Skip to main content

Advertisement

Log in

Novel Polyherbal Nanocolloids to Control Bovine Mastitis

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Mastitis is a widespread disease in dairy cattle occurring throughout the world. The increased use of antibiotics brings about the development of antibiotic-resistant microbes. The application of antibiotics in dairy farming led to increased antibiotic resistance and represents a major obstacle for the treatment of mastitis. Recent advancements in nanotechnology led to the development of nanocolloids to overcome disadvantages posed by conventional antimicrobial agents. Hence, a novel, environmentally friendly, cost-effective, biocompatible, and long-term antibacterial represents a promising solution for medicine and farming. Hence, polyherbal nanocolloids (PHNc) was formulated by using the extracts of Syzygium aromaticum, Cinnamomum verum, Emblica officinalis, Terminalia belerica, Terminalia chebula, and Cymbopogon citratus and physicochemically characterized. From mastitis milk samples, microorganisms were isolated including Acinetobacter junii, Klebsiella pneumoniae, Pseudomonas stutzeri, and Acinetobacter baumannii and screened for antibiotic susceptibility. All the isolated strains were tested with PHNc and compared with antibiotics. Minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and biofilm assays were performed at different concentrations, and antibacterial effects were quantified. In our results, PHNc showed potent bacteriostatic, bactericidal, and antibiofilm activity against all the strains. Our results indicated that PHNc can reduce the virulence factors responsible for infection by different bacterial strains. This study confirmed that PHNc had the potential to inhibit the growth of pathogenic Gram-negative and Gram-positive strains and could be utilized as an alternative to antibiotics to inhibit multidrug-resistant microbial pathogens in cattle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of Data and Material

Data will be available on request.

Code Availability

Not applicable.

References

  1. Kiyohara, H., Matsumoto, T., & Yamada, H. (2004). Combination effects of herbs in a multi-herbal formula: Expression of Juzen-taiho-to’s immuno-modulatory activity on the intestinal immune system. Evidence-based Complementary and Alternative Medicine: eCAM., 1(1), 83–91. https://doi.org/10.1093/ecam/neh004

    Article  Google Scholar 

  2. de Cortés-Rojas, D. F., Souza, C. R. F., & Oliveira, W. P. (2014). Clove (Syzygium aromaticum): A precious spice. Asian Pacific Journal of Tropical Biomedicine, 4(2), 90–96. https://doi.org/10.1016/S2221-1691(14)60215-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Saeed, S., & Tariq, P. (2008). In vitro antibacterial activity of clove against Gram negative bacteria. Pakistan Journal of Botany, 40(5), 2157–2160.

    Google Scholar 

  4. Rao, P. V., & Gan, S. H. (2014). Cinnamon: a multifaceted medicinal plant. Evidence-Based Complementary and Alternative Medicine: eCAM, 2014, 642942. https://doi.org/10.1155/2014/642942

  5. Peterson, C. T., Denniston, K., & Chopra, D. (2017). Therapeutic uses of Triphala in ayurvedic medicine. Journal of Alternative and Complementary Medicine (New York, N.Y.), 23(8), 607–614. https://doi.org/10.1089/acm.2017.0083

    Article  Google Scholar 

  6. De Silva, B. C. J., Jung, W. G., Hossain, S., Wimalasena, S. H. M. P., Pathirana, H. N. K. S., & Heo, G. J. (2017). Antimicrobial property of lemongrass (Cymbopogon citratus) oil against pathogenic bacteria isolated from pet turtles. Laboratory Animal Research., 33(2), 84–91. https://doi.org/10.5625/lar.2017.33.2.84

    Article  PubMed  PubMed Central  Google Scholar 

  7. Gupta, J. (2011). Nanotechnology applications in medicine and dentistry. Journal of Investigative and Clinical Dentistry, 2, 81–88.

    Article  Google Scholar 

  8. Verma, S., Gokhale, R., & Burgess, D. J. (2009). A comparative study of top-down and bottom-up approaches for the preparation of micro/nanosuspensions. International Journal of Pharmaceutics, 380, 216–222.

    Article  CAS  Google Scholar 

  9. Armendariz, V., & HerreraPeralta-Videa, I. J. R. (2004). Size controlled gold nanoparticle formation by Avena sativa biomass: Use of plants in nanobiotechnology. Journal of Nanoparticle Research, 6, 377–382. https://doi.org/10.1007/s11051-004-0741-4

    Article  CAS  Google Scholar 

  10. Kim, J. S., Kuk, E., Yu, K. N., Kim, J. H., Park, S. J., Lee, H. J., Kim, S. H., Park, Y. K., Park, Y. H., Hwang, C. Y., Kim, Y. K., Lee, Y. S., Jeong, D. H., & Cho, M. H. (2007). Antimicrobial effects of silver nanoparticles. Nanomedicine, 3(1), 95–101. https://doi.org/10.1016/j.nano.2006.12.001

    Article  CAS  PubMed  Google Scholar 

  11. Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B., Ramírez, J. T., & Yacaman, M. J. (2005). The bactericidal effect of silver nanoparticles. Nanotechnology, 16, 2346–2353.

    Article  CAS  Google Scholar 

  12. van der Wellenberg, G. J., Poel, W. H., & Van Oirschot, J. T. (2002). Viral infections and bovine mastitis: A review. Veterinary Microbiology, 88, 27–45.

    Article  CAS  Google Scholar 

  13. Bradley, A. J. (2002). Bovine mastitis: An evolving disease. The Veterinary Journal, 160, 1–13.

    Google Scholar 

  14. Zhao, X., & Lacasse, P. (2008). Mammary tissue damage during bovine mastitis: Causes and control. Journal of Animal Science, 86(13 Suppl), 57–65. https://doi.org/10.2527/jas.2007-0302

    Article  CAS  PubMed  Google Scholar 

  15. Cayô, R. Y., San Segundo, L., Del Molino, P., Bernal, I. C., García de la Fuente, C., Bermúdez Rodríguez, M. A., Calvo, J., & Martínez-Martínez, L. (2011). Bloodstream infection caused by Acinetobacter junii in a patient with acute lymphoblastic leukaemia after allogenic haematopoietic cell transplantation. Journal of Medical Microbiology, 60(Pt 3), 375–377. https://doi.org/10.1099/jmm.0.024596-0

    Article  PubMed  Google Scholar 

  16. Howard, A., O’Donoghue, M., Feeney, A., & Sleator, R. D. (2012). Acinetobacter baumannii: An emerging opportunistic pathogen. Virulence., 3(3), 243–250. https://doi.org/10.4161/viru.19700

    Article  PubMed  PubMed Central  Google Scholar 

  17. Srinivasan, R., Karaoz, U., Volegova, M., MacKichan, J., Kato-Maeda, M., Miller, S., Nadarajan, R., Brodie, E. L., & Lynch, S. V. (2015). Use of 16S rRNA gene for identification of a broad range of clinically relevant bacterial pathogens. PLoS ONE, 10(2), e0117617. https://doi.org/10.1371/journal.pone.0117617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tarale, P., Gawande, S., & Jambhulkar, V. (2015). Antibiotic susceptibility profile of bacilli isolated from the skin of healthy humans. Brazilian Journal of Microbiology: [publication of the Brazilian Society for Microbiology], 46(4), 1111–1118. https://doi.org/10.1590/S1517-838246420131366

    Article  CAS  Google Scholar 

  19. Ranjani, S. S., Ahmed, M., Ruckmani, K., & Hemalatha, S. (2020). Green nanocolloids control multi drug resistant pathogenic bacteria. Journal of Cluster Science, 31, 861–866. https://doi.org/10.1007/s10876-019-01694-6

    Article  CAS  Google Scholar 

  20. Harborne, J. B. (1973). Phytochemical methods (p. 113). Chapman and Hall.

    Google Scholar 

  21. Ranjani, S. Faridha., Begum, I., Tasneem, I. K., Senthil Kumar, N., & Hemalatha, S. (2020). Silver decorated green nanocolloids as potent antibacterial and antibiofilm agent against antibiotic resistant organisms isolated from tannery effluent. Inorganic and Nano-Metal Chemistry. https://doi.org/10.1080/24701556.2020.1811326

    Article  Google Scholar 

  22. Soundhararajan, R. M., Sheik Meeran, S., Prakash, S. P., Mohammad, W., Kandasamy, R., & Srinivasan, H. (2020). Multi potent aromatic nano colloid: Synthesis, characterization and applications. AMB Express, 10(1), 168. https://doi.org/10.1186/s13568-020-01104-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rohini, B., Tahira, A., Waseem, M., Khan, J., Kashif, M., & Hemalatha, S. (2019). AgNPs from Nigella sativa control breast cancer: An in vitro study. Journal of Environmental Pathology, Toxicology and Oncology, 38(2), 185–194.

    Article  Google Scholar 

  24. Ranjani, S., Pradeep, P., Vimalkumar, U. R., Kumar, V., & Hemalatha, S. (2021). Pungent antiinfective nanocolloids manipulate growth, biofilm formation and CTX-M-15 gene expression in pathogens causing Vibriosis. Aquaculture International, 29, 859–869.

    Article  Google Scholar 

  25. Tahira, A., Khan, M. S., & Hemalatha, S. (2020). Biosynthesis of silver nanoparticles via fungal cell filtrate and their anti-quorum sensing against Pseudomonas aeruginosa. Journal of Environmental Chemical Engineering, 8(6), 104365.

    Article  Google Scholar 

  26. Ranjani, S. Shariq., Ahmed, M., Adnan, M., Ruckmani, K., & Hemalatha, S. (2020). Synthesis, characterization and applications of endophytic fungal nanoparticles. Inorganic and Nano-Metal Chemistry. https://doi.org/10.1080/24701556.2020.1784231

    Article  Google Scholar 

  27. Akther, T., & Srinivasan, H. (2019). Mycosilver nanoparticles: Synthesis, characterization and screening the efficacy against plant pathogenic fungi. BioNanoScience, 9https://doi.org/10.1007/s12668-019-0607-y.

  28. Rautela, A., Rani, J., & Debnath, D. M. (2019). Green synthesis of silver nanoparticles from Tectona grandis seeds extract: Characterization and mechanism of antimicrobial action on different microorganisms. Journal of Analytical Science and Technology, 10, 5. https://doi.org/10.1186/s40543-018-0163-z

    Article  Google Scholar 

  29. Shariq, A. M., Ranjani, S., Tahira, A., Waseem, M., Khan, J., Kashif, M., & Hemalatha, S. (2019). Biogenic AgNps synthesized via endophytic bacteria and its biological applications. Environmental Science and Pollution Research International, 26, 26939–26946. https://doi.org/10.1007/s11356-019-05869-6

    Article  CAS  Google Scholar 

  30. Yadav, R. N. S., & Agarwala, M. (2011). Phytochemical analysis of some medicinal plants. Journal of Phytology, 3(12), 10–14.

    CAS  Google Scholar 

  31. Shihabudeen, M. S. H., Hansi, P., & Kavitha, D. K. (2010). Antimicrobial activity and phytochemical analysis of selected Indian folk medicinal plants. International Journal of Pharma Sciences and Research (IJPSR), 1(10), 430–434.

    Google Scholar 

  32. Jiang, H., Moon, K., Zhang, Z. S., Pothukuchi, P., & Wong, C. P. (2006). Variable frequency microwave synthesis of silver nanoparticles. Journal of Nanoparticle Research, 8, 117–124.

    Article  CAS  Google Scholar 

  33. Martínez-Castañón, G. A., Niño-Martínez, N., Martínez-Gutierrez, F., Martínez-Mendoza, J. R., & Ruiz, F. (2008). Synthesis and antibacterial activity of silver nanoparticles with different sizes. Journal of Nanoparticle Research, 10(8), 1343–1348. https://doi.org/10.1007/s11051-008-9428-6

    Article  CAS  Google Scholar 

  34. SabihaSulthana, H. B., Ranjani, S., & Hemalatha, S. (2020). Comparison of efficacy of nanoparticles synthesized from leaves and flowers of Russelia equisitiformis. Inorganic and Nano-Metal Chemistry. https://doi.org/10.1080/24701556.2020.1862218

    Article  Google Scholar 

  35. Ranjani, S., Matheen, A., Jenish, A., & Hemalatha, A. S. (2021). Nanotechnology derived natural Poly bio-silver nanoparticles as a potential alternate biomaterial to protect against human pathogen. Materials Letters, 304(1), 130555. https://doi.org/10.1016/j.matlet.2021.130555

    Article  CAS  Google Scholar 

  36. Tahira, A., Ranjani, S., & Hemalatha, S. (2021). Nanoparticles engineered from endophytic fungi (Botryosphaeria rhodina) against ESBL-producing pathogenic multidrug-resistant E. coli. Environmental Sciences Europe., 33, 83.

    Article  Google Scholar 

  37. Mittal, L., Ranjani, S. Shariq., Ahmed, M., Jeya Shree, T., Akther, T., Poompavai, S., Camarillo, I. G., GowriSree, V., Raji, S., & Hemalatha, S. (2020). Turmeric-silver-nanoparticles for effective treatment of breast cancer and to break CTX-M-15 mediated antibiotic resistance in Escherichia coli. Inorganic and Nano-Metal Chemistry. https://doi.org/10.1080/24701556.2020.1812644

    Article  Google Scholar 

  38. Ranjani, S., Tamanna, K., & Hemalatha, S. (2020). Triphala green nano colloids: Synthesis, characterization and screening biomarkers. Applied Nanoscience, 10, 1269–1279. https://doi.org/10.1007/s13204-019-01208-w

    Article  CAS  Google Scholar 

  39. Sai Nivetha, S., Ranjani, S., & Hemalatha, S. (2020). Synthesis and application of silver nanoparticles using Cissus quadrangularis. Inorganic and Nano-Metal Chemistry. https://doi.org/10.1080/24701556.2020.1862219

    Article  Google Scholar 

  40. Liu, Z., Schade, R., Luthringer, B., Hort, N., Rothe, H., Müller, S., Liefeith, K., Willumeit-Römer, R., & Feyerabend, F. (2017). Influence of the microstructure and silver content on degradation, cytocompatibility, and antibacterial properties of magnesium-silver alloys in vitro. Oxidative Medicine and Cellular Longevity, 8091265.https://doi.org/10.1155/2017/8091265.

  41. Hembram, K. C., Kumar, R., Kandha, L., Parhi, P. K., Kundu, C. N., & Bindhani, B. K. (2018). Therapeutic prospective of plant-induced silver nanoparticles: Application as antimicrobial and anticancer agent. Artificial Cells, Nanomedicine, and Biotechnology., 46(sup3), S38–S51. https://doi.org/10.1080/21691401.2018.1489262

    Article  PubMed  Google Scholar 

  42. Vimbela, G., Ngo, S. M., Fraze, C., Yang, L., & Stout, D. A. (2017). Antibacterial properties and toxicity from metallic nanomaterials. International Journal of Nanomedicine, 12, 3941–3965. https://doi.org/10.2147/IJN.S134526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Stensberg, M. C., Wei, Q., McLamore, E. S., Porterfield, D. M., Wei, A., & Sepúlveda, M. (2011). Toxicological studies on silver nanoparticles: Challenges and opportunities in assessment, monitoring and imaging. Nanomedicine (London, England)., 6(5), 879–898.

    Article  CAS  Google Scholar 

  44. Roy, R., Tiwari, M., Donelli, G., & Tiwari, V. (2018). Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action. Virulence., 9(1), 522–554. https://doi.org/10.1080/21505594.2017.1313372

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Authors are thankful to B.S. Abdur Rahman Institute of Science & Technology, Chennai for providing research facilities in school of life sciences. The authors also gratefully acknowledge the Ministry of Science and Technology, Department of Science and Technology (KIRAN Division) (GoI), New Delhi. (Ref No. DST/WOS-B/2018/1583-HFN (G)) and ASEAN University network (AUN)/Southeast Asia Engineering Education Development Network (SEED)/Japan International Cooperation Agency (JICA) SPRAC (SN042/MI.KU/2020).

Author information

Authors and Affiliations

Authors

Contributions

SH conceived and designed the research. SR and SPP conducted experiments. SH and MVM analyzed the data. All authors wrote the manuscript. The authors read and approved the manuscript.

Corresponding author

Correspondence to S. Hemalatha.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

All authors read and approved the manuscript for publication.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranjani, S., Priya, P.S., Veerasami, M. et al. Novel Polyherbal Nanocolloids to Control Bovine Mastitis. Appl Biochem Biotechnol 194, 246–265 (2022). https://doi.org/10.1007/s12010-021-03748-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03748-w

Keywords

Navigation