Skip to main content
Log in

Antipathogenic Efficacy of Biogenic Silver Nanoparticles and Antibiofilm Activities Against Multi-drug-Resistant ESKAPE Pathogens

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The silver nanoparticles (AgNPs) were produced by employing a biogenic loom and tested for antipathogenic assets against multi-drug-resistant (MDR) ESKAPE bacteria. Biogenically synthesized AgNPs were characterized adopting various high-throughput techniques such as UHRTEM, SEM with EDX, DLS, TGA-DTA, and XRD and spectroscopic analysis showed polydispersion of nanoparticles. In this context, AgNPs with the attribute of spherical-shaped nanoparticles with an average size of 26 nm were successfully synthesized utilizing bacterial supernatant. The antipathogenic activities of AgNPs were assessed against 11 strains of MDR ESKAPE bacteria including Enterococcus faecium; methicillin-resistant Staphylococcus aureus; Klebsiella pneumonia; Acinetobacter baumannii; Pseudomonas aeruginosa; Enterobacter aerogenes; and Enterobacter species. The exposure of biogenic AgNPs in a well diffusion assay showed all the growth inhibitions of ESKAPE bacteria at 200 μg/ml after 18 h of incubation. Growth kinetics demonstrated maximum killing at 60 μg/ml after 4 h of completion. The highest biofilm depletions were found at 100 μg/ml in adhesion assay. Live/dead assays showed effective killing of the ESKAPE bacteria at 10 μg/ml in pre-existing biofilms. The effective inhibitory concentrations of AgNPs were investigated ranging from 10 to 200 μg/ml. The selected pathogens found sensitive to AgNPs are statistically significant (P < 0.05) than that of cefotaxime/AgNO3. Consequently, a broad spectrum of antimicrobial potentials of AgNPs can be alternative to conventional antimicrobial agents for future medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

All the data sets generated during and/or analyzed for the current study are included in this manuscript.

References

  1. Mehrad, B., Clark, N. M., Zhanel, G. G., & Lynch, J. P. (2015). Antimicrobial resistance in hospital-acquired gram-negative bacterial infections. Chest, 147, 1413–1421.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kerr, K. G., & Snelling, A. M. (2009). Pseudomonas aeruginosa: A formidable and ever-present adversary. Journal of Hospital Infection, 73(4), 338–344.

    Article  CAS  PubMed  Google Scholar 

  3. Radzig, M. A., Nadtochenko, V. A., Koksharova, O. A., Kiwi, J., Lipasova, V. A., & Khmel, I. A. (2013). Antibacterial effects of silver nanoparticles on gram-negative bacteria: Influence on the growth and biofilms formation, mechanisms of action. Colloids and Surfaces. B, Biointerfaces, 102, 300–306.

    Article  CAS  PubMed  Google Scholar 

  4. Salomoni, R., Leo, P., Montemor, A. F., Rinaldi, B. G., & Rodrigues, M. F. A. (2017). Antibacterial effect of silver nanoparticles in Pseudomonas aeruginosa. Nanotechnology, Science and Applications, 10, 115–121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rai, M. K., Deshmukh, S. D., Ingle, A. P., & Gade, A. K. (2012). Silver nanoparticles: The powerful nanoweapon against multidrug-resistant bacteria. Journal of Applied Microbiology, 112(5), 841–852.

    Article  CAS  PubMed  Google Scholar 

  6. Oves, M., Aslam, M., Rauf, M. A., Qayyum, S., Qari, H. A., Khan, M. S., Alam, M. Z., Tabrez, S., Pugazhendhi, A., & Ismail, I. M. I. (2018). Antimicrobial and anticancer activities of silver nanoparticles synthesized from the root hair extract of Phoenix dactylifera. Materials Science and Engineering: C Materials Biology Applications, 1(89), 429–443.

    Article  Google Scholar 

  7. Thakkar, K. N., Mhatre, S. S., & Parikh, R. Y. (2010). Biological synthesis of metallic nanoparticles. Nanomed., 6, 257–262.

    Article  CAS  Google Scholar 

  8. Oves, M., Ahmar, R. M., Aslam, M., Qari, H. A., Sonbol, H., Ahmad, I., Sarwar, Z. G., & Saeed, M. (2022). Green synthesis of silver nanoparticles by Conocarpus Lancifolius plant extract and their antimicrobial and anticancer activities. Saudi Journal of Biological Sciences, 29(1), 460–471.

    Article  CAS  PubMed  Google Scholar 

  9. Wang, L., Hu, C., & Shao, L. (2017). The antimicrobial activity of nanoparticles: Present situation and prospects for the future. International Journal of Nanomed., 12, 1227–1249.

    Article  CAS  Google Scholar 

  10. Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B., Ramirez, J. T., & Yacaman, M. J. (2005). The bactericidal effect of silver nanoparticles. Nanotechnology, 16, 2346–2353.

    Article  CAS  PubMed  Google Scholar 

  11. Dastjerdi, R., & Montazer, M. (2010). A review on the application of inorganic nano-structured materials in the modification of textiles: Focus on antimicrobial properties. Colloids and Surfaces. B, Biointerfaces, 79(1), 5–18.

    Article  CAS  PubMed  Google Scholar 

  12. Yaqoob, A. A., Ahmad, H., Parveen, T., Ahmad, A., Oves, M., Ismail, I. M. I., Qari, H. A., Umar, K., & Mohamad, I. M. N. (2020). Recent advances in metal decorated nanomaterials and their various biological applications: A review. Frontiers in Chemistry, 8, 341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pendleton, J. N., Gorman, S. P., & Gilmore, B. F. (2013). Clinical relevance of the ESKAPE pathogens. Expert Review of Anti-infective Therapy, 11, 297–308.

    Article  CAS  PubMed  Google Scholar 

  14. Ramalingam, K., & Khan, M. H. (2022). Antimicrobial mechanisms and mode of actions of nanoemulsion against drug-resistant ESKAPE pathogens. In Handbook of Research on Nanoemulsion Applications in Agriculture, Food, Health, and Biomedical Sciences (pp. 142–168). IGI Global. https://doi.org/10.4018/978-1-7998-8378-4.ch007

  15. Zhang, X. F., Liu, Z. G., Shen, W., & Gurunathan, S. (2016). Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches. International Journal of Molecular Sciences, 17, 1534.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Khan, M. H., Unnikrishnan, S., & Ramalingam, K. (2019). Bactericidal potential of silver-tolerant bacteria derived silver nanoparticles against multi drug resistant ESKAPE pathogens. Biocatalysis and Agricultural Biotechnology, 18, 100939.

    Article  Google Scholar 

  17. Oves, M., Khan, M. S., Zaidi, A., Ahmed, A. S., Ahmed, F., Ahmad, E., Sherwani, A., Owais, M., & Azam, A. (2013). Antibacterial and cytotoxic efficacy of extracellular silver nanoparticles biofabricated from chromium reducing novel OS4 strain of Stenotrophomonas maltophilia. PLoS ONE, 8(3), e59140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ali, K., Ahmed, B., Dwivedi, S., & Saquib, Q. (2015). Microwave accelerated green synthesis of stable silver nanoparticles with Eucalyptus globulus leaf extract and their antibacterial and antibiofilm activity on clinical isolates. PLoS ONE, 2015(10), e0131178.

    Article  Google Scholar 

  19. Prakash, P., Gnanaprakasam, P., Emmanuel, R., Arokiyaraj, S., & Saravanan, M. (2013). Green synthesis of silver nanoparticles from leaf extract of Mimusops elengi, Linn for enhanced antibacterial activity against multi drug resistant clinical isolates. Colloids and Surfaces. B, Biointerfaces, 108, 255–259.

    Article  CAS  PubMed  Google Scholar 

  20. Mehta, B. K., Chhajlani, M., & Shrivastava, B. D. (2017). Green synthesis of silver nanoparticles and their characterization by XRD. In Journal of Physics: Conference Series (Vol. 836, No. 1, p. 012050). IOP Publishing. https://doi.org/10.1088/1742-6596/836/1/012050

  21. Saravanakumar, K., Chelliah, R., Ali, D. M., Oh, D. H., Kathiresan, K., & Wang, M. H. (2019). Unveiling the potentials of biocompatible silver nanoparticles on human lung carcinoma A549 cells and Helicobacter pylori’. Scientific Reports., 9, 5787.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Alahmad, A., Eleoui, M., Falah, A., & Alghoraibi, I. (2013). Preparation of colloidal silver nanoparticles and structural characterization. Physics Science Research International, 4, 89–96.

    Google Scholar 

  23. Mohamed, N. H., Ismail, M. A., Mageed, W. M. A., & Shoreit, A. A. M. (2014). Antimicrobial activity of latex silver nanoparticles using Calotropis procera. Asian Pacific Journal of Tropical Biomedicine, 4(11), 876–883.

    Article  CAS  Google Scholar 

  24. Schacht, V. J., Neumann, L. V., Sandhi, S. K., Chen, L., Henning, T., Klar, P. J., Theophel, K., Schnell, S., & Bunge, M. (2012). Effects of silver nanoparticles on microbial growth dynamics. Journal of Applied Microbiology, 114, 25–35.

    Article  PubMed  Google Scholar 

  25. Ali, D. M., Lee, S. Y., Kim, S. C., & Kim, J. W. (2015). One-step synthesis of cellulose/silver nanobiocomposites using a solution plasma process and characterization of their broad-spectrum antimicrobial efficacy. RSC Advances, 5(44), 35052–35060.

    Article  Google Scholar 

  26. Ramalingam, K., & Lee, V.A. (2018) Antibiofilm activity of an EDTA-containing nanoemulsion on multidrug-resistant Acinetobacter baumannii. Artificial Cells, Nanomedicine, and Biotechnology, https://doi.org/10.1080/21691401.2018.1468771.

  27. Khan, M. H., & Ramalingam, K. (2019). Synthesis of antimicrobial nanoemulsions and its effectuality for the treatment of multi-drug resistant ESKAPE pathogens. Biocatalysis and Agricultural Biotechnology, 2019(18), 101025.

    Article  Google Scholar 

  28. Ramalingam, K., Amaechi, B. T., Rawls, H. R., & Lee, V. A. (2011). Antimicrobial activity of nanoemulsion on cariogenic Streptococcus mutans. Archives of Oral Biology, 56, 437–445.

    Article  Google Scholar 

  29. Ramalingam, K., & Lee, V. (2019). Synergistic effects of nanoemulsion and deferiprone (1,2-dimethyl-3-hydroxypyrid-4-one) on multi-drug resistant Acinetobacter baumannii. Nano Biomedicine and Engineering, 11(3), 226–237.

    Article  CAS  Google Scholar 

  30. Krishnaraj, C., Ramachandran, R., Mohan, K., & Kalaichelvan, P. T. (2012). Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi. Spectrochima Acta A., 93, 95–99.

    Article  CAS  Google Scholar 

  31. Oladipo, I. C., Lateef, A., Azeez, M. A., Asafa, T. B., Yekeen, T. A., Akinboro, A., Akinwale, A. S., Gueguim-Kana, E. B., & Beukes, L. S. (2017). Green synthesis and antimicrobial activities of silver nanoparticles using cell free-extracts of Enterococcus species. Notulae Scientia Biologicae, 9(2), 196–203.

    Article  CAS  Google Scholar 

  32. Anbu, P., Gopinath, S. C. B., Yun, H. S., & Lee, C. G. (2019). Temperature-dependent green biosynthesis and characterization of silver nanoparticles using balloon flower plants and their antibacterial potential. Journal of Molecular Structure, 1177, 302–309.

    Article  CAS  Google Scholar 

  33. Balashanmugam, P., & Kalaichelvan, P. T. (2015). Biosynthesis characterization of silver nanoparticles using Cassia roxburghii DC aqueous extract, and coated on cotton cloth for effective antibacterial activity. International Journal of Nanomedicine, 10, 87–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Singh, R., Wagh, P., Wadhwani, S., Gaidhani, S., Kumbhar, A., Bellare, J., & Chopade, B. A. (2013). Synthesis, optimization, and characterization of silver nanoparticles from Acinetobacter calcoaceticus and their enhanced antibacterial activity when combined with antibiotics. International Journal of Nanomedicine, 8, 4277–4290.

    PubMed  PubMed Central  Google Scholar 

  35. Meng, Y. (2015). Sustainable approach to fabricating Ag nanoparticles/PVA hybrid nanofiber and its catalytic activity. Nanomaterials, 5, 1124–1135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Vanaja, M., & Annadurai, G. (2013). Coleus aromaticus leaf extract mediated synthesis of silver nanoparticles and its bactericidal activity. Applied Nanoscience, 3, 217–223.

    Article  CAS  Google Scholar 

  37. Jyoti, K., Baunthiyal, M., & Singh, A. (2015). Characterization of silver nanoparticles synthesized using Urtica dioica Linn leaves and their synergistic effects with antibiotics. Journal of Radiation Research and Applied Sciences, 9, 217–227.

    Article  Google Scholar 

  38. Kasture, M. B., Patel, P., Prabhune, A. A., Ramana, C. V., Kulkarni, A. A., & Prasad, B. L. V. (2008). Synthesis of silver nanoparticles by sophorolipids: Effect of temperature and sophorolipid structure on the size of particles. Journal of Chemical Sciences, 120(6), 515–520.

    Article  CAS  Google Scholar 

  39. Khan, M. Z. H., Tarek, F. K., Nuzat, M., Momin, M. A., & Hasan, M. R. (2017). Rapid biological synthesis of silver nanoparticles from Ocimum sanctum and their characterization. Journal of Nanosci., 6, 1693416.

    Google Scholar 

  40. Kareem, T. A., & Kaliani, A. A. (2010). Synthesis and thermal study of octahedral silver nano-plates in polyvinyl alcohol (PVA). Arabian Journal of Chemistry, 4, 325–331.

    Article  Google Scholar 

  41. Patil, U. S., Qu, H., Caruntu, D., O’Connor, Sharma, C. J., Cai, A. Y., & Tarr, M. A. (2013). Labeling primary amine groups in peptides and proteins with N–hydroxysuccinimidyl ester modified Fe3O4@SiO2 nanoparticles containing cleavable disulfide–bond linkers. BioC-CheM, 24, 1562–1569.

    Article  CAS  Google Scholar 

  42. Patel, K., Bharatiya, B., Mukherjee, T., Soni, T., Shukla, A., & Suhagia, B. N. (2017). Role of stabilizing agents in the formation of stable silver nanoparticles in aqueous solution: Characterization and stability study. Journal of Dispersion Science and Technology, 38(5), 626–631.

    Article  CAS  Google Scholar 

  43. Balaji, D. S., Basavaraja, S., Deshpande, R., Mahesh, D. B., Prabhakar, B. K., & Venkataraman, A. (2009). Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus. Colloids and Surfaces. B, Biointerfaces, 68, 88–92.

    Article  CAS  PubMed  Google Scholar 

  44. Hong, S., Chen, T., Zhu, Y., Li, A., Huang, Y., & Chen, X. (2014). Live-cell stimulated raman scattering imaging of alkyne-tagged biomolecules. Angewandte Chemie International, 53, 5827–5831.

    Article  CAS  Google Scholar 

  45. Lindquist, B. A., Furse, K. E., & Corcelli, S. A. (2009). Nitrile groups as vibrational probes of biomolecular structure and dynamics: An overview. Physical Chemistry, 11, 8119–8132.

    CAS  Google Scholar 

  46. Mandal, S., Phadtare, S., & Sastry, M. (2005). Interfacing biology with nanoparticles. Current Applied Physics, 5(2), 118–127.

    Article  Google Scholar 

  47. Winter, J. M., & Moore, B. S. (2009). Exploring the chemistry and biology of vanadium-dependent haloperoxidases. Journal of Biological Chemistry, 284(28), 18577–18581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Makarov, V. V., Love, A. J., Sinitsyna, O. V., Makarova, S. S., Yaminsky, I. V., Taliansky, M. E., & Kalinina, N. O. (2014). “Green” nanotechnologies: Synthesis of metal nanoparticles using plants. Acta Naturae., 6(1), 35–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Paredes, D., Ortiz, C., & Torres, R. (2014). Synthesis, characterization, and evaluation of antibacterial effect of Ag nanoparticles against Escherichia coli O157:H7 and methicillin-resistant Staphylococcus aureus (MRSA). International Journal of Nanomedicine, 9, 1717–1729.

    PubMed  PubMed Central  Google Scholar 

  50. Phanjom, P., & Ahmed, G. (2015). Biosynthesis of silver nanoparticles by Aspergillus oryzae (MTCC No. 1846) and its characterizations. Nanoscience and Nanotechnology, 5, 14–21.

    Google Scholar 

  51. Kumar, S. R., Malarkodi, C., Kumar, V. S., Kumar, K. P., & Vanaja, M. (2014). Biosynthesis of silver nanoparticles by using marine bacteria Vibrio alginolyticus. International Journal of Pharma and Bio Sciences, 1, 19–23.

    Google Scholar 

  52. Priyadarshini, S., Gopinath, V., Priyadharshini, N. M., Ali, D. M., & Velusamy, P. (2013). Synthesis of anisotropic silver nanoparticles using novel strain, Bacillus flexus and its biomedical application. Colloids and Surfaces. B, Biointerfaces, 102, 232–237.

    Article  CAS  PubMed  Google Scholar 

  53. Anandalakshmi, K., Venugobal, J., & Ramasamy, V. (2016). Characterization of silver nanoparticles by green synthesis method using Pedalium murex leaf extract and their antibacterial activity. Applied Nanoscience, 6, 399–408.

    Article  CAS  Google Scholar 

  54. Erjaee, H., Rajaian, H., & Nazifi, S. (2017). Synthesis and characterization of novel silver nanoparticles using Chamaemelum nobile extract for antibacterial application. Advances in Natural Sciences: Nanoscience and Nanotechnology, 8, 025004.

    Google Scholar 

  55. Saravanan, M., Barik, S. K., Ali, D. M., Prakash, P., & Pugazhendhi, A. (2018). Synthesis of silver nanoparticles from Bacillus brevis (NCIM 2533) and their antibacterial activity against pathogenic bacteria. Microbial Pathology, 116, 221–226.

    Article  CAS  Google Scholar 

  56. Morones, J. R., Elechiguerra, J. L., Camacho, A., & Ramirez, J. T. (2005). The bactericidal effect of silver nanoparticles. Nanotechnol, 16(10), 2346–2353.

    Article  CAS  Google Scholar 

  57. Pandey, J. K., Swarnkar, R. K., Soumya, K. K., Dwivedi, P., Singh, M. K., Sundaram, S., & Gopal, R. (2014). Silver nanoparticles synthesized by pulsed laser ablation: As a potent antibacterial agent for human enteropathogenic gram-positive and gram-negative bacterial strains. Applied Biochemistry and Biotechnology, 174, 1021–1031.

    Article  CAS  PubMed  Google Scholar 

  58. Markowska, K., Grudniak, A. M., & Wolska, K. I. (2013). Silver nanoparticles as an alternative strategy against bacterial biofilms. Acta Biochimica Polonica, 60(4), 523–530.

    PubMed  Google Scholar 

  59. Gutierreza, F. M., Boeglib, L., Agostinhob, A., Sánchezc, E. M., Bachd, H., Ruize, F., & Jamesb, G. (2013). Anti-biofilm activity of silver nanoparticles against different microorganisms. Biofouling, 29(6), 651–660.

    Article  Google Scholar 

  60. Ramalingam, K., Amaechi, B. T., Rawls, H. R., & Lee, V. A. (2012). Antimicrobial activity of nanoemulsion on cariogenic planktonic and biofilm organisms. Archives of Oral Biology, 57, 15–22.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are pleased to express thanks to ICMR (Indian Council of Medical Research) for awarding Senior Research Fellowship [File No: AMR/Fellowship/6/2019/ECD-II] and SAIF, IIT-Madras for providing the facility to complete the characterization studies.

Funding

The DST Science and Engineering Research Board (SERB), India [SERB/LS-267/2014] and AYUSH (Ayurveda, Yoga and Naturopathy, Unani, Siddha, and Homoeopathy), India [28015/209/2015-HPC], provided grants and fellowships to carry out this research.

Author information

Authors and Affiliations

Authors

Contributions

Mohd Hashim Khan: material preparation, investigation, experimental design, formal analysis, validation, and writing original draft.

Sneha Unnikrishnan: formal analysis and validation.

Karthikeyan Ramalingam: supervision of the work, corrections, and review and editing of the manuscript.

All authors of the article read and approved the final manuscript.

Corresponding author

Correspondence to Karthikeyan Ramalingam.

Ethics declarations

Ethics Approval

There is no issue of morality since this study does not at all use any animal, human, or cell lines in their basic state.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1191 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M.H., Unnikrishnan, S. & Ramalingam, K. Antipathogenic Efficacy of Biogenic Silver Nanoparticles and Antibiofilm Activities Against Multi-drug-Resistant ESKAPE Pathogens. Appl Biochem Biotechnol 196, 2031–2052 (2024). https://doi.org/10.1007/s12010-023-04630-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04630-7

Keywords

Navigation