Skip to main content
Log in

Structural, Theoretical Investigations, Hirshfeld Surface Analysis, and Cytotoxicity Profile of a Neocuproine-Co(II)-Based Discrete Homodinuclear Complex

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this work, we aimed to synthesize a new cobalt(II) complex, namely [Co2(μ-HIPA)(NC)2(H2O)3(NO3)]·(NO3)(C2H5OH)(1) (where H3IPA = 5-hydroxy isophthalic acid and NC = 2,9-dimethyl-1,10-phenanthroline or neocuproine), as a promising chemotherapeutic agent. The diffraction (single crystal-XRD and powder-XRD), spectroscopic (FTIR and UV–visible), molar conductance, and thermal techniques were used to characterize complex 1. Single-crystal X-ray diffraction analysis reveals that Co(II) exists in an octahedral geometry, with the ligation of four oxygen atoms, and two nitrogen atoms. Topological analysis of complex 1 reveals 2,6C6 topological type as an underlying net. The plausible intermolecular interactions within complex 1 that control the crystal packing were analyzed by Hirshfeld surface analysis. In vitro cytotoxicity of complex 1 was evaluated against acute myeloid leukemia (THP-1), colorectal (SW480), and prostate (PC-3) cancer cell lines by utilizing an MTT assay. The result shows that complex 1 can inhibit the growth of cancer cells (THP-1, SW480, and PC-3) at lower inhibitory concentration (IC50) values of > 100, 43.6, and 95.1 µM respectively. The morphological changes induced by complex 1 on THP-1 and SW480 cancer cell lines were carried out with acridine orange/ethidium bromide staining methods. Additionally, comprehensive molecular docking studies were performed to understand the potential binding interactions of complex 1 with different bio-macromolecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  1. Lalia-Kantouri, M., Gdaniec, M., Choli-Papadopoulou, T., Badounas, A., Papadopoulos, C. D., Czapik, A., & Tsitouroudi, F. (2012). Effect of cobalt(II) complexes with dipyridylamine and salicylaldehydes on cultured tumor and non-tumor cells: Synthesis, crystal structure investigations and biological activity. Journal of Inorganic Biochemistry, 117, 25–34. https://doi.org/10.1016/J.JINORGBIO.2012.08.022

    Article  CAS  Google Scholar 

  2. Alvarez, N., Viña, D., Leite, C. M., Mendes, L. F. S., Batista, A. A., Ellena, J., Facchin, G. (2020). Synthesis and structural characterization of a series of ternary copper(II)-L-dipeptide-neocuproine complexes. Study of their cytotoxicity against cancer cells including MDA-MB-231, triple negative breast cancer cells. Journal of Inorganic Biochemistry, 203, 110930. https://doi.org/10.1016/J.JINORGBIO.2019.110930

  3. Laws, K., & Suntharalingam, K. (2018). The next generation of anticancer metallopharmaceuticals: Cancer stem cell-active inorganics. ChemBioChem, 19(21), 2246–2253. https://doi.org/10.1002/CBIC.201800358

    Article  CAS  Google Scholar 

  4. Gourdon, L., Cariou, K., & Gasser, G. (2022). Phototherapeutic anticancer strategies with first-row transition metal complexes: A critical review. Chemical Society Reviews, 51(3), 1167–1195. https://doi.org/10.1039/D1CS00609F

    Article  CAS  Google Scholar 

  5. Geersing, A., Ségaud, N., van der Wijst, M. G. P., Rots, M. G., & Roelfes, G. (2018). Importance of metal-ion exchange for the biological activity of coordination complexes of the biomimetic ligand N4Py. Inorganic Chemistry, 57(13), 7748–7756. https://doi.org/10.1021/acs.inorgchem.8b00714

    Article  CAS  Google Scholar 

  6. Amiri, N., Nouir, S., Hajji, M., Roisnel, T., Guerfel, T., Simonneaux, G., & Nasri, H. (2019). Synthesis, structure, photophysical properties and biological activity of a cobalt(II) coordination complex with 4,4′-bipyridine and porphyrin chelating ligands. Journal of Saudi Chemical Society, 23(7), 781–794. https://doi.org/10.1016/j.jscs.2019.03.003

    Article  CAS  Google Scholar 

  7. Xu, Z. (2013). Mechanics of metal-catecholate complexes: The roles of coordination state and metal types. Scientific Reports, 3(1), 2914. https://doi.org/10.1038/srep02914

    Article  Google Scholar 

  8. Haas, K. L., & Franz, K. J. (2009). Application of metal coordination chemistry to explore and manipulate cell biology. Chemical Reviews, 109(10), 4921–4960. https://doi.org/10.1021/cr900134a

    Article  CAS  Google Scholar 

  9. Alghamdi, N. J., Balaraman, L., Emhoff, K. A., Salem, A. M. H., Wei, R., Zhou, A., & Boyd, W. C. (2019). Cobalt(II) diphenylazodioxide complexes induce apoptosis in SK-HEP-1 cells. ACS Omega, 4(11), 14503–14510. https://doi.org/10.1021/acsomega.9b01684

    Article  CAS  Google Scholar 

  10. Berradj, O., Bougherra, H., Adkhis, A., Amrouche, T., Amraoui, N. E., & Hammoutène, D. (2021). Synthesis, spectroscopic, thermal decomposition, DFT studies and antibacterial activity of uracil cobalt(III)dimethylglyoximato complexes. Journal of Molecular Structure, 1232, 130040. https://doi.org/10.1016/j.molstruc.2021.130040

    Article  CAS  Google Scholar 

  11. Lehleh, A., Beghidja, A., Beghidja, C., Welter, R., & Kurmoo, M. (2015). Synthesis, structures and magnetic properties of dimeric copper and trimeric cobalt complexes supported by bridging cinnamate and chelating phenanthroline. Comptes Rendus Chimie, 18(5), 530–539. https://doi.org/10.1016/j.crci.2014.10.002

    Article  CAS  Google Scholar 

  12. Kucková, L., Jomová, K., Švorcová, A., Valko, M., Segľa, P., Moncoľ, J., & Kožíšek, J. (2015). Synthesis, crystal structure, spectroscopic properties and potential biological activities of salicylate-neocuproine ternary copper(II) complexes. Molecules, 20(2), 2115–2137. https://doi.org/10.3390/molecules20022115

    Article  CAS  Google Scholar 

  13. Tong, Y.-P., & Lin, Y.-W. (2009). Synthesis, crystal structure, electronic structure, bonding, photoluminescence and spectroscopic property investigations of a mononuclear 1,10-phenanthroline and 5-bromo-salicylate ternary indium(III) complex. Inorganica Chimica Acta, 362(13), 4791–4796. https://doi.org/10.1016/j.ica.2009.07.005

    Article  CAS  Google Scholar 

  14. Lewis, R. A., MacLeod, K. C., Mercado, B. Q., & Holland, P. L. (2014). Geometric and redox flexibility of pyridine as a redox-active ligand that can reversibly accept one or two electrons. Chemical Communications, 50(76), 11114–11117. https://doi.org/10.1039/C4CC05495D

    Article  CAS  Google Scholar 

  15. Jesse, K. A., Filatov, A. S., Xie, J., & Anderson, J. S. (2019). Neocuproine as a redox-active ligand platform on iron and cobalt. Inorganic Chemistry, 58(14), 9057–9066. https://doi.org/10.1021/acs.inorgchem.9b00531

    Article  CAS  Google Scholar 

  16. Muhammad, N., & Guo, Z. (2014). Metal-based anticancer chemotherapeutic agents. Current Opinion in Chemical Biology, 19(1), 144–153. https://doi.org/10.1016/J.CBPA.2014.02.003

    Article  CAS  Google Scholar 

  17. van Niekerk, A., Chellan, P., & Mapolie, S. F. (2019). Heterometallic multinuclear complexes as anti-cancer agents-an overview of recent developments. European Journal of Inorganic Chemistry, 2019(30), 3432–3455. https://doi.org/10.1002/EJIC.201900375

    Article  Google Scholar 

  18. De Souza, I. C. A., De Souza Santana, S., Gómez, J. G., Guedes, G. P., Madureira, J., De Ornelas Quintal, S. M., & Lanznaster, M. (2020). Investigation of cobalt(III)–phenylalanine complexes for hypoxia-activated drug delivery. Dalton Transactions, 49(45), 16425–16439. https://doi.org/10.1039/D0DT01389G

    Article  Google Scholar 

  19. Jungwirth, U., Kowol, C. R., Keppler, B. K., Hartinger, C. G., Berger, W., & Heffeter, P. (2011). Anticancer activity of metal complexes: Involvement of redox processes. Antioxidants & redox signaling, 15(4), 1085–1127. https://doi.org/10.1089/ARS.2010.3663

    Article  CAS  Google Scholar 

  20. Vlasiou, M. C., Ioannou, K., Eleftheriou, C., Pafiti, K. S., Zacharia, L. C., & El-Shazly, M. (2022). Synthesis and biological evaluation of a new chalconate Co (II/III) complex with cytotoxic activity. Journal of Molecular Structure, 1249, 131567. https://doi.org/10.1016/J.MOLSTRUC.2021.131567

    Article  CAS  Google Scholar 

  21. Kou, Y.-Y., Li, M.-L., & Ren, X.-H. (2018). Synthesis, structure, and DNA binding/cleavage of two novel binuclear Co(II) complexes. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 205, 435–441. https://doi.org/10.1016/j.saa.2018.07.050

    Article  CAS  Google Scholar 

  22. Shankar, K., & Baruah, J. B. (2017). A stable peroxo- and hydroxido-bridged dinuclear cobalt(III) ethylenediammine 2,4-dinitrophenolate complex. Inorganic Chemistry Communications, 84, 45–48. https://doi.org/10.1016/j.inoche.2017.07.006

    Article  CAS  Google Scholar 

  23. Abebe, A., Bayeh, Y., Belay, M., Gebretsadik, T., Thomas, M., & Linert, W. (2020). Mono and binuclear cobalt(II) mixed ligand complexes containing 1,10-phenanthroline and adenine using 1,3-diaminopropane as a spacer: Synthesis, characterization, and antibacterial activity investigations. Future Journal of Pharmaceutical Sciences, 6(1), 13. https://doi.org/10.1186/s43094-020-00030-4

    Article  Google Scholar 

  24. Abu Shamma, A., Abu Ali, H., & Kamel, S. (2018). Synthesis, characterization and biological properties of mixed ligand complexes of cobalt(II/III) valproate with 2,9-dimethyl-1,10-phenanthroline and 1,10-phenanthroline. Applied Organometallic Chemistry, 32(1), e3904. https://doi.org/10.1002/aoc.3904

    Article  CAS  Google Scholar 

  25. Ayad, M. I. (2016). Synthesis, characterization and catechol oxidase biomimetic catalytic activity of cobalt(II) and copper(II) complexes containing N2O2 donor sets of imine ligands. Arabian Journal of Chemistry, 9, S1297–S1306. https://doi.org/10.1016/J.ARABJC.2012.02.007

    Article  CAS  Google Scholar 

  26. Nesterov, D., & Nesterova, O. (2018). Polynuclear cobalt complexes as catalysts for light-driven water oxidation: A review of recent advances. Catalysts, 8(12), 602. https://doi.org/10.3390/catal8120602

    Article  CAS  Google Scholar 

  27. Ahmad, N., Chughtai, A. H., Younus, H. A., & Verpoort, F. (2014). Discrete metal-carboxylate self-assembled cages: Design, synthesis and applications. Coordination Chemistry Reviews, 280, 1–27. https://doi.org/10.1016/j.ccr.2014.07.005

    Article  CAS  Google Scholar 

  28. Hachey, A. C., Havrylyuk, D., & Glazer, E. C. (2021). Biological activities of polypyridyl-type ligands: Implications for bioinorganic chemistry and light-activated metal complexes. Current Opinion in Chemical Biology, 61, 191–202. https://doi.org/10.1016/j.cbpa.2021.01.016

    Article  CAS  Google Scholar 

  29. Karumban, K. S., Raut, R., Gupta, P., Muley, A., Giri, B., Kumbhakar, S., & Maji, S. (2022). Mononuclear cobalt(II) complexes with polypyridyl ligands: Synthesis, characterization, DNA interactions and in vitro cytotoxicity towards human cancer cells. Journal of Inorganic Biochemistry, 233, 111866. https://doi.org/10.1016/j.jinorgbio.2022.111866

    Article  CAS  Google Scholar 

  30. Wang, Y. F., Tang, J. X., Mo, Z. Y., Li, J., Liang, F. P., & Zou, H. H. (2022). The strong in vitro and vivo cytotoxicity of three new cobalt(ii) complexes with 8-methoxyquinoline. Dalton Transactions, 51, 8840–8847. https://doi.org/10.1039/d2dt01310j

    Article  CAS  Google Scholar 

  31. Liu, S. J., Xue, L., Hu, T. L., & Bu, X. H. (2012). Two new CoII coordination polymers based on carboxylate-bridged di- and trinuclear clusters with a pyridinedicarboxylate ligand: Synthesis, structures and magnetism. Dalton Transactions, 41(22), 6813–6819. https://doi.org/10.1039/C2DT30297G

    Article  CAS  Google Scholar 

  32. Ghosh, I., Chakraborty, B., Bera, A., Paul, S., & Paine, T. K. (2022). Selective oxygenation of C-H and CC bonds with H2O2 by high-spin cobalt(II)-carboxylate complexes. Dalton Transactions, 51(6), 2480–2492. https://doi.org/10.1039/D1DT02235K

    Article  CAS  Google Scholar 

  33. Kamaal, S., Ali, A., Afzal, M., Muslim, M., Alarifi, A., & Ahmad, M. (2022). Exploiting the biological potential of Zn(II) complex derived from zwitterionic Schiff base: DNA binding and cytotoxicity activity against human cervical cancer. Chemical Papers. https://doi.org/10.1007/S11696-022-02243-8

    Article  Google Scholar 

  34. Ali, A., Mishra, S., Kamaal, S., Alarifi, A., Afzal, M., Saha, K. D., & Ahmad, M. (2021). Evaluation of catacholase mimicking activity and apoptosis in human colorectal carcinoma cell line by activating mitochondrial pathway of copper(II) complex coupled with 2-(quinolin-8-yloxy)(methyl)benzonitrile and 8-hydroxyquinoline. Bioorganic Chemistry, 106, 104479. https://doi.org/10.1016/J.BIOORG.2020.104479

    Article  CAS  Google Scholar 

  35. Ali, A., Banerjee, S., Kamaal, S., Usman, M., Das, N., Afzal, M., & Ahmad, M. (2021). Ligand substituent effect on the cytotoxicity activity of two new copper( ii ) complexes bearing 8-hydroxyquinoline derivatives: Validated by MTT assay and apoptosis in MCF-7 cancer cell line (human breast cancer). RSC Advances, 11(24), 14362–14373. https://doi.org/10.1039/D1RA00172H

    Article  CAS  Google Scholar 

  36. Sepay, N., Saha, P. C., Shahzadi, Z., Chakraborty, A., & Halder, U. C. (2021). A crystallography-based investigation of weak interactions for drug design against COVID-19. Physical Chemistry Chemical Physics, 23(12), 7261–7270. https://doi.org/10.1039/D0CP05714B

    Article  CAS  Google Scholar 

  37. MacGillavry, C. (1962). International tables for X-ray crystallography. Volume III, Physical and chemical tables. Birmingham: Kynoch press.

  38. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., & Puschmann, H. (2009). OLEX2: A complete structure solution, refinement and analysis program. Journal of Applied Crystallography, 42(2), 339–341. https://doi.org/10.1107/S0021889808042726

    Article  CAS  Google Scholar 

  39. Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K., & Puschmann, H. (2015). The anatomy of a comprehensive constrained, restrained refinement program for the modern computing environment – Olex2 dissected. Acta Crystallographica Section A, 71(1), 59–75. https://doi.org/10.1107/S2053273314022207

    Article  CAS  Google Scholar 

  40. Blatov, V. A., Shevchenko, A. P., & Proserpio, D. M. (2014). Applied topological analysis of crystal structures with the program package topospro. Crystal Growth and Design, 14(7), 3576–3586. https://doi.org/10.1021/CG500498K/ASSET/IMAGES/LARGE/CG-2014-00498K_0017.JPEG

    Article  CAS  Google Scholar 

  41. Alexandrov, E. V., Blatov, V. A., Kochetkov, A. V., & Proserpio, D. M. (2011). Underlying nets in three-periodic coordination polymers: Topology, taxonomy and prediction from a computer-aided analysis of the Cambridge Structural Database. CrystEngComm, 13(12), 3947–3958. https://doi.org/10.1039/c0ce00636j

    Article  CAS  Google Scholar 

  42. Blatov, V. A. (2016). A method for topological analysis of rod packings. Structural Chemistry, 27(6), 1605–1611. https://doi.org/10.1007/S11224-016-0774-1

    Article  CAS  Google Scholar 

  43. Sousa, S. F., Fernandes, P. A., & Ramos, M. J. (2006). Protein-ligand docking: Current status and future challenges. Proteins: Structure, Function, and Bioinformatics, 65(1), 15–26. https://doi.org/10.1002/prot.21082

  44. Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., & Schwede, T. (2018). SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic acids research, 46(W1), W296–W303. https://doi.org/10.1093/nar/gky427

    Article  CAS  Google Scholar 

  45. Phillips, J. C., Hardy, D. J., Maia, J. D. C., Stone, J. E., Ribeiro, J. V., Bernardi, R. C., & Tajkhorshid, E. (2020). Scalable molecular dynamics on CPU and GPU architectures with NAMD. The Journal of Chemical Physics, 153(4), 044130. https://doi.org/10.1063/5.0014475

    Article  CAS  Google Scholar 

  46. Muslim, M., Ali, A., Neogi, I., Dege, N., Shahid, M., & Ahmad, M. (2021). Facile synthesis, topological study, and adsorption properties of a novel Co (II)-based coordination polymer for adsorptive removal of methylene blue and methyl orange dyes. Polyhedron, 210, 115519. https://doi.org/10.1016/J.POLY.2021.115519

    Article  CAS  Google Scholar 

  47. Muslim, M., Ali, A., Ahmad, M., Alarifi, A., Afzal, M., Sepay, N., & Dege, N. (2022). A zinc(II) metal–organic complex based on 2-(2-aminophenyl)-1H-benzimidazole ligand: Exhibiting high adsorption capacity for aromatic hazardous dyes and catecholase mimicking activity. Journal of Molecular Liquids, 363, 119767. https://doi.org/10.1016/J.MOLLIQ.2022.119767

    Article  CAS  Google Scholar 

  48. Muslim, M., Faizi, S. H., Ali, A., Afzal, M., Ahmad, M., Dege, N., & Mashrai, A. (2021). Crystal structure and Hirshfeld surface analysis of [2-(1H-benzimidazol-2-yl-κ N 3)aniline-κ N]di­chlorido­zinc(II) N, N-di­methyl­formamide monosolvate. Acta Crystallographica Section E: Crystallographic Communications, 77(Ii), 491–494. https://doi.org/10.1107/S2056989021003649

  49. M. J. Turner, J. J. McKinnon, S. K. Wolff, D. J. Grimwood, P. R. Spackman, D. Jayatilaka, & M. A. Spackman, (2017). CrystalExplorer17. University of Western Australia. http://hirshfeldsurface.Net

  50. Suresh, M., & Srinivasan, K. (2022). Crystal structure and Hirshfeld surface analysis of DL-methionine polymorphs (α and β). Journal of Molecular Structure, 1250(1), 131721. https://doi.org/10.1016/J.MOLSTRUC.2021.131721

    Article  CAS  Google Scholar 

  51. Muslim, M., Kamaal, S., Ahmad, M., Arish, M., Jane Alam, M., Kumar Pradhan, A., & Afzal, M. (2022). Structural elucidation and cytotoxicity profile of neocuproine-Cu(II) and Cu(I)-based chemotherapeutic agents: Effect of picric acid-derived cocrystals. Polyhedron, 220, 115848. https://doi.org/10.1016/J.POLY.2022.115848

    Article  CAS  Google Scholar 

  52. Muslim, M., Ahmad, M., Arish, M., Alam, M. J., Alarifi, A., Afzal, M., & Ahmad, S. (2022). 5-Hydroxyisophthalic acid and neocuproine containing copper(II) complex as a promising cytotoxic agent: Structure elucidation, topology, Hirshfeld surface, DFT calculations, and molecular docking analysis. Journal of Molecular Structure, 1270, 133879. https://doi.org/10.1016/J.MOLSTRUC.2022.133879

    Article  CAS  Google Scholar 

  53. Pap, J. S., Kripli, B., Giorgi, M., Kaizer, J., & Speier, G. (2011). Redox properties of cobalt(II) complexes with isoindoline-based ligands. Transition Metal Chemistry, 36(5), 481–487. https://doi.org/10.1007/S11243-011-9493-Z

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Department of Applied Chemistry, Faculty of Engineering and Technology, Aligarh Muslim University, UP, India, and Researchers Supporting Project number (RSP-2021/288), King Saud University, Riyadh, Saudi Arabia, are gratefully acknowledged for financial support and laboratory facilities. UGC Start-Up grant and TEQIP-III, ZHCET, Aligarh Muslim University, is thanked for the extensive help in procuring chemicals.

Funding

A Start-Up Grant from the UGC, India, and Researchers Supporting Project number (RSP-2021/288), King Saud University, Riyadh, Saudi Arabia, is gratefully acknowledged for financial support.

Author information

Authors and Affiliations

Authors

Contributions

All authors authorize that they have contributed reasonably, and take full liability for the work. Mohd Muslim (M. Muslim): writing—original draft; formal analysis; validation; writing—review and editing; project administration. Farha Naz (F. Naz): data curation, formal analysis. Abdullah Alarifi (A. Alarifi): formal analysis. Mohd. Afzal (M. Afzal): formal analysis. Nayim Sepay (N. Sepay): formal analysis, software. Musheer Ahmad (M. Ahmad): supervision, data curation, project administration. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Musheer Ahmad.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

The authors declare that they consent to participate.

Consent to Publish

The authors declare that they consent to publication.

Declarations of Author’s Agreement to Authorship and Submission

All authors have agreed to authorship and the submission of this manuscript for peer review and publication in the Applied Biochemistry and Biotechnology Journal.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1086 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muslim, M., Naz, F., Alarifi, A. et al. Structural, Theoretical Investigations, Hirshfeld Surface Analysis, and Cytotoxicity Profile of a Neocuproine-Co(II)-Based Discrete Homodinuclear Complex. Appl Biochem Biotechnol 195, 871–888 (2023). https://doi.org/10.1007/s12010-022-04180-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-04180-4

Keywords

Navigation