Skip to main content
Log in

Immobilization of Candida antarctica Lipase on Nanomaterials and Investigation of the Enzyme Activity and Enantioselectivity

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

This study defines the lipase immobilization protocol and enzymatic kinetic resolution of 1-phenyl ethanol with the use of immobilized lipases (LI) as a biocatalyst. Commercially available lipase Candida antarctica B (Cal-B) was immobilized onto graphene oxide (GO), iron oxide (Fe3O4) nanoparticles, and graphene oxide/iron oxide (GO/Fe3O4) nanocomposites. Characterization of pure and enzyme-loaded supports was carried out by scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy. The influences of pH, temperature, immobilization time, crosslinker concentration, glutaraldehyde (GLA), epichlorohydrin (EPH), and surfactant concentrations (Tween 80 and Triton X-100) on the catalytic activity were evaluated for these three immobilized biocatalysts. The highest immobilized enzyme activities were 15.03 U/mg, 14.72 U/mg, and 13.56 U/mg for GO-GLA-CalB, Fe3O4-GLA-CalB, and GO/Fe3O4-GLA-CalB, respectively. Moreover, enantioselectivity and reusability of these immobilized lipases were compared for the kinetic resolution of 1-phenyl ethanol, using toluene as organic solvent and vinyl acetate as acyl donor. The highest values of enantiomeric excess (ees = 99%), enantioselectivity (E = 507.74), and conversion (c = 50.73%) were obtained by using lipase immobilized onto graphene oxide (GO-GLA-CalB). It was obtained that this enzymatic process may be repeated five times without important loss of enantioselectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dhake, K. P., Deshmukh, K. M., Wagh, Y. S., Singhal, R. S., & Bhanage, B. M. (2012). Investigation of steapsin lipase for kinetic resolution of secondary alcohols and synthesis of valuable acetates in non-aqueous reaction medium. Journal of Molecular Catalysis B: Enzymatic, 77, 15–23. https://doi.org/10.1016/J.MOLCATB.2012.01.009.

    Article  CAS  Google Scholar 

  2. Adlercreutz, P. (2013). Immobilisation and application of lipases in organic media. Chemical Society Reviews, 42(15), 6406–6436. https://doi.org/10.1039/C3CS35446F.

    Article  CAS  PubMed  Google Scholar 

  3. Ghanem, A., & Aboul-Enein, H. Y. (2004). Lipase-mediated chiral resolution of racemates in organic solvents. Tetrahedron: Asymmetry, 15(21), 3331–3351. https://doi.org/10.1016/J.TETASY.2004.09.019.

    Article  CAS  Google Scholar 

  4. Alloue, W. A. M., Destain, J., Amighi, K., & Thonart, P. (2007). Storage of Yarrowia lipolytica lipase after spray-drying in the presence of additives. Process Biochemistry, 42(9), 1357–1361. https://doi.org/10.1016/J.PROCBIO.2007.05.024.

    Article  CAS  Google Scholar 

  5. Homaei, A. A., Sariri, R., Vianello, F., & Stevanato, R. (2013). Enzyme immobilization: an update. Journal of Chemical Biology, 6(4), 185–205. https://doi.org/10.1007/s12154-013-0102-9.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Qayed, W. S., Aboraia, A. S., Abdel-Rahman, H. M., & Youssef, A. F. (2015). Lipases-catalyzed enantioselective kinetic resolution of alcohols. Journal of Chemical and Pharmaceutical Research, 7(5).

  7. Singh, M. N., Hemant, K. S. Y., Ram, M., & Shivakumar, H. G. (2010). Microencapsulation: a promising technique for controlled drug delivery. Research in pharmaceutical sciences, 5(2), 65–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Hernández-Fernández, F. J., de los Ríos, A. P., Tomás-Alonso, F., Gómez, D., & Víllora, G. (2008). Kinetic resolution of 1-phenylethanol integrated with separation of substrates and products by a supported ionic liquid membrane. Journal of Chemical Technology & Biotechnology, 84(3), 337–342. https://doi.org/10.1002/jctb.2044.

    Article  CAS  Google Scholar 

  9. Xian-ming, H., & Jun, L. (1999). Optically active alcohols: resolution and synthesis from asymmetric reduction of prochiral ketones. Wuhan University Journal of Natural Sciences, 4(2), 205–210. https://doi.org/10.1007/BF02841502.

    Article  Google Scholar 

  10. Frings, K., Koch, M., & Hartmeier, W. (1999). Kinetic resolution of 1-phenyl ethanol with high enantioselectivity with native and immobilized lipase in organic solvents. Enzyme and Microbial Technology, 25(3–5), 303–309. https://doi.org/10.1016/S0141-0229(99)00044-7.

    Article  CAS  Google Scholar 

  11. Leitgeb, M., & Knez, Ž. (2009). Optimization of (R, S)-1-phenylethanol kinetic resolution over Candida antarctica lipase B in ionic liquids. Journal of Molecular Catalysis B-enzymatic - J MOL CATAL B-ENZYM, 58, 24–28.

    Article  Google Scholar 

  12. de Miranda, A. S., Miranda, L. S. M., & de Souza, R. O. M. A. (2015). Lipases: valuable catalysts for dynamic kinetic resolutions. Biotechnology Advances, 33(5), 372–393. https://doi.org/10.1016/j.biotechadv.2015.02.015.

    Article  CAS  PubMed  Google Scholar 

  13. Barbosa, O., Ariza, C., Ortiz, C., & Torres, R. (2010). Kinetic resolution of (R/S)-propranolol (1-isopropylamino-3-(1-naphtoxy)-2-propanolol) catalyzed by immobilized preparations of Candida antarctica lipase B (CAL-B). New Biotechnology, 27(6), 844–850. https://doi.org/10.1016/j.nbt.2010.07.015.

    Article  CAS  PubMed  Google Scholar 

  14. Alves, J. S., Garcia-Galan, C., Schein, M. F., Silva, A. M., Barbosa, O., Ayub, M. A. Z., et al. (2014). Combined effects of ultrasound and immobilization protocol on butyl acetate synthesis catalyzed by CALB. Molecules (Basel, Switzerland), 19(7), 9562–9576. https://doi.org/10.3390/molecules19079562.

    Article  CAS  Google Scholar 

  15. Raza, S., Fransson, L., & Hult, K. (2001). Enantioselectivity in Candida antarctica lipase B: a molecular dynamics study. Protein science : a publication of the Protein Society, 10(2), 329–338. https://doi.org/10.1110/ps.33901.

    Article  CAS  Google Scholar 

  16. Abahazi, E., Lestal, D., Boros, Z., & Poppe, L. (2016). Tailoring the spacer arm for covalent immobilization of Candida antarctica lipase B-thermal stabilization by Bisepoxide-activated aminoalkyl resins in continuous-flow reactors. Molecules (Basel, Switzerland), 21(6). https://doi.org/10.3390/molecules21060767.

  17. de Souza, R. O. M. A., Antunes, O. A. C., Kroutil, W., & Kappe, C. O. (2009). Kinetic resolution of rac-1-phenylethanol with immobilized lipases: a critical comparison of microwave and conventional heating protocols. The Journal of Organic Chemistry, 74(16), 6157–6162. https://doi.org/10.1021/jo9010443.

    Article  CAS  PubMed  Google Scholar 

  18. Raharjo, T. J., Febrina, L., Wardoyo, F. A., & Swasono, R. T. (2016). Effect of deacetylation degree of chitosan as solid support in lipase immobilization by glutaraldehyde crosslink. Asian Journal of Biochemistry, 11(3), 127–134. https://doi.org/10.3923/ajb.2016.127.134.

    Article  CAS  Google Scholar 

  19. Costa, H. C., Romão, B. B., Ribeiro, E. J., Miriam, M., & Resende. (2013). Glutaraldehyde effect in the immobilization process of alpha-galactosidase from Aspergillus niger in the ion exchange resin duolite A-568.

  20. Önal, S., & Telefoncu, A. (2003). Comparison of chitin and amberlite IRA-938 for α-galactosidase immobilization. Artificial Cells, Blood Substitutes, and Biotechnology, 31(1), 19–33. https://doi.org/10.1081/BIO-120018001.

    Article  CAS  PubMed  Google Scholar 

  21. Kuo, C.-H., Liu, Y.-C., Chang, C.-M. J., Chen, J.-H., Chang, C., & Shieh, C.-J. (2012). Optimum conditions for lipase immobilization on chitosan-coated Fe3O4 nanoparticles. Carbohydrate Polymers, 87(4), 2538–2545. https://doi.org/10.1016/J.CARBPOL.2011.11.026.

    Article  CAS  Google Scholar 

  22. Jian, H., Wang, Y., Bai, Y., Li, R., & Gao, R. (2016). Site-specific, covalent immobilization of dehalogenase ST2570 catalyzed by formylglycine-generating enzymes and its application in batch and semi-continuous flow reactors. Molecules (Basel, Switzerland), 21(7). https://doi.org/10.3390/molecules21070895.

  23. Ozturk, T. K., & Kilinc, A. (2010). Immobilization of lipase in organic solvent in the presence of fatty acid additives. Journal of Molecular Catalysis B: Enzymatic, 67(3–4), 214–218. https://doi.org/10.1016/J.MOLCATB.2010.08.008.

    Article  CAS  Google Scholar 

  24. Zucca, P., Fernandez-Lafuente, R., & Sanjust, E. (2016). Agarose and its derivatives as supports for enzyme immobilization. Molecules (Basel, Switzerland), 21(11). https://doi.org/10.3390/molecules21111577.

  25. Pinto, M. C. C., Freire, D. M. G., & Pinto, J. C. (2014). Influence of the morphology of core-shell supports on the immobilization of lipase B from Candida antarctica. Molecules (Basel, Switzerland), 19(8), 12509–12530. https://doi.org/10.3390/molecules190812509.

    Article  CAS  Google Scholar 

  26. Mohamad, N. R., Marzuki, N. H. C., Buang, N. A., Huyop, F., & Wahab, R. A. (2015). An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes. Biotechnology and Biotechnological Equipment, 29(2), 205–220. https://doi.org/10.1080/13102818.2015.1008192.

    Article  CAS  PubMed  Google Scholar 

  27. Yang, D., Wang, X., Shi, J., Wang, X., Zhang, S., Han, P., & Jiang, Z. (2016). In situ synthesized rGO–Fe3O4 nanocomposites as enzyme immobilization support for achieving high activity recovery and easy recycling. Biochemical Engineering Journal, 105, 273–280. https://doi.org/10.1016/j.bej.2015.10.003.

    Article  CAS  Google Scholar 

  28. Shi, X., Xu, J., Lu, C., Wang, Z., Xiao, W., & Zhao, L. (2019). Immobilization of high temperature-resistant GH3 β-glucosidase on a magnetic particle Fe3O4-SiO2-NH2-Cellu-ZIF8/zeolitic imidazolate framework. Enzyme and Microbial Technology. https://doi.org/10.1016/j.enzmictec.2019.05.004.

  29. Zhao, J.-f., Lin, J.-p., Yang, L.-r., & Wu, M.-b. (2019). Enhanced performance of Rhizopus oryzae lipase by reasonable immobilization on magnetic nanoparticles and its application in synthesis 1,3-diacyglycerol. Applied Biochemistry and Biotechnology, 3(188), 677–689. https://doi.org/10.1007/s12010-018-02947-2.

    Article  CAS  Google Scholar 

  30. Juang, T.-Y., Kan, S.-J., Chen, Y.-Y., Tsai, Y.-L., Lin, M.-G., & Lin, L.-L. (2014). Surface-functionalized hyperbranched poly(amido acid) magnetic nanocarriers for covalent immobilization of a bacterial gamma-glutamyltranspeptidase. Molecules (Basel, Switzerland), 19(4), 4997–5012. https://doi.org/10.3390/molecules19044997.

    Article  CAS  Google Scholar 

  31. Song, J., Su, P., Yang, Y., & Yang, Y. (2017). Efficient immobilization of enzymes onto magnetic nanoparticles by DNA strand displacement: a stable and high-performance biocatalyst. New Journal of Chemistry, 41(14), 6089–6097. https://doi.org/10.1039/C7NJ00284J.

    Article  CAS  Google Scholar 

  32. Khoshnevisan, K., Vakhshiteh, F., Barkhi, M., Baharifar, H., Poor-Akbar, E., Zari, N., et al. (2017). Immobilization of cellulase enzyme onto magnetic nanoparticles: applications and recent advances. Molecular Catalysis, 442, 66–73. https://doi.org/10.1016/J.MCAT.2017.09.006.

    Article  CAS  Google Scholar 

  33. Cipolatti, E. P., Valério, A., Henriques, R. O., Moritz, D. E., Ninow, J. L., Freire, D. M. G., et al. (2016). Nanomaterials for biocatalyst immobilization-state of the art and future trends. RSC Advances. https://doi.org/10.1039/c6ra22047a.

  34. Yadav, M., Rhee, K. Y., Park, S. J., & Hui, D. (2014). Mechanical properties of Fe3O4/GO/chitosan composites. Composites Part B: Engineering, 66, 89–96. https://doi.org/10.1016/J.COMPOSITESB.2014.04.034.

    Article  CAS  Google Scholar 

  35. Zhou, L., Jiang, Y., Ma, L., He, Y., & Gao, J. (2014). Immobilization of glucose oxidase on polydopamine-functionalized graphene oxide. Applied Biochemistry and Biotechnology, 2(175), 1007–1017. https://doi.org/10.1007/s12010-014-1324-1.

    Article  CAS  Google Scholar 

  36. Shao, Y., Jing, T., Tian, J., & Zheng, Y. (2015). Graphene oxide-based Fe3O4 nanoparticles as a novel scaffold for the immobilization of porcine pancreatic lipase. RSC Advances, 126(5), 103943–103955. https://doi.org/10.1039/c5ra19276e.

    Article  Google Scholar 

  37. Xie, W., & Huang, M. (2018). Immobilization of Candida rugosa lipase onto graphene oxide Fe3O4 nanocomposite: characterization and application for biodiesel production. Energy Conversion and Management, 159, 42–53. https://doi.org/10.1016/j.enconman.2018.01.021.

    Article  CAS  Google Scholar 

  38. Mosayebi, M., Salehi, Z., Doosthosseini, H., Tishbi, P., & Kawase, Y. (2020). Amine, thiol, and octyl functionalization of GO-Fe3O4 nanocomposites to enhance immobilization of lipase for transesterification. Renewable Energy. https://doi.org/10.1016/j.renene.2020.03.040.

  39. Atila Dinçer, C., Yıldız, N., Aydoğan, N., & Çalımlı, A. (2014). A comparative study of Fe3O4 nanoparticles modified with different silane compounds. Applied Surface Science, 318, 297–304. https://doi.org/10.1016/J.APSUSC.2014.06.069.

    Article  Google Scholar 

  40. Li, D., Müller, M. B., Gilje, S., Kaner, R. B., & Wallace, G. G. (2008). Processable aqueous dispersions of graphene nanosheets. Nature Nanotechnology, 3, 101.

    Article  CAS  Google Scholar 

  41. Chang, Q., Huang, J., Ding, Y., & Tang, H. (2016). Catalytic oxidation of phenol and 2,4-dichlorophenol by using horseradish peroxidase immobilized on graphene oxide/Fe3O4. Molecules, 21(8).

  42. Sikora, A., Chełminiak-Dudkiewicz, D., Siódmiak, T., Tarczykowska, A., Sroka, W. D., Ziegler-Borowska, M., & Marszałł, M. P. (2016). Enantioselective acetylation of (R,S)-atenolol: the use of Candida rugosa lipases immobilized onto magnetic chitosan nanoparticles in enzyme-catalyzed biotransformation. Journal of Molecular Catalysis B: Enzymatic, 134, 43–50. https://doi.org/10.1016/J.MOLCATB.2016.09.017.

    Article  CAS  Google Scholar 

  43. Rosu, R., Uozaki, Y., Iwasaki, Y., & Yamane, T. (1997). Repeated use of immobilized lipase for monoacylglycerol production by solid-phase glycerolysis of olive oil. Journal of the American Oil Chemists' Society, 74(4), 445–450. https://doi.org/10.1007/s11746-997-0104-2.

    Article  CAS  Google Scholar 

  44. Kramer, M., Cruz, J. C., Pfromm, P. H., Rezac, M. E., & Czermak, P. (2010). Enantioselective transesterification by Candida antarctica lipase B immobilized on fumed silica. Journal of Biotechnology, 150(1), 80–86. https://doi.org/10.1016/J.JBIOTEC.2010.07.018.

    Article  CAS  PubMed  Google Scholar 

  45. Tolasz, J., Štengl, V., & Ecorchard, P. (2014). The preparation of composite material of graphene oxide– polystyrene. Environment, Chemistry and Biology : Selected, peer review papers from the 2014 3rd International Conference on Environment, Chemistry and Biology (ICECB 2014) November 29–30,2014, Mauritius.

  46. Yang, F., Zhao, M., Zheng, B., Xiao, D., Wu, L., & Guo, Y. (2012). Influence of pH on the fluorescence properties of graphene quantum dots using ozonation pre-oxide hydrothermal synthesis. Journal of Materials Chemistry, 22(48), 25471–25479. https://doi.org/10.1039/C2JM35471C.

    Article  CAS  Google Scholar 

  47. Sahare, P., Ayala, M., Vazquez-Duhalt, R., & Agrawal, V. (2014). Immobilization of peroxidase enzyme onto the porous silicon structure for enhancing its activity and stability. Nanoscale Research Letters, 9(1), 409. https://doi.org/10.1186/1556-276X-9-409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Narayanan, T. N., Liu, Z., Lakshmy, P. R., Gao, W., Nagaoka, Y., Sakthi Kumar, D., et al. (2012). Synthesis of reduced graphene oxide–Fe3O4 multifunctional freestanding membranes and their temperature dependent electronic transport properties. Carbon, 50(3), 1338–1345. https://doi.org/10.1016/J.CARBON.2011.11.005.

    Article  CAS  Google Scholar 

  49. Xu, M.-H., Kuan, I.-C., Deng, F.-Y., Lee, S.-L., Kao, W.-C., & Yu, C.-Y. (2016). Immobilization of lipase from Candida rugosa and its application for the synthesis of biodiesel in a two-step process. Asia-Pacific Journal of Chemical Engineering, 11(6), 910–917. https://doi.org/10.1002/apj.2025.

    Article  CAS  Google Scholar 

  50. Miletic, N., Abetz, V., Ebert, K., & Loos, K. (2010). Immobilization of Candida antarctica lipase B on polystyrene nanoparticles. Macromolecular Rapid Communications, 31(1), 71–74. https://doi.org/10.1002/marc.200900497.

    Article  CAS  PubMed  Google Scholar 

  51. Yilmaz, E., Sezgin, M., & Yilmaz, M. (2011). Immobilization of Candida rugosa lipase on magnetic sol–gel composite supports for enzymatic resolution of (R,S)-Naproxen methyl ester. Journal of Molecular Catalysis B: Enzymatic, 69(1–2), 35–41. https://doi.org/10.1016/J.MOLCATB.2010.12.007.

    Article  CAS  Google Scholar 

  52. İspirli Doğaç, Y., & Teke, M. (2013). Immobilization of bovine catalase onto magnetic nanoparticles. Preparative Biochemistry & Biotechnology, 43. https://doi.org/10.1080/10826068.2013.773340.

  53. Nguyen, H. H., & Kim, M. (2017). An overview of techniques in enzyme immobilization. Applied Science and Convergence Technology, 26(6), 157–163. https://doi.org/10.5757/ASCT.2017.26.6.157.

    Article  Google Scholar 

  54. Zhu, J., & Sun, G. (2012). Lipase immobilization on glutaraldehyde-activated nanofibrous membranes for improved enzyme stabilities and activities. Reactive and Functional Polymers, 72(11), 839–845. https://doi.org/10.1016/J.REACTFUNCTPOLYM.2012.08.001.

    Article  CAS  Google Scholar 

  55. Soto, D., Escobar, S., Guzmán, F., Cárdenas, C., Bernal, C., & Mesa, M. (2017). Structure-activity relationships on the study of β-galactosidase folding/unfolding due to interactions with immobilization additives: Triton X-100 and ethanol. International Journal of Biological Macromolecules, 96, 87–92. https://doi.org/10.1016/J.IJBIOMAC.2016.12.026.

    Article  CAS  PubMed  Google Scholar 

  56. de Oliveira, U. M. F., de Matos, L. J. B., de Souza, M. C. M., Pinheiro, B. B., dos Santos, J. C. S., & Gonçalves, L. R. B. (2018). Effect of the presence of surfactants and immobilization conditions on catalysts’ properties of Rhizomucor miehei lipase onto chitosan. Applied Biochemistry and Biotechnology, 184(4), 1263–1285. https://doi.org/10.1007/s12010-017-2622-1.

    Article  CAS  PubMed  Google Scholar 

  57. Ali Khan, A., & Alzohairy, M. A. (2010). Recent advances and applications of immobilized enzyme technologies: a review. Research Journal of Biological Sciences, 5(8), 565–575. https://doi.org/10.3923/rjbsci.2010.565.575.

    Article  Google Scholar 

  58. Spahn, C., & Minteer, S. D. (2008). Enzyme immobilization in biotechnology. Recent Patents on Engineering, 2(3), 195–200. https://doi.org/10.2174/187221208786306333.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ülkü Mehmetoğlu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coşkun, G., Çıplak, Z., Yıldız, N. et al. Immobilization of Candida antarctica Lipase on Nanomaterials and Investigation of the Enzyme Activity and Enantioselectivity. Appl Biochem Biotechnol 193, 430–445 (2021). https://doi.org/10.1007/s12010-020-03443-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03443-2

Keywords

Navigation