Skip to main content
Log in

Comparative profiles of α-amylase production in conventional tray reactor and GROWTEK bioreactor

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

GROWTEK bioreactor was used as modified solid-state fermentor to circumvent many of the problems associated with the conventional tray reactors for solid-state fermentation (SSF). Aspergillus oryzae IFO-30103 produced very high levels of α-amylase by modified solid-state fermentation (mSSF) compared to SSF carried out in enamel coated metallic trays utilizing wheat bran as substrate. High α-amylase yield of 15,833 U g−1 dry solid in mSSF were obtained when the fungus were cultivated at an initial pH of 6.0 at 32°C for 54 h whereas α-amylase production in SSF reached its maxima (12,899 U g−1 dry solid ) at 30°C after 66 h of incubation. With the supplementation of 1% NaNO3, the maximum activity obtained was 19,665 U g−1 dry solid (24% higher than control) in mSSF, whereas, in SSF maximum activity was 15,480 U g−1 dry solid in presence of 0.1% Triton X-100 (20% higher than the control).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Burhan A, Nisa U, Gökhan C, Ömer C, Ashabil A, Osman G (2003) Enzymatic properties of a novel thermostable, thermophilic, alkaline and chelator resistant amylase from an alkaliphilic Bacillus sp. isolate ANT-6. Proc Biochem 38:1397–1403

    Article  CAS  Google Scholar 

  2. Couto SR, Sanroman MA (2006) Application of solid-state fermentation to food industry: a review. J Food Eng 76:291–302

    Article  CAS  Google Scholar 

  3. Gigras P, Sahai V, Gupta R (2002) Statistical media optimization and production of ITS α-amylase from Aspergillus oryzae in a bioreactor. Curr Microbiol 45:203–208

    Article  CAS  Google Scholar 

  4. Pedersen H, Nielsen J (2000) The influence of nitrogen sources on the α-amylase productivity of Aspergillus oryzae in continuous cultures. Appl Microbiol Biotechnol 53:278–281

    Article  CAS  Google Scholar 

  5. Carlsen M, Spohr AB, Nielsen J, Villadsen J (1996) Morphology and physiology of an α-amylase producing strain of Aspergillus oryzae during batch cultivations. Biotechnol Bioeng 49:266–276

    Article  CAS  Google Scholar 

  6. Biesebeke R, Ruijter G, Rahardjo YSP, Hoogschagen JM, Heerikhuisen M, Levin A, van Driel KGA, Schutyser MAI, Dijksterhuis J, Zhu Y, Weber JF, Vos MW, A. M. Hondel JJK, Rinzema A, Punt JP (2002) Aspergillus oryzae in solid-state and submerged fermentations. FEMS Yeast Res 2(2):245–248

  7. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–429

    Article  CAS  Google Scholar 

  8. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  9. Laemmli UK (1976) Cleavage of structural proteins during the assembly of the head of Bacteriophage T4. Nature 277:680–685

    Google Scholar 

  10. Rathbun BL, Shuler ML (1983) Heat and mass transfer effect in static solid-substrate fermentation, design of fermentation chambers. Biotechnol Bioeng 25:929–938

    Article  CAS  Google Scholar 

  11. Chen HZ, Xu J, Li ZH (2005) Temperature control at different bed depths in a novel solid-state fermentation system with two dynamic changes of air. Biochem Eng J 23(2):117–122

    Article  CAS  Google Scholar 

  12. Sangsurasak P, Mitchell DA (1998) Validation of a model describing two-dimensional heat transfer during solid-state fermentation in packed bed bioreactors. Biotechnol Bioeng 60(6):739–749

    Article  CAS  Google Scholar 

  13. Lonsane BK, Saucedo-Castaneda S, Raimbault M, Roussos S, Viniegra-Gonzalez G, Ghildyal NP, Ramakrishna M, Krishnaiah MM (1992) Scale–up strategies for solid-state fermentationsystems. Proc Biochem 27:259–273

    Article  CAS  Google Scholar 

  14. Ramachandran S, Patel AK, Nampoothiri KM, Chandran1 S, Szakacs G, Soccol CR Pandey A (2004) Alpha amylase from a fungal culture grown on oil cakes and its properties. Braz Arch Biol Technol 47:309–317

    Article  CAS  Google Scholar 

  15. Francis F, Sabu A, Nampoothiri KM, Ramachandran S, Ghosh S, Szakacs G, Pandey A (2003) Use of response surface methodology for optimizing process parameters for the production of α-amylase by Aspergillus oryzae. Biochem Eng J 15:107–115

    CAS  Google Scholar 

  16. Lonsane BK, Ghildyal NP, Budiatman S, Ramakrishna SV (1985) Some engineering aspects of solid-state fermentation. Enzyme Microb Technol 7:258–265

    Article  CAS  Google Scholar 

  17. Zadrazil F, Brunnert H (1981) Investigations on physical parameters important for the SSF of straw by white rot fungi. Eur J Appl Microb Biotechnol 11:183–188

    Article  Google Scholar 

  18. Krishna C (2005) Solid-state fermentation systems: an overview. Critic Rev Biotechnol 25:1–30

    Article  CAS  Google Scholar 

  19. Francis F, Sabu A, Madhavan K, Nampoothiri, Szakacs G, Pandey A (2002) Synthesis of α-amylase by Aspergillus oryzae in solid-state fermentation. J Basic Microb 42(5):320–326

  20. Ustyuzhanina SV, Yarovenko VL, Voinarskii (1985) Synthesis of protease and alpha-amylase by the fungus Aspergillus oryzae 251–90. Appl Biochem Microbiol 20(5):511–516

    Google Scholar 

  21. Yabuki M, Ono N, Hoshino K, Fukuki S (1977) Rapid induction of alpha amylase by nongrowing mycelia of Aspergilus oryzae. Appl Environ Microbiol 34:1–6

    CAS  Google Scholar 

  22. Eratt JA, Douglas PE, Moranelli F, Seligy VL (1984) The induction of alpha amylase by starch in Aspergillus oryzae: evidence for controlled mRNA expression. Can J Biochem Cell Biol 62:678–690

    Article  Google Scholar 

  23. Imai Y, Suzuki M, Masamoto M, Nagayasu K (1993) Amylase production by Aspergillus oryzae in a new kind of fermentor with a rotary draft tube. J Ferment Bioeng 76(6):459–464

    Article  CAS  Google Scholar 

  24. HataY, Ishida H, Kojima Y, Ichikawa E, Kawato A, Sujinami K, Imayasu S (1997) Comparison of two glucoamylases produced by Aspergillus oryzae in solid-state culture (Koji) and in submerged culture. J Ferment Bioeng 84(6):532–537

    Article  Google Scholar 

  25. Takagi T (1981) Confirmation of molecular weight of Aspergillus oryzae α-amylase using the low angle laser light scattering technique in combination with high pressure silica gel chromatography. J Biochem (Tokyo) 89(2):363–368

    CAS  Google Scholar 

  26. Patel AK, Nampoothiri KM, Ramachandran S, Szakacs G, Pandey A (2005) Partial purification and characterization of α-amylase produced by Aspergillus oryzae using spent- brewing grains. Ind J Biotechnol 4(3):336–341

    CAS  Google Scholar 

  27. Kundu AK, Das S (1970) Production of amylase in liquid culture by a strain of Aspergillus oryzae. Appl Microbiol 19(4):598–603

    CAS  Google Scholar 

  28. Carlsen M, Nielsen J, Villadsen J (1996b) Kinetic studies of the acid-inactivation of α-amylase from Aspergillus oryzae. Chem Eng Sci 51:37–43

    Article  CAS  Google Scholar 

  29. Arnesen S, Eriksen SH, Olsen J, Jensen B (1998) Increased production of α-amylase from Thermomyces lanuginosus by the addition of tween 80. Enzyme Microb Technol 23:249–252

    Article  CAS  Google Scholar 

  30. Yoon SH, Robyt JF (2005) Activation and stabilization of 10 starch-degrading enzymes by Triton X-100, polyethyleneglycols, and polyvinyl alcohols. Enzyme Microb Technol 37:556–562

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Financial support from the Department of Biotechnology, New Delhi, India, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rintu Banerjee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhanja, T., Rout, S., Banerjee, R. et al. Comparative profiles of α-amylase production in conventional tray reactor and GROWTEK bioreactor. Bioprocess Biosyst Eng 30, 369–376 (2007). https://doi.org/10.1007/s00449-007-0133-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-007-0133-0

Keywords

Navigation