of the Institute of Brewing, 105, 89–99.

    Article  CAS  Google Scholar 

  71. Janer del VaUe, L. (1980). Contaminaci6n de las aguas por el alpechln y posibles soluciones al problema. Grasas y Aceites, 31(4), 273–279.

    Google Scholar 

  72. Peters, R. W., Walker, T. J., Ku, Y., Berdanier, B., Chang, T. K., & Freund, D. (1983). Wastewater treatment. Physical and chemical methods. Journal (Water Pollution Control Federation), 55(6), 599–512.

    CAS  Google Scholar 

  73. Benitez, J. F., Beltran-Heredia, J., & Acero, J. L. (1993). Protocatechuic acid ozonation in aqueous solutions. Water Research, 27(10), 1519–1525. https://doi.org/10.1016/0043-1354(93)90096-z

    Article  CAS  Google Scholar 

  74. Gernjak, W., Krutzler, T., Glaser, A., Malato, S., Caceres, J., Bauer, R., & Fernandez-Alba, A. R. (2003). Photo-Fenton treatment of water containing natural phenolic pollutants. Chemosphere, 50, 71–78.

    Article  ADS  CAS  PubMed  Google Scholar 

  75. Benitez, F. J., Beltran-Heredia, J., Acero, J. L., & Gonzalez, T. (1996s). Degradation of protocatechuic acid by two advanced oxidation processes: Ozone/UV radiation and H2O2/UV radiation. Water Research, 30, 1597–1604.

    Article  CAS  Google Scholar 

  76. Rivas, F. J., Frades, J., Alonso, M. A., Montoya, C., & Monteagudo, J. M. (2005). Fenton’s oxidation of food processing wastewater components. Kinetic modeling of protocatechuic acid degradation. Journal of Agricultural and Food Chemistry, 53(26), 10097–10104. https://doi.org/10.1021/jf0512712

    Article  CAS  PubMed  Google Scholar 

  77. de Heredia, A. J. B., Antón, J. T., Rodríguez, J. G., Viseas, M. D. P. R., & Vargas, J. R. D. (2000). Aerobic biological treatment of olive mill wastewater previously treated by an ozonation stage. Grasas y Aceites, 51(5), 332–339.

    Google Scholar 

  78. Regulation (EC). No 1333/2008 of the European Parliament and of the Council of 16 On food additives (December 2008). The Official Journal of the European Union, 354, 16–33.

  79. EFSA. (2012). Panel on Food Additives and Nutrient Sources added to Food (ANS) Scientific opinion on the reevaluation of butylated hydroxytoluene BHT (E 321) as a food additive. EFSA Journal, 10(3), 2588.

    Google Scholar 

  80. Cruz, J. M., Moldes, A. B., Bustos, G., Torrado, A., & Domínguez, J. M. (2007). Integral utilization of barley husk for the production of food additives. Journal of the Science of Food and Agriculture, 87, 1000–1008.

    Article  CAS  Google Scholar 

  81. Barbosa-Pereira, L., Bilbao, A., Vilches, P., Angulo, I., & LLuis J, Fité B, Cruz J M. (2014). Brewery waste as a potential source of phenolic compounds: Optimisation of the extraction process and evaluation of antioxidant and antimicrobial activities. Food Chemistry, 145, 191–197.

    Article  CAS  PubMed  Google Scholar 

  82. Sedej, I., Milczarek, R., Wang, S. C., Sheng, R., de Jesús, A.-B. R., Dao, L., & Takeoka, G. (2016). Spray drying of a phenolic-rich membrane filtration fraction of olive mill wastewater: optimisation and dried product quality. International Journal of Food Science, 51(8), 1900–1909. https://doi.org/10.1111/ijfs.13163

    Article  CAS  Google Scholar 

  83. Russo, C. (2007). A new membrane process for the selective fractionation and total recovery of polyphenols, water and organic substances from vegetation waters (VW). Journal of Membrane Science, 288, 239–246.

    Article  ADS  CAS  Google Scholar 

  84. Sarma, J., & Mahiuddin, S. (2014). Specific ion effect on the point of zero charge of α-alumina and on the adsorption of 3, 4-dihydroxybenzoic acid onto α-alumina surface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 457, 419–424.

    Article  CAS  Google Scholar 

  85. Demir, Ö., Gök, A., & Kırbaşlar, Ş. İ. (2022). Optimization of protocatechuic acid adsorption onto weak basic anion exchange resins: Kinetic, mass transfer, isotherm, and thermodynamic study. Biomass Conversion and Biorefinery, 1–17.

  86. Kelly, N. P., Kelly, A. L., & O'Mahony, J. A. (2019). Strategies for enrichment and purification of polyphenols from fruit-based materials. Trends in Food Science & Technology, 83, 248–258. https://doi.org/10.1016/J.TIFS.2018.11.010

    Article  CAS  Google Scholar 

  87. Porgali, E., & Büyüktuncel, E. (2012). Determination of phenolic composition and antioxidant capacity of native red wines by high performance liquid chromatography and spectrophotometric methods. Food Research International, 45, 145–154.

    Article  CAS  Google Scholar 

  88. Cañadas, R., Díaz, I., Rodríguez, M., González, E. J., & González-Miquel, M. (2022). An integrated approach for sustainable valorization of winery wastewater using bio-based solvents for recovery of natural antioxidants. Journal of Cleaner Production, 334, 130181.

    Article  Google Scholar 

  89. Huang, H., Yang, S., & Ramey, D. E. (2004). Applied Biochemistry and Biotechnology, 114(1–3), 671.

    Article  Google Scholar 

  90. Antony, F. M., & Wasewar, K. (2018). Separation of protocatechuic acid using di-(2-ethylhexyl) phosphoric acid in isobutyl acetate, toluene, and petroleum ether. Journal of Chemical & Engineering Data, 63(3), 587–597.

    Article  CAS  Google Scholar 

  91. Antony, F. M., & Wasewar, K. (2020). Effect of temperature on equilibria for physical and reactive extraction of protocatechuic acid. Heliyon, 6(5), e03664.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Antony, F. M., & Wasewar, K. L. (2018). Reactive separation of protocatechuic acid using tri-n-octyl amine and di-(2-ethylhexyl) phosphoric acid in methyl isobutyl ketone. Separation and Purification Technology, 207, 99–107.

    Article  CAS  Google Scholar 

  93. Antony, F. M., & Wasewar, K. L. (2022). Experimental investigation on recovery of bio-based protocatechuic acid using ionic liquids. Journal of Chemical Technology and Biotechnology, 97(11), 3144–3151.

    Article  CAS  Google Scholar 

  94. Antony, F. M., Wasewar, K. L., De, B. S., & Kumar, S. (2019). Separation of protocatechuic acid using tri-n-octylamine: experimental and mathematical investigation. Journal of Chemical & Engineering Data, 64(3), 1101–1112.

    Article  CAS  Google Scholar 

  95. Antony, F. M., Wasewar, K., & De, B. S. (2019). Efficacy of tri-n-octylamine, tri-n-butyl phosphate and di-(2-ethylhexyl) phosphoric acid for reactive separation of protocatechuic acid. Separation Science and Technology, 54(18), 3100–3114.

    Article  CAS  Google Scholar 

  96. De, B. S., Wasewar, K. L., & Dhongde, V. R. (2018). Extractive separation of protocatechuic acid using natural non-toxic solvents and conventional solvents. Chemical Data Collections, 15–16, 244–253.

    Article  Google Scholar 

  97. De, B. S., Wasewar, K. L., Dhongde, V. R., Ingle, A. A., & Mondal, H. (2018). Experimental and modeling of reactive separation of protocatechuic acid. Chemical Engineering Research and Design, 132, 593–605.

    Article  CAS  Google Scholar 

  98. Demir, Ö., İsayev, İ., Gök, A., & Kırbaşlar, Ş. İ. (2023). The application of Box–Behnken design for the optimization of protocatechuic acid separation by a reactive extractant trioctylphosphine oxide. Biomass Conversion and Biorefinery, 1–13.

  99. Antony, F. M., & Wasewar, K. L. (2023). Ionic liquids as green solvents in process industry for reaction and separation: Emphasizing on protocatechuic acid recovery. Chemical Engineering Communications, 1–8.

  100. Bizek, A., Honacek, J., Rericha, R., & Kousova, M. (1992). Amine extraction of hydrocarboxylic acids. 1.Extraction of citric acid with 1-octanol/n-heptane solutions of trialkylamine. Industrial and Engineering Chemistry Research, 31, 1554–1562.

    Article  CAS  Google Scholar 

  101. Eyal, A. M., & Canari, R. (1995). pH dependence of carboxylic and mineral acid extraction by amine-based extractants: Effects of pKa, amine basicity, and diluent properties. Industrial & Engineering Chemistry Research, 34(5), 1789–1798.

    Article  CAS  Google Scholar 

  102. Schlosser, Š., Marták, J., & Blahušiak, M. (2018). Specific phenomena in carboxylic acids extraction by selected types of hydrophobic ionic liquids. Chemical Papers, 72, 567–584.

    Article  CAS  Google Scholar 

  103. Marták, J., & Schlosser, Š. (2007). Extraction of lactic acid by phosphonium ionic liquids. Separation and Purification Technology, 57(3), 483–494.

    Article  Google Scholar 

  104. Solichien, M. S., O'Brien, D., Hammond, E. G., & Glatz, C. E. (1995). Membrane-based extractive fermentation to produce propionic and acetic acids: Toxicity and mass transfer considerations. Enzyme and Microbial Technology, 17(1), 23–31.

    Article  CAS  Google Scholar 

  105. Laane, C., Boeren, S., & Vos, C. (1985). On the optimization of organic solvents in multi-liquid-phase biocatalysis. Trends in Biotechnology, 3(10), 251–252.

    Article  CAS  Google Scholar 

  106. Roffler, S. R., Randolph, T. W., Miller, D. A., Blanch, H. W., & Prausnitz, J. M. (2021). Extractive bioconversions with nonaqueous solvents. In Extractive bioconversions (pp. 133–172). CRC Press.

    Chapter  Google Scholar 

  107. Brink, L. E. S., & Tramper, J. (1985). Optimization of organic solvent in multiphase biocatalysis. Biotechnology and Bioengineering, 27(8), 1258–1269.

    Article  CAS  PubMed  Google Scholar 

  108. Matsumura, M., & Märkl, H. (1986). Elimination of ethanol inhibition by perstraction. Biotechnology and Bioengineering, 28(4), 534–541.

    Article  CAS  PubMed  Google Scholar 

  109. Wood, N., Ferguson, J. L., Gunaratne, H. N., Seddon, K. R., Goodacre, R., & Stephens, G. M. (2011). Screening ionic liquids for use in biotransformations with whole microbial cells. Green Chemistry, 13(7), 1843–1851.

    Article  CAS  Google Scholar 

  110. Rockman, J. T., Kehat, E., & Lavie, R. (1997). Thermally enhanced extraction of citric acid through supported liquid membrane. AICHE Journal, 43, 2376–2380.

    Article  ADS  CAS  Google Scholar 

  111. Baniel, A. M., A. M. Eyal, and K. Hajdu (1981) Recovery of acids from aqueous solutions. U.S. Patent 4,275,234.

  112. Tamada, J. A., & King, C. J. (1990). Extraction of carboxylic acids with amine extractants. 3. Effect of temperature, water coextraction, and process considerations. Industrial & Engineering Chemistry Research, 29, 1333–1338.

    Article  CAS  Google Scholar 

  113. Yabannavar, V. M., & Wang, D. I. C. (1991). Extractive fermentation for lactic acid production. Biotechnology and Bioengineering, 37, 1095–1100.

    Article  CAS  PubMed  Google Scholar 

  114. Poole, L. J., & King, C. J. (1991). Regeneration of carboxylic acid-amine extracts by back-extraction with an aqueous solution of a volatile amine. Industrial & Engineering Chemistry Research, 30, 923–929.

    Article  CAS  Google Scholar 

  115. King, C. J. (1992). Amine-based systems for carboxylic acid recovery. CHEMTECH, 285–291.

  116. Hong, Y. K., Hong, W. H., & Han, D. H. (2001). Application of reactive extraction to recovery of carboxylic acids. Biotechnology and Bioprocess Engineering, 6(6), 386–394.

    Article  CAS  Google Scholar 

  117. Keshav, A., & Wasewar, K. L. (2010). Back extraction of propionic acid from loaded organic phase. Chemical Engineering Science, 65(9), 2751–2757.

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Antony FA: conceptualization, experimentation, writing—original draft, data curation, investigation, and interpretation of data. Wasewar KL: conceptualization, supervision, data analysis, writing and language editing of the manuscript, and communication.

Corresponding author

Correspondence to Kailas L Wasewar.

Ethics declarations

Ethical Approval

This is not applicable.

Consent to Participate

This is not applicable.

Consent to Publish

This is not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antony, F.M., Wasewar, K.L. The Sustainable Approach of Process Intensification in Biorefinery Through Reactive Extraction Coupled with Regeneration for Recovery of Protocatechuic Acid. Appl Biochem Biotechnol 196, 1570–1591 (2024). https://doi.org/10.1007/s12010-023-04659-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04659-8

Keywords

Navigation