Skip to main content

Advertisement

Log in

In Vitro Antiproliferative Activity and Phytochemicals Screening of Extracts of the Freshwater Microalgae, Chlorochromonas danica

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The present study was focused on the screening of phytochemicals, their quantitative estimation and analysis by LC–MS profile, and antiproliferative efficacy of the aqueous-ethanolic extracts of the microalgae, Chlorochromonas danica isolated from the freshwater body Tavanampalli. The aqueous-ethanol extract of Chlorochromonas danica showed the presence of flavonoids, phenols, and proteins. The total flavonoid content, total phenol content, and total protein content were determined to be 158.65 mg of quercetin equivalent, 15.75 mg of gallic acid equivalent, and 134.65 mg/g dry weight of the extract, respectively. The LC–MS analysis confirmed the presence of several major bioactive molecules including l-Histidine, d-glutamine, l-aspartic acid, adenine, adenosine, cotinine, guanine hypoxanthine, l-glutamic acid, nicotinamide, 4-Hydroxycoumarin, and Stearamide. The aqueous-ethanol extract of Chlorochromonas danica exhibited an IC50 values of 63.34 µg, 279.29 µg, 125.42 µg, 90.56 µg, and 95.58 µg against A375, A549, HeLa, HepG2, and HT29 cell lines respectively, compared to the positive control cisplatin with IC50 values of 3.56 µg, 4.65 µg, 3.88 µg, 4.87 µg, and 7.23 µg respectively. These data suggest that Chlorochromonas danica remains a promising drug candidate for the treatment of cancers, particularly melanoma (A375 cell line) that can be considered for purification of antiproliferative compound and further clinical trials for the discovery of novel antiproliferative drugs from cost-effective sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Barsanti, L., Coltelli, P., Evangelista, V., Frassanito, A. M., Passarelli, V., Vesentini, N., & Gualtieri, P. (2008). Oddities and curiosities in the algal world. In: ALgal Toxins: Nature, Occurence Effect and Deltection NATO Science for Peace and Security Series A: Chemistry and Biology Springer, Dordrecht. https://doi.org/10.1201/b16544-11

  2. Scieszka, S., & Klewicka, E. (2018). Algae in food: a general review. Critical Reviews in Food Science and Nutrition, 59(21), 3538–3547. https://doi.org/10.1080/10408398.2018.1496319

  3. Chakdar, H., & Pabbi, S. (2017). Algal pigments for human health and cosmeceutivals. Algal Green Chemistry. pp. 171–188. https://doi.org/10.1016/B978-0-444-63784-0.00009-6

  4. Tang, D. Y. Y., Khoo, K. S., Chew, K. W., Tao, Y., Ho, S. H., & Show, P. L. (2020). Potential utilization of bioproducts from microalgae for the quality enhancement of natural products. Bioresource Technology, 304, 122997. https://doi.org/10.1016/j.biortech.2020.122997

    Article  CAS  Google Scholar 

  5. Koyande, A. K., Chew, K. W., Rambabu, K., Tao, Y., Chu, D. T., & Show, P. L. (2019). Microalgae: A potential alternative to health supplementation for humans. Food Science and Human Wellness, 8(1), 16–24. https://doi.org/10.1016/j.fshw.2019.03.001

    Article  Google Scholar 

  6. Khan, M. I., Shin, J. H., & Kim, J. D. (2018). The promising future of microalgae: Current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microbial Cell Factories, 17(1), 1–21. https://doi.org/10.1186/s12934-018-0879-x

    Article  Google Scholar 

  7. Semple, K. T., & Cain, R. B. (1996). Biodegradation of phenols by the alga Ochromonas danica. Applied and Environmental Microbiology, 62(4), 1265–1273. https://doi.org/10.1128/aem.62.4.1265-1273.1996

    Article  CAS  Google Scholar 

  8. Mitra, A., Flynn, K. J., Tillmann, U., Raven, J. A., Caron, D., Stoecker, D. K., … Lundgren, V. (2016). Defining planktonic protist functional groups on mechanisms for energy and nutrient acquisition: Incorporation of diverse mixotrophic strategies. Protist 167(2):106–120. https://doi.org/10.1016/j.protis.2016.01.003

  9. Pulz, O., & Gross, W. (2004). Valuable products from biotechnology of microalgae. Applied Microbiology and Biotechnology, 65(6), 635–648. https://doi.org/10.1007/s00253-004-1647-x

    Article  CAS  Google Scholar 

  10. Sathasivam, R., Radhakrishnan, R., Hashem, A., & Abd-Allah, E. F. (2019). Microalgae metabolites: A rich source for food and medicine. Saudi Journal of Biological Sciences, 26(4), 709–722. https://doi.org/10.1016/j.sjbs.2017.11.003

    Article  CAS  Google Scholar 

  11. Bogen, C., Klassen, V., Wichmann, J., Russa, M. La, Doebbe, A., Grundmann, M., … Mussgnug, J. H. (2013). Identification of monoraphidium contortum as a promising species for liquid biofuel production. Bioresource Technology 133:622–626. https://doi.org/10.1016/j.biortech.2013.01.164

  12. Invally, K., & Ju, L. K. (2017). Biolytic effect of rhamnolipid biosurfactant and dodecyl sulfate against phagotrophic alga Ochromonas danica. Journal of Surfactants and Detergents, 20(5), 1161–1171. https://doi.org/10.1007/s11743-017-2005-1

    Article  CAS  Google Scholar 

  13. Nicholls, K. H., & Wujek, D. E. (2003). Chrysophycean Algae. In: Freshwater Algae of North America: Ecology and Classification. pp. 471–509. https://doi.org/10.1016/B978-012741550-5/50013-1

  14. Lin, Z., Li, C., & Ju, L. K. (2019). Glycerol and acetate additions to maximize lipid content in high-density cultures of phagotrophic alga ochromonas danica. Journal of the American Oil Chemists’ Society, 96(3), 231–238. https://doi.org/10.1002/aocs.12183

    Article  CAS  Google Scholar 

  15. Lie, A. A. Y., Liu, Z., Terrado, R., Tatters, A. O., Heidelberg, K. B., & Caron, D. A. (2017). Effect of light and prey availability on gene expression of the mixotrophic chrysophyte Ochromonas sp. BMC Genomics, 18(1), 1–16. https://doi.org/10.1186/s12864-017-3549-1

    Article  CAS  Google Scholar 

  16. Demirtas, I., Erenler, R., Elmastas, M., & Goktasoglu, A. (2013). Studies on the antioxidant potential of flavones of Allium vineale isolated from its water-soluble fraction. Food Chemistry, 136(1), 34–40. https://doi.org/10.1016/j.foodchem.2012.07.086

    Article  CAS  Google Scholar 

  17. Yaglıoglu, A. S., Akdulum, B., Erenler, R., Demirtas, I., Telci, I., & Tekin, S. (2013). Antiproliferative activity of pentadeca-(8E, 13Z) dien-11-yn-2-one and (E)-1,8-pentadecadiene from Echinacea pallida (Nutt.) Nutt. roots. Medicinal Chemistry Research, 22(6), 2946–2953. https://doi.org/10.1007/s00044-012-0297-2

    Article  CAS  Google Scholar 

  18. Erenler, R., Sen, O., SahinYaglioglu, A., & Demirtas, I. (2016). Bioactivity-guided isolation of antiproliferative sesquiterpene lactones from Centaurea solstitialis L. ssp. solstitialis. Combinatorial Chemistry & High Throughput Screening, 19(1), 66–72. https://doi.org/10.2174/1386207319666151203002117

    Article  CAS  Google Scholar 

  19. Forni, C., Facchiano, F., Bartoli, M., Pieretti, S., Facchiano, A., D’Arcangelo, D., … Jadeja, R. N. (2019). Beneficial role of phytochemicals on oxidative stress and age-related diseases. BioMed Research International, 2019(Figure 1). https://doi.org/10.1155/2019/8748253

  20. Lee, J., Baek, S., Lee, J., Lee, J., Lee, D. G., Park, M. K., … Kwok, S. K. (2015). Digoxin ameliorates autoimmune arthritis via suppression of Th17 differentiation. International Immunopharmacology 26(1):103–111. https://doi.org/10.1016/j.intimp.2015.03.017

  21. Meletis, C. D., & Barker, J. E. (2005). Therapeutic uses of amino acids. Alternative and Complementary Therapies, 11(1), 24–28. https://doi.org/10.1089/act.2005.11.24

    Article  Google Scholar 

  22. Wang, W., & Zou, W. (2020). Amino acids and their transporters in T cell immunity and cancer therapy. Molecular Cell, 80(3), 384–395. https://doi.org/10.1016/j.molcel.2020.09.006

    Article  CAS  Google Scholar 

  23. El-Hack, M. E., Abdelnour, S., Alagawany, M., Abdo, M., Sakr, M. A., Khafaga, A. F., … Gebriel, M. G. (2019). Microalgae in modern cancer therapy: Current knowledge. Biomedicine & Pharmacotherapy 111:42–50. https://doi.org/10.1016/j.biopha.2018.12.069

  24. Dahiya, S., Shilpie, A., Balasundaram, G., Chowdhury, R., Kumar, P., & Mishra, A. K. (2021). Diversity of algal species present in waste stabilisation ponds and different factors affecting its enrichment and phototaxis. Chemistry and Ecology, 37(6), 515–529. https://doi.org/10.1080/02757540.2021.1910242

    Article  CAS  Google Scholar 

  25. Dineshkumar, R., Narendran, R., Jayasingam, P., & Sampathkumar, P. (2017). Cultivation and chemical composition of microalgae Chlorella vulgaris and its antibacterial activity against human pathogens. Journal of Aquaculture & Marine Biology, 5(3), 0019. https://doi.org/10.15406/jamb.2017.05.00119

  26. Do, Q. D., Angkawijaya, A. E., Tran-Nguyen, P. L., Huynh, L. H., Soetaredjo, F. E., Ismadji, S., & Ju, Y. H. (2014). Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica. Journal of Food and Drug Analysis, 22(3), 296–302. https://doi.org/10.1016/j.jfda.2013.11.001

    Article  CAS  Google Scholar 

  27. Harborne, J. B. (1973). Phytochemical Methods-a guide to modern techniques of plant analysis. pp. 33–80. https://doi.org/10.2307/4108146

  28. Ali, A. M. A., El-Nour, M. E. A. M., & Yagi, S. M. (2018). Total phenolic and flavonoid contents and antioxidant activity of ginger (Zingiber officinale Rosc.) rhizome, callus and callus treated with some elicitors. Journal of Genetic Engineering and Biotechnology, 16(2), 677–682. https://doi.org/10.1016/j.jgeb.2018.03.003

    Article  Google Scholar 

  29. Chandra, S., Kham, S., Avula, B., Lata, H., Yang, M. A., & Khan, I. A. (2014). Assessment of total phenolic and flavanoid content, antioxidant properties and yield of aeroponically and conventionall grown leafy vegetable and fruits crops: A comparitive study. Evidence-based Complementary and Alternative Medicine 253875. https://doi.org/10.1155/2014/253875

  30. Sarkar, S., Mondal, M., Ghosh, P., Saha, M., & Chatterjee, S. (2020). Quantification of total protein content from some traditionally used edible plant leaves: A comparative study. Journal of Medicinal Plants Studies, 8(4), 166–170. https://doi.org/10.22271/plants.2020.v8.i4c.1164

    Article  Google Scholar 

  31. Kumar, S., Singh, A., & Kumar, B. (2017). Identification and characterization of phenolics and terpenoids from ethanolic extracts of Phyllanthus species by HPLC-ESI-QTOF-MS/MS. Journal of Pharmaceutical Analysis, 7(4), 214–222. https://doi.org/10.1016/j.jpha.2017.01.005

    Article  Google Scholar 

  32. Sodde, V. K., Lobo, R., Kumar, N., Maheshwari, R., & Shreedhara, C. S. (2015). Cytotoxic activity of Macrosolen parasiticus (L.) Danser on the growth of breast cancer cell line (MCF-7). Pharmacognosy Magazine, 11(42), S156–S160. https://doi.org/10.4103/0973-1296.157719

    Article  CAS  Google Scholar 

  33. Tang, H., Zhu, S. S., Wang, N., Xu, Z., Huang, J., Gu, L., … Huang, Y. (2020). The inhibitory effect of mixotrophic Ochromonas gloeopara on the survival and reproduction of Daphnia similoides sinensis. Environmental Science and Pollution Research 27(23):29068–29074. https://doi.org/10.1007/s11356-020-09291-1

  34. Boenigk, J., Pfandl, K., Stadler, P., & Chatzinotas, A. (2005). High diversity of the “Spumella-like” flagellates: An investigation based on the SSU rRNA gene sequences of isolates from habitats located in six different geographic regions. Environmental Microbiology, 7(5), 685–697. https://doi.org/10.1111/j.1462-2920.2005.00743.x

    Article  CAS  Google Scholar 

  35. Andersen, R. A., Graf, L., Malakhov, Y., & Yoon, H. S. (2017). Rediscovery of the ochromonas type species ochromonas triangulata (chrysophyceae) from its type locality (Lake Veysove, Donetsk region, Ukraine). Phycologia, 56(6), 591–604. https://doi.org/10.2216/17-15.1

    Article  CAS  Google Scholar 

  36. Elloumi, J., Carrias, J. F., Ayadi, H., Sime-Ngando, T., & Bouaïn, A. (2009). Communities structure of the planktonic halophiles in the solar saltern of Sfax, Tunisia. Estuarine, Coastal and Shelf Science, 81(1), 19–26. https://doi.org/10.1016/j.ecss.2008.09.019

    Article  Google Scholar 

  37. Segal, R. D., Waite, A. M., & Hamilton, D. P. (2006). Transition from planktonic to benthic algal dominance along a salinity gradient. Hydrobiologia, 556(1), 119–135. https://doi.org/10.1007/s10750-005-0916-8

    Article  Google Scholar 

  38. Zaremba, L. S., & Smolenski, W. H. (2000). Optimal portfolio choice under a liability constraint. Annals of Operations Research 97(1–4), 131–141. 10.1023/A.

  39. Schmidtke, A., Bell, E. M., & Weithoff, G. (2006). Potential grazing impact of the mixotrophic flagellate Ochromonas sp. (Chrysophyceae) on bacteria in an extremely acidic lake. Journal of Plankton Research, 28(11), 991–1001. https://doi.org/10.1093/plankt/fbl034

    Article  CAS  Google Scholar 

  40. Dai, J., & Mumper, R. J. (2010). Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules, 15(10), 7313–7352. https://doi.org/10.3390/molecules15107313

    Article  CAS  Google Scholar 

  41. Turkmen, N., Sari, F., & Velioglu, Y. S. (2006). Effects of extraction solvents on concentration and antioxidant activity of black and black mate tea polyphenols determined by ferrous tartrate and Folin-Ciocalteu methods. Food Chemistry, 99(4), 835–841. https://doi.org/10.1016/j.foodchem.2005.08.034

    Article  CAS  Google Scholar 

  42. Cagalj, M., Skroza, D., Tabanelli, G., Özogul, F., & Šimat, V. (2021). Maximizing the antioxidant capacity of Padina pavonica by choosing the right drying and extraction methods. Processes, 9(4), 1–15. https://doi.org/10.3390/pr9040587

    Article  CAS  Google Scholar 

  43. Widowati, I., Zainuri, M., Kusumaningrum, H. P., Susilowati, R., Hardivillier, Y., Leignel, V., … Mouget, J. L. (2017). Antioxidant activity of three microalgae Dunaliella salina, Tetraselmis chuii and Isochrysis galbana clone Tahiti. IOP Conference Series: Earth and Environmental Science 55:1–6. https://doi.org/10.1088/1755-1315/55/1/012067

  44. Stanchev, S., Jensen, F., Hinkov, A., Atanasov, V., Genova-Kalou, P., Argirova, R., & Manolov, I. (2011). Synthesis and Inhibiting Activity of Some 4 Hydroxycoumarin Derivatives on HIV-I Protease. ISRN Pharmaceutics. https://doi.org/10.5402/2011/137637

  45. Saleem, A., Bukhari, S. M., Zaidi, A., Farooq, U., Ali, M., Khan, A., … Khan, F. A. (2020). Enzyme inhibition and antibacterial potential of 4-hydroxycoumarin derivatives. Brazilian Journal of Pharmaceutical Sciences 56:1–10. https://doi.org/10.1590/s2175-97902019000418654

  46. Banday, S. M., Showkat, M., & Khan, K. Z. (2019). Structure-activity relationship of anticancer potential of 4-hydroxycoumarin and its derivatives: A comparative study. Asian Journal of Pharmacy and Pharmacology, 5(3), 470–479. https://doi.org/10.31024/ajpp.2019.5.3.7

    Article  CAS  Google Scholar 

  47. Zavrsnik, D., Muratovic, S., Spirtovic, S., Softic, D., & Medic-Saric, M. (2008). The synthesis and antimicrobial activity of some 4-hydroxycoumarin derivatives. Bosnian Journal of Basic Medical Sciences, 8(3), 277–281. https://doi.org/10.17305/bjbms.2008.2933

    Article  Google Scholar 

  48. Akkol, E. K., Genç, Y., Karpuz, B., Sobarzo-Sánchez, E., & Capasso, R. (2020). Coumarins and coumarin-related compounds in pharmacotherapy of cancer. Cancers, 12(7), 1–25. https://doi.org/10.3390/cancers12071959

    Article  CAS  Google Scholar 

  49. Wang, C., Song, Z., Yu, H., Liu, K., & Ma, X. (2015). Adenine: An important drug scaffold for the design of antiviral agents. Acta Pharmaceutica Sinica B, 5(5), 431–441. https://doi.org/10.1016/j.apsb.2015.07.002

    Article  CAS  Google Scholar 

  50. Peck, C. C., Moore, G. L., Bolin, R. B., & Dawson, R. B. (1981). Adenine blood preservation. Critical Reviews in Clinical Laboratory Sciences, 13(3), 173–212. https://doi.org/10.3109/10408368109106447

    Article  CAS  Google Scholar 

  51. Nishino, T., Yachie-Kinoshita, A., Hirayama, A., Soga, T., Suematsu, M., & Tomita, M. (2013). Dynamic simulation and metabolome analysis of long-term erythrocyte storage in adenine-guanosine solution. PLoS ONE, 8(8), e71060. https://doi.org/10.1371/journal.pone.0071060

  52. Sadigh-Eteghad, S., Vatandoust, S. M., Mahmoudi, J., Rahigh Aghsan, S., & Majdi, A. (2020). Cotinine ameliorates memory and learning impairment in senescent mice. Brain Research Bulletin, 164(June), 65–74. https://doi.org/10.1016/j.brainresbull.2020.08.010

    Article  CAS  Google Scholar 

  53. Grizzell, J. A., Patel, S., Barreto, G. E., & Echeverria, V. (2017). Cotinine improves visual recognition memory and decreases cortical Tau phosphorylation in the Tg6799 mice. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 78, 75–81. https://doi.org/10.1016/j.pnpbp.2017.05.010

    Article  CAS  Google Scholar 

  54. Stefan, L., & Monchaud, D. (2019). Applications of guanine quartets in nanotechnology and chemical biology. Nature Reviews Chemistry, 3(11), 650–668. https://doi.org/10.1038/s41570-019-0132-0

    Article  Google Scholar 

  55. Kaucher, M. S., Harrell, W. A., & Davis, J. T. (2006). A unimolecular G-quadruplex that functions as a synthetic transmembrane Na+ transporter. Journal of the American Chemical Society, 128(1), 38–39. https://doi.org/10.1021/ja056888e

    Article  CAS  Google Scholar 

  56. Edelman, J. J. B., Seco, M., Dunne, B., Matzelle, S. J., Murphy, M., Joshi, P., … Passage, J. (2013). Custodiol for myocardial protection and preservation: a systematic review. Annals of Cardiothoracic Surgery, 2(6):717–728. https://doi.org/10.3978/j.issn.2225-319X.2013.11.10

  57. Holecek, M. (2020). Histidine in Health and Disease: Metabolism, Physiological Importance, and Use as a Supplement Milan. Nutrients, 12(848). https://doi.org/10.3390/nu12030848

  58. Bampidis, V., Azimonti, G., Bastos, M. L., Christensen, H., Dusemund, B., Kouba, M., … Ramos, F. (2019). Safety and efficacy of l‐histidine monohydrochloride monohydrate produced using Corynebacterium glutamicum KCCM 80172 for all animal species. European Food Safety Authority 17(7):1–20. https://doi.org/10.2903/j.efsa.2019.5783

  59. Desjardins-Park, H. E., Foster, D. S., & Longaker, M. T. (2018). Fibroblasts and wound healing: An update. Regenerative Medicine, 13(5), 491–495. https://doi.org/10.2217/rme-2018-0073

    Article  CAS  Google Scholar 

  60. Takahashi, S., Saegusa, J., Sendo, S., Okano, T., Akashi, K., Irino, Y., & Morinobu, A. (2017). Glutaminase 1 plays a key role in the cell growth of fibroblast-like synoviocytes in rheumatoid arthritis. Arthritis Research and Therapy, 19(1), 1–10. https://doi.org/10.1186/s13075-017-1283-3

    Article  CAS  Google Scholar 

  61. Wang, Z., Wang, K., Feng, Y., Jiang, S., Zhao, Y., & Zeng, M. (2020). Preparation, characterization of L-aspartic acid chelated calcium from oyster shell source and its calcium supplementation effect in rats. Journal of Functional Foods, 75(5), 104249. https://doi.org/10.1016/j.jff.2020.104249

    Article  CAS  Google Scholar 

  62. Ichikawa, S., Gohda, T., Murakoshi, M., Li, Z., Adachi, E., Koshida, T., & Suzuki, Y. (2020). Aspartic acid supplementation ameliorates symptoms of diabetic kidney disease in mice. FEBS Open Bio, 10(6), 1122–1134. https://doi.org/10.1002/2211-5463.12862

    Article  CAS  Google Scholar 

  63. Fardus, J., Hossain, M. S., & Fujita, M. (2021). Modulation of the antioxidant defense system by exogenous l-glutamic acid application enhances salt tolerance in lentil (Lens culinaris medik.). Biomolecules, 11(4), 587. https://doi.org/10.3390/biom11040587

  64. Chandra, K., Gopi Rao, D. V., Subramanian, K. A., & Valarmathi, K. (2018). Current status of freshwater biodiversity of India : an over view faunal diversity of India, 5, 1–23.

  65. Sundar, S., Heino, J., Roque, F. de O., Simaika, J. P., Melo, A. S., Tonkin, J. D., … Silva, D. P. (2020). Conservation of freshwater macroinvertebrate biodiversity in tropical regions. Aquatic Conservation: Marine and Freshwater Ecosystems 30(6), 1238–1250. https://doi.org/10.1002/aqc.3326

  66. White, A. R., Duggan, B. M., Tsai, S. C., & Vanderwal, C. D. (2016). The Alga Ochromonas danica produces Bromosulfolipids. Organic Letters, 18(5), 1124–1127. https://doi.org/10.1021/acs.orglett.6b00230.The

    Article  CAS  Google Scholar 

  67. Moss, F. R., Cabrera, G. E., McKenna, G. M., Salerno, G. J., Shuken, S. R., Landry, M. L., … Boxer, S. G. (2020). Halogenation-dependent effects of the chlorosulfolipids of Ochromonas danica on lipid bilayers. ACS Chemical Biology 15(11), 2986–2995. https://doi.org/10.1021/acschembio.0c00624

  68. Guo, Q., Yu, J., Zhao, Y., Liu, T., Su, M., Jia, Z., … Yang, M. (2019). Identification of fishy odor causing compounds produced by Ochromonas sp. and Cryptomonas ovate with gas chromatography-olfactometry and comprehensive two-dimensional gas chromatography. Science of the Total Environment 671:149–156. https://doi.org/10.1016/j.scitotenv.2019.03.370

  69. Mishra, V. K., & Kumar, N. (2017). Microbial degradation of phenol—a review. Journal of Water Pollution & Purification Research, 4(1), 16–22.

    Google Scholar 

  70. Suh, S. S., Yang, E. J., Lee, S. G., Youn, U. J., Han, S. J., Kim, I. C., & Kim, S. (2017). Bioactivities of ethanol extract from the antarctic freshwater microalga, chloromonas sp. International Journal of Medical Sciences, 14(6), 560–569. https://doi.org/10.7150/ijms.18702

    Article  CAS  Google Scholar 

  71. Parthasarathi, P., Umamaheswari, A., Banupriya, R., & Elumalai, S. (2021). Phytochemical screening and in-vitro anticancer activity of ethyl acetate fraction of Seagrass Halodule uninervis from Mandapam Coastal Region Rameswaram Gulf of Mannar India. International Journal of Pharmaceutical Sciences and Drug Research, 13(6), 677–684. https://doi.org/10.25004/IJPSDR.2021.130611

    Article  CAS  Google Scholar 

  72. Gangadhar, K. N., Rodrigues, M. J., Pereira, H., Gaspar, H., Malcata, F. X., Barreira, L., & Varela, J. (2020). Anti-hepatocellular carcinoma (HepG2) activities of monoterpene hydroxy lactones isolated from the marine microalga tisochrysis lutea. Marine Drugs, 18(567), 1–10. https://doi.org/10.3390/md18110567

    Article  CAS  Google Scholar 

  73. Erenler, R., Pabuccu, K., Yaglioglu, A. S., Demirtas, I., & Gul, F. (2016). Chemical constituents and antiproliferative effects of cultured Mougeotia nummuloides and Spirulina major against cancerous cell lines. Zeitschrift fur Naturforschung - Section C Journal of Biosciences, 71(3–4), 87–92. https://doi.org/10.1515/znc-2016-0010

    Article  CAS  Google Scholar 

  74. Huang, T. H., Chiu, Y. H., Chan, Y. L., Chiu, Y. H., Wang, H., Huang, K. C., … Wu, C. J. (2015). Prophylactic administration of Fucoidan represses cancer metastasis by inhibiting vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMPs) in Lewis Tumor-bearing mice. Marine Drugs 13:1880–1900. https://doi.org/10.3390/md13041882

  75. Tavares-Carreon, F., Torre-Zavala, S. D., Arocha-Garza, H. F., Souza, V., Galan-Wong, L. J., & Aviles-Arnaut, H. (2020). In vitro anticancer activity of methanolic extract of Granulocystopsis sp., a microalgae from an oligotrophic oasis in the Chihuahuan desert. PeerJ, 8, e8686. https://doi.org/10.7717/peerj.8686

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by UGC under National Fellowship for Persons with Disabilities (NFPWD)-2018-20 (ID: NFPWD-2018-20-AND-6934).The authors would like thank the Head, Department of Plant Biology and Biotechnology, Presidency College (Autonomous ), Chennai. We are grateful to Exonn Biosciences Crescent Innovation and Incubation Council, Chennai and Greensmed Labs, Chennai for their timely help throughout the research.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Geethanjali Kilari conceptualized the project’s primary principles, drafted the analysis methods, conducted the scientific investigation, formal analysis, data curation, and acquired funding from the UGC National Fellowship for Persons with Disabilities NFPWD-2018–20-AND-6934, dated: 06/11/2020. Sankaran Balakrishnan worked on the project's concept, design, and monitoring and evaluation throughout the project. Sankaran Balakrishnan reviewed and edited the first draft of the paper, which was written by Geethanjali Kilari. Both the authors contributed to the final revision of the manuscript.

Corresponding author

Correspondence to Sankaran Balakrishnan.

Ethics declarations

Ethics approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kilari, G., Balakrishnan, S. In Vitro Antiproliferative Activity and Phytochemicals Screening of Extracts of the Freshwater Microalgae, Chlorochromonas danica. Appl Biochem Biotechnol 195, 534–555 (2023). https://doi.org/10.1007/s12010-022-04137-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-04137-7

Keywords

Navigation