Skip to main content
Log in

Immobilization of Glucose Oxidase on Polydopamine-Functionalized Graphene Oxide

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this study, graphene oxide (GO) was modified with dopamine to create a matrix for enzyme immobilization. Dopamine can self-polymerize to get polydopamine (PDA) and coated on GO surface. At the same time, GO was reduced to get PDA/rGO biocomposite. The PDA/rGO may offer adherent surface for enzyme immobilization. Glucose oxidase (GOD), an oxidoreductase, was chosen as model enzyme and can be easily immobilized on PDA/rGO. Experimental results indicated that the thermal and pH stability as well as the storage stability and resistance toward the denaturing agents of GOD were significantly improved after immobilization. The Michaelis constant (K m) of the immobilized GOD was very close to that of the free GOD. This study offers a versatile approach for deposition of biopolymer on GO and provides a way for enzyme immobilization. Hopefully, the immobilized GOD may be further applied for biosensor and biofuel cell applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zangmeister, R. A., Morris, T. A., & Tarlov, M. J. (2013). Characterization of polydopamine thin films deposited at short times by autoxidation of dopamine. Langmuir, 29, 8619–8628.

    Article  CAS  Google Scholar 

  2. Zhao, J. J., Su, Y. L., He, X., Zhao, X. T., Li, Y. F., Zhang, R. N., & Jiang, Z. Y. (2014). Dopamine composite nanofiltration membranes prepared by self-polymerization and interfacial polymerization. Journal of Membrane Science, 465, 41–48.

    Article  CAS  Google Scholar 

  3. Hong, S., Na, Y. S., Choi, S., Song, I. T., Kim, W. Y., & Lee, H. (2012). Non-covalent self-assembly and covalent polymerization co-contribute to polydopamine formation. Advanced Functional Materials, 22, 4711–4717.

    Article  CAS  Google Scholar 

  4. Lee, H., Rho, J., & Messersmith, P. B. (2009). Facile conjugation of biomolecules onto surfaces via mussel adhesive protein inspired coatings. Advanced Materials, 21, 431–434.

    Article  CAS  Google Scholar 

  5. Sureshkumar, M., Lee, P. N., & Lee, C. K. (2012). Facile preparation of a robust and flexible antioxidant film based on self-polymerized dopamine in a microporous battery separator. RSC Advances, 2, 5127–5129.

    Article  CAS  Google Scholar 

  6. Xi, Z. Y., Xu, Y. Y., Zhu, L. P., Wang, Y., & Zhu, B. K. (2009). A facile method of surface modification for hydrophobic polymer membranes based on the adhesive behavior of poly(DOPA) and poly(dopamine). Journal of Membrane Science, 327, 244–253.

    Article  CAS  Google Scholar 

  7. Peterson, M. B., Le-Masurier, S. P., Lim, K., Hook, J. M., Martens, P., & Granville, A. M. (2014). Incorporation of 5-hydroxyindazole into the self-polymerization of dopamine for novel polymer synthesis. Macromolecular Rapid Communications, 35, 291–297.

    Article  CAS  Google Scholar 

  8. Kim, S. Y., Kim, J., Choe, J., Byun, Y. C., Seo, J. H., & Kim do, H. (2013). Fabrication of electrically conductive nickel-silver bimetallic particles via polydopamine coating. Journal of Nanoscience and Nanotechnology, 13, 7600–7609.

    Article  CAS  Google Scholar 

  9. Dreyer, D. R., Miller, D. J., Freeman, B. D., Paul, D. R., & Bielawski, C. W. (2013). Perspectives on poly(dopamine). Chemical Science, 4, 3796–3802.

    Article  CAS  Google Scholar 

  10. Lee, H., Dellatore, S. M., Miller, W. M., & Messersmith, P. B. (2007). Mussel-inspired surface chemistry for multifunctional coatings. Science, 318, 426–430.

    Article  CAS  Google Scholar 

  11. Zhu, L. P., Jiang, J. H., Zhu, B. K., & Xu, Y. Y. (2011). Immobilization of bovine serum albumin onto porous polyethylene membranes using strongly attached polydopamine as a spacer. Colloids and Surfaces. B, Biointerfaces, 86, 111–118.

    Article  CAS  Google Scholar 

  12. Sureshkumar, M., & Lee, C. K. (2011). Polydopamine coated magnetic-chitin (MCT) particles as a new matrix for enzyme immobilization. Carbohydrate Polymers, 84, 775–780.

    Article  CAS  Google Scholar 

  13. Jeon, E. K., Seo, E., Lee, E., Lee, W., Um, M. K., & Kim, B. S. (2013). Mussel-inspired green synthesis of silver nanoparticles on graphene oxide nanosheets for enhanced catalytic applications. Chemical Communications, 49, 3392–3394.

    Article  CAS  Google Scholar 

  14. Srivastava, S., Ali, M., Umrao, S., Parashar, U., Srivastava, A., Sumana, G., Malhotra, B. D., Pandey, S., & Hayase, S. (2014). Graphene oxide-based biosensor for food toxin detection. Applied Biochemistry and Biotechnology. doi:10.1007/S12010-014-0965-4.

    Google Scholar 

  15. Cipolatti, E. P., Silva, M. J. A., Klein, M., Feddern, V., Feltes, M. M. C., Oliveira, J. V., Ninow, J. L., & de Oliveira, D. (2014). Current status and trends in enzymatic nanoimmobilization. Journal of Molecular Catalysis B: Enzymatic, 99, 56–67.

    Article  CAS  Google Scholar 

  16. Zhou, L. Y., Jiang, Y. J., Gao, J., Zhao, X. Q., Ma, L., & Zhou, Q. L. (2012). Oriented immobilization of glucose oxidase on graphene oxide. Biochemical Engineering Journal, 69, 28–31.

    Article  CAS  Google Scholar 

  17. Li, S., Mulloor, J. J., Wang, L., Ji, Y., Mulloor, C. J., Micic, M., Orbulescu, J., & Leblanc, R. M. (2014). Strong and selective adsorption of lysozyme on graphene oxide. ACS Applied Materials & Interfaces, 6, 5704–5712.

    Article  CAS  Google Scholar 

  18. Kang, S. M., Park, S., Kim, D., Park, S. Y., Ruoff, R. S., & Lee, H. (2011). Simultaneous reduction and surface functionalization of graphene oxide by mussel-inspired chemistry. Advanced Functional Materials, 21, 108–112.

    Article  CAS  Google Scholar 

  19. Hummers, W. S., & Offeman, R. E. (1958). Preparation of graphitic oxide. Journal of the American Oil Chemists' Society, 80, 1339–1340.

    Article  CAS  Google Scholar 

  20. Hou, X., Liu, B., Deng, X., Zhang, B., Chen, H., & Luo, R. (2007). Covalent immobilization of glucose oxidase onto poly(styrene-co-glycidyl methacrylate) monodisperse fluorescent microspheres synthesized by dispersion polymerization. Analytical Biochemistry, 368, 100–110.

    Article  CAS  Google Scholar 

  21. Zhang, J. L., Zhang, F., Yang, H. J., Huang, X. L., Liu, H., Zhang, J. Y., & Guo, S. W. (2010). Graphene oxide as a matrix for enzyme immobilization. Langmuir, 26, 6083–6085.

    Article  CAS  Google Scholar 

  22. Zhou, L. Y., Jiang, Y. J., Gao, J., Zhao, X. Q., & Ma, L. (2012). Graphene oxide as a matrix for the immobilization of glucose oxidase. Applied Biochemistry and Biotechnology, 168, 1635–1642.

    Article  CAS  Google Scholar 

  23. Kasemset, S., Lee, A., Miller, D. J., Freeman, B. D., & Sharma, M. M. (2013). Effect of polydopamine deposition conditions on fouling resistance, physical properties, and permeation properties of reverse osmosis membranes in oil/water separation. Journal of Membrane Science, 425–426, 208–216.

    Article  Google Scholar 

  24. Ren, Y., Rivera, J. G., He, L., Kulkarni, H., Lee, D. K., & Messersmith, P. B. (2011). Facile, high efficiency immobilization of lipase enzyme on magnetic iron oxide nanoparticles via a biomimetic coating. BMC Biotechnology, 11, 63–71.

    Article  CAS  Google Scholar 

  25. Liebscher, J., Mrowczynski, R., Scheidt, H. A., Filip, C., Hadade, N. D., Turcu, R., Bende, A., & Beck, S. (2013). Structure of polydopamine: a never-ending story? Langmuir, 29, 10539–10548.

    Article  CAS  Google Scholar 

  26. Dreyer, D. R., Miller, D. J., Freeman, B. D., Paul, D. R., & Bielawski, C. W. (2012). Elucidating the structure of poly(dopamine). Langmuir, 28, 6428–6435.

    Article  CAS  Google Scholar 

  27. Zhang, L., Shi, J. F., Jiang, Z. Y., Jiang, Y. J., Qiao, S. Z., Li, J., Wang, R., Meng, R. J., Zhu, Y. Y., & Zheng, Y. (2011). Bioinspired preparation of polydopamine microcapsule for multienzyme system construction. Green Chemistry, 13, 300–306.

    Article  CAS  Google Scholar 

  28. da Silva, A. M., Tavares, A. P. M., Rocha, C. M. R., Cristóvão, R. O., Teixeira, J. A., & Macedo, E. A. (2012). Immobilization of commercial laccase on spent grain. Process Biochemistry, 47, 1095–1101.

    Article  Google Scholar 

  29. O′Neilla, A., Bakirtzisb, D., & Dixon, D. (2014). Polyamide 6/graphene composites: the effect of in situ polymerisation on the structure and properties of graphene oxide and reduced graphene oxide. European Polymer Journal, 59, 353–362.

    Article  Google Scholar 

  30. Tabrizi, M. A., & Varkani, J. N. (2014). Green synthesis of reduced graphene oxide decorated with gold nanoparticles and its glucose sensing application. Sensors and Actuators B: Chemical, 202, 475–482.

    Article  Google Scholar 

  31. Chen, W. F., Yan, L. F., & Bangal, P. R. (2010). Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves. Carbon, 48, 1146–1152.

    Article  CAS  Google Scholar 

  32. Cheng, C., Nie, S. Q., Li, S., Peng, H., Yang, H., Ma, L., Sun, S. D., & Zhao, C. S. (2013). Biopolymer functionalized reduced graphene oxide with enhanced biocompatibility via mussel inspired coatings/anchors. Journal of Materials Chemistry B, 1, 265–275.

    Article  CAS  Google Scholar 

  33. Zhu, L. J., Lu, Y. L., Wang, Y. Q., Zhang, L. Q., & Wang, W. C. (2012). Preparation and characterization of dopamine-decorated hydrophilic carbon black. Applied Surface Science, 258, 5387–5393.

    Article  CAS  Google Scholar 

  34. Jung, Y. C., Muramatsu, H., Fujisawa, K., Kim, J. H., Hayashi, T., Kim, Y. A., Endo, M., Terrones, M., & Dresselhaus, M. S. (2011). Optically and biologically active mussel protein-coated double-walled carbon nanotubes. Small, 7, 3292–3297.

    Article  CAS  Google Scholar 

  35. Wang, H., Huang, J., Wang, C., Li, D., Ding, L., & Han, Y. (2011). Immobilization of glucose oxidase using CoFe2O4/SiO2 nanoparticles as carrier. Applied Surface Science, 257, 5739–5745.

    Article  CAS  Google Scholar 

  36. Su, R., Shi, P., Zhu, M., Hong, F., & Li, D. (2012). Studies on the properties of graphene oxide-alkaline protease bio-composites. Bioresource Technology, 115, 136–140.

    Article  CAS  Google Scholar 

  37. Kunamneni, A., Ghazi, I., Camarero, S., Ballesteros, A., Plou, F. J., & Alcalde, M. (2008). Decolorization of synthetic dyes by laccase immobilized on epoxy-activated carriers. Process Biochemistry, 43, 169–178.

    Article  CAS  Google Scholar 

  38. Mozhaev, V. V., Melik-nubarov, N. S., Šikšnis, V., & Martinek, K. (1990). Strategy for stabilizing enzymes part two: increasing enzyme stability by selective chemical modification. Biocatalysis and Biotransformation, 3, 189–196.

    Article  CAS  Google Scholar 

  39. Rauf, S., Ihsan, A., Akhtar, K., Ghauri, M. A., Rahman, M., Anwar, M. A., & Khalid, A. M. (2006). Glucose oxidase immobilization on a novel cellulose acetate-polymethylmethacrylate membrane. Journal of Biotechnology, 121, 351–360.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Nature Science Foundation of China (Nos. 21306039, 21276060, 21276062), Tianjin Research Program of Application Foundation and Advanced Technology (13JCYBJC18500), and the Science and Technology Research Project for Colleges and Universities in Hebei Province (YQ2013025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Gao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 83 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, L., Jiang, Y., Ma, L. et al. Immobilization of Glucose Oxidase on Polydopamine-Functionalized Graphene Oxide. Appl Biochem Biotechnol 175, 1007–1017 (2015). https://doi.org/10.1007/s12010-014-1324-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1324-1

Keywords

Navigation