Skip to main content
Log in

Biochemical Characterization of Thermostable Carboxymethyl Cellulase and β-Glucosidase from Aspergillus fumigatus JCM 10253

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Second-generation biofuel production has emerged as a prominent sustainable and alternative energy. The biochemical properties of cellulolytic enzymes are imperative for cellulosic biomass conversion into fermentable sugars. In the present study, thermostable CMCase and β-glucosidase were purified and characterized from Aspergillus fumigatus JCM 10253. The enzymes were purified through 80% ammonium sulfate precipitation, followed by dialysis and DEAE-cellulose ion-exchange chromatography. The molecular masses of the purified CMCase and β-glucosidase were estimated to be 125 kDa and 90 kDa, respectively. The CMCase and β-glucosidase demonstrated optimum activities at pH 6.0 and 5.0, respectively. Their respective maximum temperatures were 50 and 60 °C. The cellulase activities were stimulated by 10 mM concentration of Ca2+, Ni2+, Fe2+, Mg2+, Cu2+, Mn2+, Zn2+, and Pb2+ ions. The CMCase activity was enhanced by surfactant Triton X-100 but marginally influenced by most inhibitors. The β-glucosidase retained its activity in the presence of organic solvents (30%) isoamyl alcohol, heptane, toluene, and ethyl acetate, while CMCase was retained with acetone during a prolonged incubation of 168 h. The Km and Vmax values of the two cellulases were studied. The properties of high thermostability and good tolerance against organic solvents could signify its potential use in biofuel production and other value-added products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of Data and Materials

Not applicable.

References

  1. Gupta, R., Mehta, G., Deswal, D., Sharma, S., et al. (2013). Cellulases and their biotechnological applications. In R. C. Kuhad & A. Singh (Eds.), Biotechnology for Environmental Management and Resource Recovery (pp. 89–106). Springer.

    Chapter  Google Scholar 

  2. Manavalan, T., Manavalan, A., Thangavelu, K. P., & Heese, K. (2015). Characterization of a novel endoglucanase from Ganoderma lucidum. Journal of basic Microbiology, 55(6), 761–771.

    Article  CAS  PubMed  Google Scholar 

  3. Tiwari, R., Nain, L., Labrou, N. E., & Shukla, P. (2018). Bioprospecting of functional cellulases from metagenome for second generation biofuel production: A review. Critical Reviews in Microbiology, 44(2), 244–257.

    Article  CAS  PubMed  Google Scholar 

  4. Zhao, C. H., Liu, X., Zhan, T., & He, J. (2018). Production of cellulase by Trichoderma reesei from pretreated straw and furfural residues. RSC advances, 8(63), 36233–36238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Behera, B. C., Sethi, B. K., Mishra, R. R., Dutta, S. K., & Thatoi, H. N. (2017). Microbial cellulases–Diversity & biotechnology with reference to mangrove environment: A review. Journal of Genetic Engineering and Biotechnology, 15(1), 197–210.

    Article  CAS  PubMed  Google Scholar 

  6. Srivastava, N., Srivastava, M., Mishra, P. K., Gupta, V. K., Molina, G., Rodriguez-Couto, S., Manikanta, A., & Ramteke, P. W. (2018). Applications of fungal cellulases in biofuel production: Advances and limitations. Renewable and Sustainable Energy Reviews, 82, 2379–2386.

    Article  CAS  Google Scholar 

  7. Rawat, R., Srivastava, N., Chadha, B. S., & Oberoi, H. S. (2014). Generating fermentable sugars from rice straw using functionally active cellulolytic enzymes from Aspergillus niger HO. Energy & Fuels, 28(8), 5067–5075.

    Article  CAS  Google Scholar 

  8. Singhania, R. R., Patel, A. K., Sukumaran, R. K., Larroche, C., & Pandey, A. (2013). Role and significance of beta-glucosidases in the hydrolysis of cellulose for bioethanol production. Bioresource technology, 127, 500–507.

    Article  CAS  PubMed  Google Scholar 

  9. Singh, G., Verma, A.K. and Kumar, V., 2016. Catalytic properties, functional attributes and industrial applications of β-glucosidases. 3 Biotech6(1), p.3.

  10. Ramani, G., Meera, B., Vanitha, C., Rao, M., & Gunasekaran, P. (2012). Production, purification, and characterization of a β-glucosidase of Penicillium funiculosum NCL1. Applied biochemistry and biotechnology, 167(5), 959–972.

    Article  CAS  PubMed  Google Scholar 

  11. Yeoman, C. J., Han, Y., Dodd, D., Schroeder, C. M., Mackie, R. I., & Cann, I. K. (2010). Thermostable enzymes as biocatalysts in the biofuel industry. Advances in applied microbiology, 70, 1–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Budihal, S. R., Agsar, D., & Patil, S. R. (2016). Enhanced production and application of acidothermophilic Streptomyces cellulase. Bioresource technology, 200, 706–712.

    Article  CAS  PubMed  Google Scholar 

  13. Bisen, P.S. and Sharma, A., 2012. Introduction to instrumentation in life sciences. Crc Press

  14. Kalsoom, R., Ahmed, S., Nadeem, M., Chohan, S., & Abid, M. (2018). Biosynthesis and extraction of cellulase produced by Trichoderma on agro-wastes. International Journal of Environmental Science and Technology, 16(2), 921–928.

    Article  CAS  Google Scholar 

  15. Acharya, S., & Chaudhary, A. (2012). Bioprospecting thermophiles for cellulase production: A review. Brazilian Journal of Microbiology, 43(3), 844–856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Srivastava, M., Srivastava, N., Ramteke, P.W. and Mishra, P.K. eds., 2019. Approaches to enhance industrial production of fungal cellulases. Springer.

  17. Bhat, M. (2000). Cellulases and related enzymes in biotechnology. Biotechnology advances, 18(5), 355–383.

    Article  CAS  PubMed  Google Scholar 

  18. Singh, R.S., Singh, T. and Pandey, A., 2019. Microbial enzymes—An overview. Advances in Enzyme Technology, pp.1–40.

  19. Phitsuwan, P., Laohakunjit, N., Kerdchoechuen, O., Kyu, K. L., & Ratanakhanokchai, K. (2013). Present and potential applications of cellulases in agriculture, biotechnology, and bioenergy. Folia microbiologica, 58(2), 163–176.

    Article  CAS  PubMed  Google Scholar 

  20. Kumar, V., Singh, D., Sangwan, P., & Gill, P. K. (2014). Global market scenario of industrial enzymes (pp. 173–196). Trends, scope and relevance. Nova Science Publishers, New York.

    Google Scholar 

  21. Singh, R., Kumar, M., Mittal, A. and Mehta, P.K., 2016. Microbial enzymes: Industrial progress in 21st century. 3 Biotech6(2), pp.1–15.

  22. Islam, F., & Roy, N. (2018). Screening, purification and characterization of cellulase from cellulase producing bacteria in molasses. BMC research notes, 11(1), 1–6.

    Article  CAS  Google Scholar 

  23. Prasad, P., Singh, T. and Bedi, S., 2013. Characterization of the cellulolytic enzyme produced by Streptomyces griseorubens (Accession No. AB184139) isolated from Indian soil. Journal of King Saud University-Science25(3), pp.245–250.

  24. Nguyen, K.A., Kumla, J., Suwannarach, N., Penkhrue, W. and Lumyong, S., 2019. Optimization of high endoglucanase yields production from polypore fungus, Microporus xanthopus strain KA038 under solid-state fermentation using green tea waste. Biology open8(11).

  25. Ilyas, U., Gohar, F., Saeed, S., Bukhari, Z. and Ilyas, H., 2013. Screening of locally isolated Aspergillus species for their cellulolytic potential and their optimization on Vigna mungo in solid state fermentation. Biotechnology Journal International, pp.350–358.

  26. Soliman, S.A., El-Zawahry, Y.A. and El-Mougith, A.A., 2013. Fungal biodegradation of agro-industrial waste. Cellulose-Biomass Conversion, pp.75–100.

  27. Liu, D., Zhang, R., Yang, X., Xu, Y., Tang, Z., Tian, W., & Shen, Q. (2011). Expression, purification and characterization of two thermostable endoglucanases cloned from a lignocellulosic decomposing fungi Aspergillus fumigatus Z5 isolated from compost. Protein expression and purification, 79(2), 176–186.

    Article  CAS  PubMed  Google Scholar 

  28. Jiang, X., Du, J., He, R., Zhang, Z., Qi, F., Huang, J., & Qin, L. (2020). Improved production of majority cellulases in Trichoderma reesei by integration of cbh1 gene from Chaetomium thermophilum. Frontiers in microbiology, 11, 1633.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Lin, C., Shen, Z., & Qin, W. (2017). Characterization of xylanase and cellulase produced by a newly isolated Aspergillus fumigatus N2 and its efficient saccharification of barley straw. Applied biochemistry and Biotechnology, 182(2), 559–569.

    Article  CAS  PubMed  Google Scholar 

  30. Machado, A. S., Valadares, F., Silva, T. F., Milagres, A. M., Segato, F., & Ferraz, A. (2020). The secretome of Phanerochaete chrysosporium and Trametes versicolor grown in microcrystalline cellulose and use of the enzymes for hydrolysis of lignocellulosic materials. Frontiers in bioengineering and biotechnology, 8, 826.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Workman, W. E., & Day, D. F. (1982). Purification and properties of β-glucosidase from Aspergillus terreus. Applied and Environmental Microbiology, 44(6), 1289–1295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Watanabe, T., & SATO, T., YOSHIOKA, S., KOSHIJIMA, T. and KUWAHARA, M. (1992). Purificication and properties of Aspergillus nigerβ-glucosidase. European Journal of Biochemistry, 209(2), 651–659.

    Article  CAS  PubMed  Google Scholar 

  33. Riou, C., Salmon, J. M., Vallier, M. J., Günata, Z., & Barre, P. (1998). Purification, characterization, and substrate specificity of a novel highly glucose-tolerant β-glucosidase from Aspergillus oryzae. Applied and Environmental Microbiology, 64(10), 3607–3614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu, D., Zhang, R., Yang, X., Zhang, Z., Song, S., Miao, Y., & Shen, Q. (2012). Characterization of a thermostable β-glucosidase from Aspergillus fumigatus Z5, and its functional expression in Pichia pastoris X33. Microbial Cell Factories, 11(1), 1–15.

    Article  CAS  Google Scholar 

  35. Saroj, P., Manasa, P., & Narasimhulu, K. (2018). Characterization of thermophilic fungi producing extracellular lignocellulolytic enzymes for lignocellulosic hydrolysis under solid-state fermentation. Bioresources and Bioprocessing, 5(1), 1–14.

    Article  Google Scholar 

  36. Mandels, M. and Weber, J., 1969. The production of cellulases.

  37. Saroj, P., Manasa, P., & Narasimhulu, K. (2021). Assessment and evaluation of cellulase production using ragi (Eleusine coracana) husk as a substrate from thermo-acidophilic Aspergillus fumigatus JCM 10253. Bioprocess and Biosystems Engineering, 44(1), 113–126.

    Article  CAS  PubMed  Google Scholar 

  38. Ghose, T. K. (1987). Measurement of cellulase activities. Pure and Applied Chemistry, 59(2), 257–268.

    Article  CAS  Google Scholar 

  39. Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical chemistry, 31(3), 426–428.

    Article  CAS  Google Scholar 

  40. Grover, A.K., MacMurchie, D.D. and Cushley, R.J., 1977. Studies on almond emulsin βd-glucosidase I. Isolation and characterization of a bifunctional isozyme. Biochimica et Biophysica Acta (BBA)-Enzymology482(1), pp.98–108.

  41. Ghose, T.K. and Bisaria, V.S., 1987. Measurement of hemicellulase activities. Part 1: xylanases. Pure Appl Chem59(12), pp.1739–1751.

  42. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72(1–2), 248–254.

    Article  CAS  PubMed  Google Scholar 

  43. Laemmli, U.K., 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. nature227(5259), pp.680–685.

  44. Saqib, A. A. N., & Whitney, P. J. (2006). Esculin gel diffusion assay (EGDA): A simple and sensitive method for screening β-glucosidases. Enyzme and Microbial Technology, 39, 182–184.

    Article  CAS  Google Scholar 

  45. Gohel, H. R., Contractor, C. N., Ghosh, S. K., & Braganza, V. J. (2013). A comparative study of various staining techniques for determination of extra cellular cellulase activity on carboxy methyl cellulose (CMC) agar plates. International Journal of Current Microbiology and Applied Sciences, 3(5), 261–266.

    Google Scholar 

  46. Pachauri, P., More, S., Sullia, S. B., & Deshmukh, S. (2017). Purification and characterization of cellulase from a novel isolate of Trichoderma longibrachiatum. Biofuels, 11(1), 85–91.

    Article  CAS  Google Scholar 

  47. Decker, C., Visser, J. and Schreier, P., 2001. Β-glucosidase multiplicity from Aspergillus tubingensis CBS 643.92: Purification and characterization of four β-glucosidases and their differentiation with respect to substrate specificity, glucose inhibition and acid tolerance. Applied microbiology and biotechnology55(2), pp.157–163.

  48. Asha, P., Divya, J., & Singh, I. B. (2016). Purification and characterisation of processive-type endoglucanase and β-glucosidase from Aspergillus ochraceus MTCC 1810 through saccharification of delignified coir pith to glucose. Bioresource technology, 213, 245–248.

    Article  CAS  PubMed  Google Scholar 

  49. Oh, J. M., Lee, J. P., Baek, S. C., Kim, S. G., Do Jo, Y., Kim, J., & Kim, H. (2018). Characterization of two extracellular β-glucosidases produced from the cellulolytic fungus Aspergillus sp. YDJ216 and their potential applications for the hydrolysis of flavone glycosides. International journal of biological macromolecules, 111, 595–603.

    Article  CAS  PubMed  Google Scholar 

  50. Narasimha, G., Sridevi, A., Ramanjaneyulu, G., & Rajasekhar Reddy, B. (2016). Purification and characterization of β-glucosidase from Aspergillus niger. International Journal of Food Properties, 19(3), 652–661.

    Article  CAS  Google Scholar 

  51. Gao, L., Gao, F., Zhang, D., Zhang, C., Wu, G., & Chen, S. (2013). Purification and characterization of a new β-glucosidase from Penicillium piceum and its application in enzymatic degradation of delignified corn stover. Bioresource technology, 147, 658–661.

    Article  CAS  PubMed  Google Scholar 

  52. Pandey, A.K. and Negi, S., 2020. Enhanced cellulase recovery in SSF from Rhizopus oryzae SN5 and immobilization for multi-batch saccharification of carboxymethylcellulose. Biocatalysis and Agricultural Biotechnology26, p.101656.

  53. Shruthi, B. R., Achur, R. N. H., & Nayaka Boramuthi, T. (2020). Optimized solid-state fermentation medium enhances the multienzymes production from Penicillium citrinum and Aspergillus clavatus. Current Microbiology, 77, 2192–2206.

    Article  CAS  PubMed  Google Scholar 

  54. Sulyman, A.O., Igunnu, A. and Malomo, S.O., 2020. Isolation, purification and characterization of cellulase produced by Aspergillus niger cultured on Arachis hypogaea shells. Heliyon6(12), p.e05668.

  55. Bhanja, T., Rout, S., Banerjee, R., & Bhattacharyya, B. C. (2007). Comparative profiles of α-amylase production in conventional tray reactor and GROWTEK bioreactor. Bioprocess and biosystems engineering, 30(5), 369–376.

    Article  CAS  PubMed  Google Scholar 

  56. Tao, Y. M., Zhu, X. Z., Huang, J. Z., Ma, S. J., Wu, X. B., Long, M. N., & Chen, Q. X. (2010). Purification and properties of endoglucanase from a sugar cane bagasse hydrolyzing strain, Aspergillus glaucus XC9. Journal of Agricultural and Food Chemistry, 58(10), 6126–6130.

    Article  CAS  PubMed  Google Scholar 

  57. Liszka, M. J., Clark, M. E., Schneider, E., & Clark, D. S. (2012). Nature versus nurture: Developing enzymes that function under extreme conditions. Annual review of chemical and biomolecular engineering, 3, 77–102.

    Article  CAS  PubMed  Google Scholar 

  58. Shahriarinour, M., & Ramanan, R. N. (2015). Purification and characterisation of extracellular cellulase main components from Aspergillus terreus. BioResources, 10(3), 4886–4902.

    Article  CAS  Google Scholar 

  59. Bano, A., Chen, X., Prasongsuk, S., Akbar, A., Lotrakul, P., Punnapayak, H., Anwar, M., Sajid, S., & Ali, I. (2019). Purification and characterization of cellulase from obligate halophilic Aspergillus flavus (TISTR 3637) and its prospects for bioethanol production. Applied biochemistry and biotechnology, 189(4), 1327–1337.

    Article  CAS  PubMed  Google Scholar 

  60. Santa-Rosa, P. S., Souza, A. L., Roque, R. A., Andrade, E. V., Astolfi-Filho, S., Mota, A. J., & Nunes-Silva, C. G. (2018). Production of thermostable β-glucosidase and CMCase by Penicillium sp. LMI01 isolated from the Amazon region. Electronic Journal of Biotechnology, 31, 84–92.

    Article  CAS  Google Scholar 

  61. Monteiro, L. M. O., Vici, A. C., Pinheiro, M. P., Heinen, P. R., de Oliveira, A. H. C., Ward, R. J., Prade, R. A., Buckeridge, M. S., & de Moraes, M. D. L. T. (2020). A highly glucose tolerant ß-glucosidase from Malbranchea pulchella (mp bg3) enables cellulose saccharification. Scientific reports, 10(1), 1–12.

    Article  CAS  Google Scholar 

  62. Langston, J., Sheehy, N. and Xu, F., 2006. Substrate specificity of Aspergillus oryzae family 3 β-glucosidase. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics1764(5), pp.972–978.

  63. Silva, L. D. B., Gomes, T. C., Ullah, S. F., Ticona, A. R. P., Hamann, P. R. V., & Noronha, E. F. (2020). Biochemical properties of carbohydrate-active enzymes synthesized by Penicillium chrysogenum using corn straw as carbon source. Waste and Biomass Valorization, 11, 2455–2466.

    Article  CAS  Google Scholar 

  64. Da Costa, S. G., Pereira, O. L., Teixeira-Ferreira, A., Valente, R. H., de Rezende, S. T., Guimarães, V. M., & Genta, F. A. (2018). Penicillium citrinum UFV1 β-glucosidases: Purification, characterization, and application for biomass saccharification. Biotechnology for biofuels, 11(1), 1–19.

    Article  CAS  Google Scholar 

  65. Martins ME Da M., Martins E. Da S., Martins H.L., 2020. Production and characterization of a thermostable β-glucosidase from Myceliophthora heterothallica. Bioscience Journal, 36(1).

  66. Pol, D., Laxman, R. S., & Rao, M. (2012). Purification and biochemical characterization of endoglucanase from Penicillium pinophilum MS 20. Indian Journal of Biochemistry & Biophysics, 49(3), 189–194.

    CAS  Google Scholar 

  67. Qin, Y., Li, Q., Luo, F., Fu, Y., & He, H. (2020). One-step purification of two novel thermotolerant β-1, 4-glucosidases from a newly isolated strain of Fusarium chlamydosporum HML278 and their characterization. AMB Express, 10(1), 1–11.

    Article  CAS  Google Scholar 

  68. Alani, F., Anderson, W.A. and Moo-Young, M., 2008. New isolate of Streptomyces sp. with novel thermoalkalotolerant cellulases. Biotechnology letters30(1), pp.123–126.

  69. Karami, F., Ghorbani, M., Mahoonak, A.S. and Khodarahmi, R., 2020. Fast, inexpensive purification of β-glucosidase from Aspergillus niger and improved catalytic/physicochemical properties upon the enzyme immobilization: Possible broad prospects for industrial applications. LWT118, p.108770.

  70. Kudo, K., Watanabe, A., Ujiie, S., Shintani, T., & Gomi, K. (2015). Purification and enzymatic characterization of secretory glycoside hydrolase family 3 (GH3) aryl β-glucosidases screened from Aspergillus oryzae genome. Journal of bioscience and bioengineering, 120(6), 614–623.

    Article  CAS  PubMed  Google Scholar 

  71. Mrudula, S., & Murugammal, R. (2011). Production of cellulase by Aspergillus niger under submerged and solid state fermentation using coir waste as a substrate. Brazilian Journal of Microbiology, 42(3), 1119–1127.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Gupta, R., Gigras, P., Mohapatra, H., Goswami, V. K., & Chauhan, B. (2003). Microbial α-amylases: A biotechnological perspective. Process biochemistry, 38(11), 1599–1616.

    Article  CAS  Google Scholar 

  73. Pachauri, P., More, S., Aranganathan, V., & Sullia, S. B. (2018). Kinetic study and characterization of cellulase enzyme from isolated Aspergillus niger subsp. awamori for cellulosic biofuels. Journal of Scientific and Industrial Research, 77, 55–60.

    CAS  Google Scholar 

  74. Volkov, P. V., Rozhkova, A. M., Zorov, I. N., & Sinitsyn, A. P. (2020). Cloning, purification and study of recombinant GH3 family β-glucosidase from Penicillium verruculosum. Biochimie, 168, 231–240.

    Article  CAS  PubMed  Google Scholar 

  75. Yang, Y., Wang, J., Guo, H. and Cao, Y., 2020. The enzymatic characters of heterologous expressed novel β-1, 4-glucosidase originated from Aspergillus fresenii. 3 Biotech10, pp.1–9.

  76. Pereira, J., de, C., Giese, E.C., Moretti, M.M., de, S., Gomes, A.C., dos, S., Perrone, O.M., Boscolo, M., Da Silva, R., Gomes, E., Martins, D.A.B., 2017. Effect of metal ions, chemical agents and organic compounds on lignocellulolytic enzymes activities. In: Enzyme Inhibitors and Activators. InTech, pp. 139–164.

  77. Okereke, O. E., Akanya, H. O., & Egwim, E. C. (2017). Purification and characterization of an acidophilic cellulase from Pleurotus ostreatus and its potential for agrowastes valorization. Biocatalysis and Agricultural Biotechnology, 12, 253–259.

    Article  Google Scholar 

  78. Feng, T., Liu, H., Xu, Q., Sun, J., & Shi, H. (2015). Identification and characterization of two endogenous β-glucosidases from the termite Coptotermes formosanus. Applied biochemistry and biotechnology, 176(7), 2039–2052.

    Article  CAS  PubMed  Google Scholar 

  79. Stricks, W. and Kolthoff, I.M., 1953. Reactions between mercuric mercury and cysteine and glutathione. Apparent dissociation constants, heats and entropies of formation of various forms of mercuric mercapto-cysteine and-glutathione. Journal of the American Chemical Society75(22), pp.5673–5681.

  80. Bonfá, E. C., de Souza Moretti, M. M., Gomes, E., & Bonilla-Rodriguez, G. O. (2018). Biochemical characterization of an isolated 50 kDa beta-glucosidase from the thermophilic fungus Myceliophthora thermophila M. 7.7. Biocatalysis and agricultural biotechnology, 13, 311–318.

    Article  Google Scholar 

  81. Lee, H. J., Lee, Y. S., & Choi, Y. L. (2018). Cloning, purification, and characterization of an organic solvent-tolerant chitinase, MtCh509, from Microbulbifer thermotolerans DAU221. Biotechnology for biofuels, 11(1), 1–14.

    Article  CAS  Google Scholar 

  82. Bai, H., Wang, H., Junde Sun, M. I., Han, M., Huang, Y., Han, X., & Yang, Q. (2013). Production, purification and characterization of novel beta glucosidase from newly isolated Penicillium simplicissimum H-11 in submerged fermentation. EXCLI journal, 12, 528.

    PubMed  PubMed Central  Google Scholar 

  83. Gong, G., Zheng, Z., Liu, H., Wang, L., Diao, J., Wang, P., & Zhao, G. (2014). Purification and characterization of a beta-glucosidase from Aspergillus niger and its application in the hydrolysis of geniposide to genipin. Journal of Microbiology and Biotechnology, 24, 788–794.

    Article  CAS  PubMed  Google Scholar 

  84. Bansal, N., Janveja, C., Tewari, R., Soni, R., & Soni, S. K. (2014). Highly thermostable and pH-stable cellulases from Aspergillus niger NS-2: Properties and application for cellulose hydrolysis. Applied biochemistry and biotechnology, 172(1), 141–156.

    Article  CAS  PubMed  Google Scholar 

  85. Aich, S., Singh, R. K., Kundu, P., Pandey, S. P., & Datta, S. (2017). Genome-wide characterization of cellulases from the hemi-biotrophic plant pathogen, Bipolaris sorokiniana, reveals the presence of a highly stable GH7 endoglucanase. Biotechnology for biofuels, 10(1), 1–14.

    Article  CAS  Google Scholar 

  86. Prajapati, B. P., Suryawanshi, R. K., Agrawal, S., Ghosh, M., & Kango, N. (2018). Characterization of cellulase from Aspergillus tubingensis NKBP-55 for generation of fermentable sugars from agricultural residues. Bioresource technology, 250, 733–740.

    Article  CAS  PubMed  Google Scholar 

  87. das Neves, C.A., de Menezes, L.H.S., Soares, G.A., dos Santos Reis, N., Tavares, I.M.C., Franco, M. and de Oliveira, J.R., 2020. Production and biochemical characterization of halotolerant β-glucosidase by Penicillium roqueforti ATCC 10110 grown in forage palm under solid-state fermentation. Biomass Conversion and Biorefinery, pp.1–12.

  88. Souza, L. O., de Brito, A. R., Bonomo, R. C. F., Santana, N. B., Ferraz, J. L. A. A., Aguiar-Oliveira, E., & Franco, M. (2018). Comparison of the biochemical properties between the xylanases of Thermomyces lanuginosus (Sigma®) and excreted by Penicillium roqueforti ATCC 10110 during the solid state fermentation of sugarcane bagasse. Biocatalysis and Agricultural Biotechnology, 16, 277–284.

    Article  Google Scholar 

  89. Ijaz, A., Anwar, Z., Irshad, M., Iqbal, Z., Arshad, M., Javed, M., & ZULFIQAR, M., AHMAD, A.R. and Ahmad, A. (2014). Purification and kinetic characterization of statistically optimized cellulase produced from Aspergillus niger. Romanian Biotechnological Letters, 19(6), 9836.

    Google Scholar 

  90. Akatin, M. Y. (2013). Characterization of a β-glucosidase from an edible mushroom, Lycoperdon pyriforme. International Journal of Food Properties, 16(7), 1565–1577.

    Article  CAS  Google Scholar 

  91. Baffi, M. A., Martin, N., Tobal, T. M., Ferrarezi, A. L., Lago, J. H. G., Boscolo, M., Gomes, E., & Da-Silva, R. (2013). Purification and characterization of an ethanol-tolerant β-glucosidase from Sporidiobolus pararoseus and its potential for hydrolysis of wine aroma precursors. Applied biochemistry and biotechnology, 171(7), 1681–1691.

    Article  CAS  PubMed  Google Scholar 

  92. Arevalo-Villena, M., Ubeda Iranzo, J., & Briones Perez, A. (2007). Enhancement of aroma in white wines using a β-glucosidase preparation from Debaryomyces pseudopolymorphus (A-77). Food Biotechnology, 21(2), 181–194.

    Article  CAS  Google Scholar 

  93. Liu, Y., Tan, H., Zhang, X., Yan, Y., & Hameed, B. H. (2010). Effect of monohydric alcohols on enzymatic transesterification for biodiesel production. Chemical Engineering Journal, 157(1), 223–229.

    Article  CAS  Google Scholar 

  94. Wang, S., Meng, X., Zhou, H., Liu, Y., Secundo, F., & Liu, Y. (2016). Enzyme stability and activity in non-aqueous reaction systems: A mini review. Catalysts, 6(2), 32.

    Article  CAS  Google Scholar 

  95. Su, E., & Wei, D. (2008). Improvement in lipase-catalyzed methanolysis of triacylglycerols for biodiesel production using a solvent engineering method. Journal of Molecular Catalysis B: Enzymatic, 55(3–4), 118–125.

    Article  CAS  Google Scholar 

  96. Klibanov, A. M. (1990). Asymmetric transformations catalyzed by enzymes in organic solvents. Accounts of Chemical Research, 23(4), 114–120.

    Article  CAS  Google Scholar 

  97. Mattos, C., & Ringe, D. (2001). Proteins in organic solvents. Current opinion in structural biology, 11(6), 761–764.

    Article  CAS  PubMed  Google Scholar 

  98. Sinha, R. and Khare, S.K., 2014. Effect of organic solvents on the structure and activity of moderately halophilic Bacillus sp. EMB9 protease. Extremophiles18(6), pp.1057–1066.

  99. Kumar, A., Dhar, K., Kanwar, S. S., & Arora, P. K. (2016). Lipase catalysis in organic solvents: Advantages and applications. Biological Procedures Online, 18(1), 1–11.

    Article  CAS  Google Scholar 

  100. Sonnleitner, B., & Fiechter, A. (1983). Advantages of using thermophiles in biotechnological processes: Expectations and reality. Trends in Biotechnology, 1(3), 74–80.

    Article  Google Scholar 

  101. Cakmak, U., & Ertunga, N. S. (2016). Gene cloning, expression, immobilization and characterization of endo-xylanase from Geobacillus sp. TF16 and investigation of its industrial applications. Journal of Molecular Catalysis B: Enzymatic, 133, S288–S298.

    Article  CAS  Google Scholar 

  102. Trinh, D.K., Quyen, D.T., Do, T.T. and Nghiem, N.M., 2013. Purification and characterization of a novel detergent-and organic solvent-resistant endo-beta-1, 4-glucanase from a newly isolated basidiomycete Peniophora sp. NDVN01. Turkish Journal of Biology37(4), pp.377–384.

  103. Watanabe, A., Suzuki, M., Ujiie, S., & Gomi, K. (2016). Purification and enzymatic characterization of a novel β-1, 6-glucosidase from Aspergillus oryzae. Journal of bioscience and bioengineering, 121(3), 259–264.

    Article  CAS  PubMed  Google Scholar 

  104. Wang, Y., Li, J., & Xu, Y. (2011). Characterization of novel β-glucosidases with transglycosylation properties from Trichosporon asahii. Journal of agricultural and food chemistry, 59(20), 11219–11227.

    Article  CAS  PubMed  Google Scholar 

  105. Batra, J., & Mishra, S. (2013). Organic solvent tolerance and thermostability of a β-glucosidase co-engineered by random mutagenesis. Journal of Molecular Catalysis B: Enzymatic, 96, 61–66.

    Article  CAS  Google Scholar 

  106. Piñuel, L., Breccia, J.D., Guisán, J.M. and López-Gallego, F., 2013. Production of hesperetin using a covalently multipoint immobilized diglycosidase from Acremonium sp. DSM24697. Journal of molecular microbiology and biotechnology23(6), pp.410–417.

  107. Abdel-Fatah, O. M., Hassan, M. M., Elshafei, A. M., Haroun, B. M., Atta, H. M., & Othman, A. M. (2012). Physiological studies on carboxymethyl cellulase formation by Aspergillus terreus DSM 826. Brazilian journal of microbiology, 43(1), 01–11.

    Article  CAS  Google Scholar 

  108. Prasanna, H.N., Ramanjaneyulu, G. and Reddy, B.R., 2016. Optimization of cellulase production by Penicillium sp. 3 Biotech6(2), pp.1–11.

  109. Callow, N. V., & Ju, L. K. (2012). Promoting pellet growth of Trichoderma reesei Rut C30 by surfactants for easy separation and enhanced cellulase production. Enzyme and microbial technology, 50(6–7), 311–317.

    Article  CAS  PubMed  Google Scholar 

  110. Chan, C.S., Sin, L.L., Chan, K.G., Shamsir, M.S., Abd Manan, F., Sani, R.K. and Goh, K.M., 2016. Characterization of a glucose-tolerant β-glucosidase from Anoxybacillus sp. DT3–1. Biotechnology for biofuels9(1), pp.1–11.

  111. Lucas, R., Robles, A., Alvarez de Cienfuegos, G., & Gálvez, A. (2000). β-Glucosidase from Chalara paradoxa CH32: Purification and properties. Journal of agricultural and food chemistry, 48(8), 3698–3703.

    Article  CAS  PubMed  Google Scholar 

  112. Wu, J., & Ju, L. K. (1998). Enhancing enzymatic saccharification of waste newsprint by surfactant addition. Biotechnology progress, 14(4), 649–652.

    Article  CAS  PubMed  Google Scholar 

  113. Asha, B. M., & Sakthivel, N. (2014). Production, purification and characterization of a new cellulase from Bacillus subtilis that exhibit halophilic, alkalophilic and solvent-tolerant properties. Annals of Microbiology, 64(4), 1839–1848.

    Article  CAS  Google Scholar 

  114. Park, A. R., Hong, J. H., Kim, J. J., & Yoon, J. J. (2012). Biochemical characterization of an extracellular β-glucosidase from the fungus, Penicillium italicum, isolated from rotten citrus peel. Mycobiology, 40(3), 173–180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Dave, B. R., Sudhir, A. P., & Subramanian, R. B. (2015). Purification and properties of an endoglucanase from Thermoascus aurantiacus. Biotechnology Reports, 6, 85–90.

    Article  PubMed  Google Scholar 

  116. Gudi, S. K., Gurramkonda, C., Chandra, S. M., Prasad, S. B. V., Yadav, S. P., Kumar, N. C. V. M., & Reddy, R. (2016). Thermostable β-D-glucosidase from Aspergillus flavus: Production, purification and characterization. International Journal of Clinical and Biological Sciences, 1, 1–15.

    Google Scholar 

  117. Scott, T. A. (1996). Concise encyclopedia biology. Walter de Gruyter.

    Google Scholar 

  118. Muensean, K., & Kim, S. M. (2015). Purification and characterization of β-glucosidase produced by Trichoderma citrinoviride cultivated on microalga Chlorella vulgaris. Applied biochemistry and microbiology, 51(1), 102–107.

    Article  CAS  Google Scholar 

  119. Chen, Z., Liu, Y., Liu, L., Chen, Y., Li, S., & Jia, Y. (2019). Purification and characterization of a novel β-glucosidase from Aspergillus flavus and its application in saccharification of soybean meal. Preparative Biochemistry and Biotechnology, 49(7), 671–678.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support provided by the Department of Biotechnology, National Institute of Technology Warangal, Telangana, India.

Author information

Authors and Affiliations

Authors

Contributions

Paramjeet Saroj performed the research experiments, data analysis, and writing of the manuscript. Manasa P contributed to the data collection and manuscript writing. Korrapati Narasimhulu supervised during research experiments and manuscript preparation. All authors contributed to the study conception and design. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Paramjeet Saroj.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saroj, P., P, M. & Narasimhulu, K. Biochemical Characterization of Thermostable Carboxymethyl Cellulase and β-Glucosidase from Aspergillus fumigatus JCM 10253. Appl Biochem Biotechnol 194, 2503–2527 (2022). https://doi.org/10.1007/s12010-022-03839-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-03839-2

Keywords

Navigation