Skip to main content
Log in

Pyrazole-based trinuclear and mononuclear complexes: synthesis, characterization, DNA interactions and cytotoxicity studies

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

A new trinuclear Cu(II) complex [Cu3(μ3-OH)(μ-pz)3(Hpz)2(HCOO)(BTAO)Cl] (1) (Hpz = pyrazole, BTAO = 4,6-bis(dimethylamino)-1,3,5-triazin-2(1H)-one) and four mononuclear complexes [M(Hpz)4Cl2] [M2+ = Cu2+, Co2+, Ni2+ and Zn2+] (2–5) have been synthesized and characterized. Electronic absorption spectra, fluorescence spectra and circular dichroism spectra were carried out to investigate the interactions between complexes 1–5 and CT-DNA. These complexes exhibited different binding affinity with DNA, and the order of DNA binding strength was 1 > 2 > 4 > 3 > 5. Most of these complexes could cleave pBR322 DNA efficiently in the presence of H2O2 as an activator, and the cleavage efficacy of these complexes was quite consistent with their DNA binding abilities. Furthermore, the in vitro cytotoxicity studies of complexes 1–5 were measured by MTT assay. The trinuclear Cu(II) complex 1 showed cytotoxicity against human lung carcinoma cell lines A549 (IC50 = 24.314 ± 1.386 µM) and human esophageal carcinoma cell line EC109 (IC50 = 27.335 ± 1.437 µM), while the mononuclear complexes 2–5 did not show apparent cytotoxicity to the tested cell lines (IC50 > 50 μM). The different cytotoxicity of these complexes may also be relevant to their reactivity toward DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ndagi U, Mhlongo N, Soliman ME (2017) Drug Des Dev Ther 11:599–616

    Article  CAS  Google Scholar 

  2. Liang JX, Zhong HJ, Yang G, Vellaisamy K, Ma DL, Leung CH (2017) J Inorg Biochem 177:276–286

    Article  CAS  PubMed  Google Scholar 

  3. Muhammad N, Guo ZJ (2014) Curr Opin Chem Biol 19:144–153

    Article  CAS  PubMed  Google Scholar 

  4. Cai L, Yu C, Ba L, Liu Q, Qian Y, Yang B, Gao C (2018) Appl Organomet Chem 32(4): e4228.

  5. Santini C, Pellei M, Gandin V, Porchia M, Tisato F, Marzano C (2014) Chem Rev 114(1):815–862

    Article  CAS  PubMed  Google Scholar 

  6. Porchia M, Pellei M, Del Bello F, Santini C (2020) Molecules 25(24):5814

    Article  CAS  PubMed Central  Google Scholar 

  7. Barone G, Terenzi A, Lauria A, Almerico AM, Leal JM, Busto N, García B (2013) Coordin Chem Rev 257:2848–2862

    Article  CAS  Google Scholar 

  8. Wang HL, Sorolla M, Wang XQ, Jacobson AJ, Wang HY, Pillai AK (2019) Transit Metal Chem 44(3):237–245

    Article  Google Scholar 

  9. Parveen S, Arjmand F, Tabassum S (2019) Eur J Med Chem 175:269–286

    Article  CAS  PubMed  Google Scholar 

  10. Li D, Wu P, Sun N, Lu YJ, Wong WL, Fang Z, Zhang K (2019) Curr Org Chem 23(5):616–627

    Article  CAS  Google Scholar 

  11. Bennani FE, Doudach L, Cherrah Y, Ramli Y, Karrouchi K, Ansar M, Faouzi ME (2020) Bioorg Chem 97:103470

    Article  CAS  PubMed  Google Scholar 

  12. Khan MF, Alam MM, Verma G, Akhtar W, Akhter M, Shaquiquzzaman M (2016) Eur J Med Chem 120:170–201

    Article  CAS  PubMed  Google Scholar 

  13. Sahoo J, Sahoo CR, Nandini Sarangi PK, Prusty SK, Padhy RN, Paidesetty SK (2020) Eur J Med Chem 186:111911

    Article  CAS  PubMed  Google Scholar 

  14. Keter FK, Darkwa J (2012) Biometals 25(1):9–21

    Article  CAS  PubMed  Google Scholar 

  15. Azam M, Wabaidur SM, Alam M, Khan Z, Alanazi IO, Al-Resayes SI, Moon IS (2020) Transit Metal Chem 46(1):65–71

    Article  Google Scholar 

  16. Matada MN, Jathi K (2019) J Coord Chem 72(12):1994–2014

    Article  CAS  Google Scholar 

  17. Pellei M, Bagnarelli L, Luciani L, Del Bello F, Giorgioni G, Piergentili A, Quaglia W, De Franco M, Gandin V, Marzano C, Santini C (2020) Int J Mol Sci 21(7):2616

    Article  CAS  PubMed Central  Google Scholar 

  18. Jana A, Brandao P, Mondal G, Bera P, Santra A (2018) Inorg Chim Acta 482:621–634

    Article  CAS  Google Scholar 

  19. Zhou HP, Gan XP, Li XL, Liu ZD, Geng WQ, Zhou FX, Ke WZ, Wang P, Kong L, Hao FY, Wu JY, Tian YP (2010) Crystal Growth Des 10(4):1767–1776

    Article  CAS  Google Scholar 

  20. Kazemi Z, Amiri Rudbari H, Mirkhani V, Sahihi M, Moghadam M, Tangestaninejad S, Mohammadpoor Baltork I, Kajani AA, Azimi G (2017) Eur J Med Chem 135:230–240

    Article  CAS  PubMed  Google Scholar 

  21. Zhao J, Li S, Wang X, Xu G, Gou S (2019) Inorg chem 58(3):2208–2217

    Article  CAS  PubMed  Google Scholar 

  22. Fang ZW, Yan J, Yu WD, Zhang N, Zhang SC (2019) Transit Metal Chem 44(5):463–474

    Article  CAS  Google Scholar 

  23. Zheng L, Qiu X, Xu Y, Fu J, Yuan Y, Zhu D, Chen S (2011) CrystEngComm 13(7):2714–2720

    Article  CAS  Google Scholar 

  24. Burrows AD, Cassar K, Mahon MF, Rigby SP, Warren JE (2005) CrystEngComm 7:548–550

    Article  CAS  Google Scholar 

  25. Manzur J, Acuna C, Vega A (2011) Inorg Chim Acta 374(1):637–642

    Article  CAS  Google Scholar 

  26. Wang JX, Wang C, Wang X, Wang XY, Xing YH (2015) Spectrochim Acta Part A 142:55–61

    Article  CAS  Google Scholar 

  27. Daugherty NA, Swisher JH (1968) Inorg Chem 7(8):1651–1653

    Article  CAS  Google Scholar 

  28. Casarin M, Corvaja C, Di Nicola C, Falcomer D, Franco L, Monari M, Pandolfo L, Pettinari C, Piccinelli F, Tagliatesta P (2004) Inorg Chem 43(19):5865–5876

    Article  CAS  PubMed  Google Scholar 

  29. Zhang Q, Zhang Q, Li ZZ, Liu H, Liu JC (2020) Dyes and Pigments 173: 107923.

  30. Han G, Yang P (2002) J Inorg Biochem 91(1):230–236

    Article  CAS  PubMed  Google Scholar 

  31. Protas AV, Popova EA, Mikolaichuk OV, Porozov YB, Mehtiev AR, Ott I, Alekseev GV, Kasyanenko NA, Trifonov RE (2018) Inorg Chim Acta 473:133–144

    Article  CAS  Google Scholar 

  32. Zhu LN, Gao HR, Wang HX, Xu MY, Li XZ (2014) Eur J Inorg Chem 2014(14):2396–2405

    Article  CAS  Google Scholar 

  33. Tjioe L, Meininger A, Joshi T, Spiccia L, Graham B (2011) Inorg Chem 50(10):4327–4339

    Article  CAS  PubMed  Google Scholar 

  34. Giffard D, Fischer Fodor E, Vlad C, Achimas Cadariu P, Smith GS (2018) Eur J Med Chem 157:773–781

    Article  CAS  PubMed  Google Scholar 

  35. Anbu S, Kandaswamy M (2011) Polyhedron 30(1):123–131

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of Hunan Province (Grant 2020JJ4684).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shouchun Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 10651 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Nie, Y., Tang, Q. et al. Pyrazole-based trinuclear and mononuclear complexes: synthesis, characterization, DNA interactions and cytotoxicity studies. Transit Met Chem 46, 481–494 (2021). https://doi.org/10.1007/s11243-021-00466-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-021-00466-4

Navigation