Skip to main content

Advertisement

Log in

Antimicrobial and Antibiofilm Activity of Biosynthesized Silver Nanoparticles Against Beta-lactamase-Resistant Enterococcus faecalis

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Due to the presence of antibiotic-resistant genes, treatment options of clinical isolates are exceedingly limited. This study was aimed to fabricate, optimize, characterize, and evaluate the action of silver nanoparticles (AgNPs) against a clinical isolate of Enterococcus faecalis. A combination of cell-free supernatant (C-FS) of the filamentous fungus Fusarium solani and Gram-negative Comamonas aquatica for AgNP formation was proposed; the antigrowth and antibiofilm of AgNPs against E. faecalis harboring blaTEM and blaCTX-M genes were assessed. The ratio of 1:2 v/v (C-FS:AgNO3) at pH 9.0 for 72 h in 1 mM AgNO3 were the optimal conditions for AgNP formation. UV–vis absorption peak appeared at 425 nm and the crystalline nature of synthesized particles was verified by X-ray diffraction (XRD). Fourier transform infrared spectroscopy (FTIR) analysis confirmed the interaction of protein molecules with the AgNPs. Transmission electron microscopy (TEM) analysis demonstrated that fabricated AgNPs were relatively monodispersed, approximately spherical, and of size 2–7.5 nm. blaTEM and blaCTX-M were detected in E. faecalis; the growth and biofilm of E. faecalis were significantly decreased by the action of 12.5 μg/mL AgNPs. This is the first study proposing alternative sources to form AgNPs via synergistic metabolites of F. solani and C. aquatica. The results here offer a foundation for developing an effective therapy using AgNPs against clinical pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of Data and Materials

All data generated or analyzed during this study are available from the corresponding author upon reasonable request.

References

  1. Blair, J. M., Webber, M. A., Baylay, A. J., Ogbolu, D. O., & Piddock, L. J. (2015). Molecular mechanisms of antibiotic resistance. Nature Reviews Microbiology, 13(1), 42–51.

    Article  CAS  Google Scholar 

  2. Patel, R. (2005). Biofilms and antimicrobial resistance. Clinical Orthopaedics and Related Research, 437, 41–47.

    Article  Google Scholar 

  3. Vestby, L. K., Grønseth, T., Simm, R., & Nesse, L. L. (2020). Bacterial biofilm and its role in the pathogenesis of disease. Antibiotics., 9(2), 59.

    Article  CAS  Google Scholar 

  4. Natan, M., & Banin, E. (2017). From nano to micro: Using nanotechnology to combat microorganisms and their multidrug resistance. FEMS Microbiology Reviews, 41(3), 302–322.

    Article  CAS  Google Scholar 

  5. Dale, J. L., Cagnazzo, J., Phan, C. Q., Barnes, A. M., & Dunny, G. M. (2015). Multiple roles for Enterococcus faecalis glycosyltransferases in biofilm-associated antibiotic resistance, cell envelope integrity, and conjugative transfer. Antimicrob. Agents Ch., 59(7), 4094–4105.

    Article  CAS  Google Scholar 

  6. Fiore, E., Van Tyne, D., & Gilmore, M. S. (2019). Pathogenicity of enterococci. Microbiol. Spectr., 7(4), 7–4.

    Article  Google Scholar 

  7. Anderson, A. C., Jonas, D., Huber, I., Karygianni, L., Wölber, J., Hellwig, E., et al. (2016). Enterococcus faecalis from food, clinical specimens, and oral sites: Prevalence of virulence factors in association with biofilm formation. Front. Microbio., 6, 1534.

    Article  Google Scholar 

  8. Tendolkar, P. M., Baghdayan, A. S., Gilmore, M. S., & Shankar, N. (2004). Enterococcal surface protein, Esp, enhances biofilm formation by Enterococcus faecalis. Infection and Immunity, 72(10), 6032–6039.

    Article  CAS  Google Scholar 

  9. Xu, L., Wang, Y. Y., Huang, J., Chen, C. Y., Wang, Z. X., & Xie, H. (2020). Silver nanoparticles: Synthesis, medical applications and biosafety. Theranostics., 10(20), 8996.

    Article  CAS  Google Scholar 

  10. Gunasekaran, T., Nigusse, T., & Dhanaraju, M. D. (2011). Silver nanoparticles as real topical bullets for wound healing. J. Am. Coll. Clin. Wound Spec., 3(4), 82–96.

    Article  Google Scholar 

  11. Asgary, V., Shoari, A., Baghbani-Arani, F., Shandiz, S. A., Khosravy, M. S., Janani, A., et al. (2016). Green synthesis and evaluation of silver nanoparticles as adjuvant in rabies veterinary vaccine. International Journal of Nanomedicine, 11, 597.

    Article  Google Scholar 

  12. Le Ouay, B., & Stellacci, F. (2015). Antibacterial activity of silver nanoparticles: A surface science insight. Nano Today, 10(3), 339–354.

    Article  Google Scholar 

  13. Singh, H., Du, J., Singh, P., & Yi, T. H. (2018). Extracellular synthesis of silver nanoparticles by Pseudomonas sp. THG-LS1. 4 and their antimicrobial application. J. Pharm. Anal., 8(4), 258–64.

    Article  CAS  Google Scholar 

  14. Phan, H. T., & Haes, A. J. (2019). What does nanoparticle stability mean? Journal of Physical Chemistry, 123(27), 16495–16507.

    CAS  Google Scholar 

  15. Zhang, X. F., Liu, Z. G., Shen, W., & Gurunathan, S. (2016). Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches. International Journal of Molecular Sciences, 17(9), 1534.

    Article  Google Scholar 

  16. AbdelRahim, K., Mahmoud, S. Y., Ali, A. M., Almaary, K. S., Mustafa, A. E., & Husseiny, S. M. (2017). Extracellular biosynthesis of silver nanoparticles using Rhizopus stolonifer. Saudi J. Biol. Sci., 24(1), 208–216.

    Article  CAS  Google Scholar 

  17. Sharma, D., Kanchi, S., & Bisetty, K. (2019). Biogenic synthesis of nanoparticles: A review. Arabian Journal of Chemistry, 12(8), 3576–3600.

    Article  CAS  Google Scholar 

  18. Qurbani K & Hamzah H (2020). Intimate communication between Comamonas aquatica and Fusarium solani in remediation of heavy metal-polluted environments. Arch. Microbiol. 202(6), 1397–1406.

  19. Hamzah, H. M., Salah, R. F., & Maroof, M. N. (2018). Fusarium mangiferae as new cell factories for producing silver nanoparticles. Journal of Microbiology and Biotechnology, 28(10), 1654–1663.

    Article  CAS  Google Scholar 

  20. Barawi, S., Hamzah, H., Hamasalih, R., Mohammed, A., Abdalrahman, B., & Abdalaziz, S. (2021). Antibacterial mode of action of grapefruit seed extract against local isolates of beta-lactamases-resistant Klebsiella pneumoniae and its potential application. Intl. J. Agric. Biol., 26, 499–508.

    CAS  Google Scholar 

  21. Birla, S. S., Gaikwad, S. C., Gade, A. K., & Rai, M. K. (2013). Rapid synthesis of silver nanoparticles from Fusarium oxysporum by optimizing physicocultural conditions. Sci. World J. 2013, 796018.

  22. Qian, Y., Yu, H., He, D., Yang, H., Wang, W., Wan, X., et al. (2013). Biosynthesis of silver nanoparticles by the endophytic fungus Epicoccum nigrum and their activity against pathogenic fungi. Bioproc. Biosyst. Eng., 36(11), 1613–1619.

    Article  CAS  Google Scholar 

  23. Ma, L., Su, W., Liu, J. X., Zeng, X. X., Huang, Z., Li, W., et al. (2017). Optimization for extracellular biosynthesis of silver nanoparticles by Penicillium aculeatum Su1 and their antimicrobial activity and cytotoxic effect compared with silver ions. Materials Science and Engineering C, 77, 963–971.

    Article  CAS  Google Scholar 

  24. Velusamy, P., Kumar, G. V., Jeyanthi, V., Das, J., & Pachaiappan, R. (2016). Bio-inspired green nanoparticles: Synthesis, mechanism, and antibacterial application. Toxicol. Res., 32(2), 95–102.

    Article  CAS  Google Scholar 

  25. Rudakiya, D. M., & Pawar, K. (2017). Bactericidal potential of silver nanoparticles synthesized using cell-free extract of Comamonas acidovorans: In vitro and in silico approaches. 3 Biotech, 7(2), 1–2.

    Article  Google Scholar 

  26. Rodríguez-Serrano, C., Guzmán-Moreno, J., Ángeles-Chávez, C., Rodríguez-González, V., Ortega-Sigala, J. J., Ramírez-Santoyo, R. M., et al. (2020). Biosynthesis of silver nanoparticles by Fusarium scirpi and its potential as antimicrobial agent against uropathogenic Escherichia coli biofilms. PLoS One., 15(3), e0230275.

    Article  Google Scholar 

  27. Lu, Z., Rong, K., Li, J., Yang, H., & Chen, R. (2013). Size-dependent antibacterial activities of silver nanoparticles against oral anaerobic pathogenic bacteria. Journal of Materials Science. Materials in Medicine, 24(6), 1465–1471.

    Article  CAS  Google Scholar 

  28. Hong, X., Wen, J., Xiong, X., & Hu, Y. (2016). Shape effect on the antibacterial activity of silver nanoparticles synthesized via a microwave-assisted method. Environmental Science and Pollution Research, 23(5), 4489–4497.

    Article  CAS  Google Scholar 

  29. Barros, C. H., Fulaz, S., Stanisic, D., & Tasic, L. (2018). Biogenic nanosilver against multidrug-resistant bacteria (MDRB). J. Antibiot. Res., 7(3), 69.

    Article  CAS  Google Scholar 

  30. Gurunathan, S., Jeong, J. K., Han, J. W., Zhang, X. F., Park, J. H., & Kim, J. H. (2015). Multidimensional effects of biologically synthesized silver nanoparticles in Helicobacter pylori, Helicobacter felis, and human lung (L132) and lung carcinoma A549 cells. Nanoscale Research Letters, 10(1), 1–7.

    Article  CAS  Google Scholar 

  31. Agnihotri, S., Mukherji, S., & Mukherji, S. (2014). Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Advances, 4(8), 3974–3983.

    Article  CAS  Google Scholar 

  32. Chen, M., Yang, Z., Wu, H., Pan, X., Xie, X., & Wu, C. (2011). Antimicrobial activity and the mechanism of silver nanoparticle thermosensitive gel. International Journal of Nanomedicine, 6, 2873.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Jubeh, B., Breijyeh, Z., & Karaman, R. (2020). Resistance of gram-positive bacteria to current antibacterial agents and overcoming approaches. Molecules, 25(12), 2888.

    Article  CAS  Google Scholar 

  34. Woźniak-Biel, A., Bugla-Płoskońska, G., Burdzy, J., Korzekwa, K., Ploch, S., & Wieliczko, A. (2019). Antimicrobial resistance and biofilm formation in Enterococcus spp. isolated from humans and turkeys in Poland. Microb. Drug Resist., 25(2), 277–86.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

This work is a part of Bikhal Fattah’s master thesis. BF carried out the experiments. Huner Arif is her second mentor and participated in drafting the manuscript. Haider Hamzah designed all the experiments and drafted the paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Haider Hamzah.

Ethics declarations

Ethics Approval

The study presented here does not contain any experiments with human participants or animals performed by any of the authors.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 176 KB)

Supplementary file2 (DOCX 281 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fattah, B., Arif, H. & Hamzah, H. Antimicrobial and Antibiofilm Activity of Biosynthesized Silver Nanoparticles Against Beta-lactamase-Resistant Enterococcus faecalis. Appl Biochem Biotechnol 194, 2036–2046 (2022). https://doi.org/10.1007/s12010-022-03805-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-03805-y

Keywords

Navigation