Skip to main content

Advertisement

Log in

Pretreatment of Mango (Mangifera indica L. Anacardiaceae) Seed Husk for Bioethanol Production by Dilute Acid Treatment and Enzymatic Hydrolysis

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

One of the targets of the Sustainable Development Goals is clean and affordable energy. This is also the aim of the Biofuels Act of 2007 in the Philippines. However, this law is confronted with challenges such as the limitation of lignocellulosic feedstock, specifically available for bioethanol production. The present study sought to address the issue by exploring the potential of mango seed husk (MSH), a by-product of the mango industry, in bioethanol production. MSH is considered a waste material and its utilization also permit value-addition as this can serve as an alternative and affordable source of feedstock in energy production. Two pretreatment strategies are employed to exploit the cellulose and hemicellulose content of MSH, namely, dilute acid treatment and enzymatic hydrolysis. Results show that the %H2SO4 resulting in the highest glucose concentration and yield is 4% v/v at 95 °C hydrolysis temperature, 1:10 (w/v) solid-to-solvent ratio, and 60-min hydrolysis time. For enzymatic hydrolysis using a commercial enzyme preparation, the reaction time up to 72 h did not affect glucose concentration and yield at the following conditions: 50 °C hydrolysis temperature, 150 rpm, pH 5.0, 10% solids loading, and 4% enzyme loading. This could be attributed to the lignin and non-structural compounds present in MSHs. However, a combined process strategy of dilute acid pretreatment followed by enzymatic hydrolysis in the pretreatment of MSH contributes to an increased concentration and yield of sugars in the hydrolysates, which is advantageous for bioethanol production.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are available from the corresponding author on reasonable request.

References

  1. Corpuz, P. and Bedford, R. (2018). Philippine biofuels situation and outlook. USDA Foreign Agricultural Service Global Agricultural Information Network Report Number RP 1840.

  2. Aditiya, H. B., Mahlia, T. M. I., Chong, W. T., Nur, H., & Sebayang, A. H. (2016). Second generation bioethanol production: a critical review. Renewable and Sustainable Energy Reviews, 42, 631–653.

    Article  Google Scholar 

  3. Mahboubi, A., Ylitervo, P., Doyen, W., de Wever, H., Molenberghs, B., & Taherzadeh, M. J. (2017). Continuous bioethanol fermentation from wheat straw hydrolysate with high suspended solid content using an immersed flat sheet membrane bioreactor. Bioresource Technology, 241, 296–308.

    Article  CAS  Google Scholar 

  4. Brinchi, L., Cotana, F., Fortunati, E., & Kenny, J. M. (2013). Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohyd Polym., 94(1), 154–169.

    Article  CAS  Google Scholar 

  5. Michelin, M., Ruiz, H. A., Silva, D. P., Ruzene, D. S., Teixeira, J. A., & Polizeli, M. L. T. M. (2014). Cellulose from lignocellulosic waste. Polysaccharides. 1-33.

  6. Chaturvedi, V., & Verma, P. (2013). An overview of key pretreatment processes employed for bioconversion of lignocellulosic biomass into fuels and value added products. Biotech., 3, 415–431.

    Google Scholar 

  7. Performance of Philippine agriculture April–June 2017. Available from https://psa.gov.ph/content/performance-philippine-agriculture-april-june-2017. Accessed 11 March 2019.

  8. Andrade, L. A., Barrozo, M. A. S., & Vieira, L. G. M. (2016). Thermo-chemical behavior and product formation during pyrolysis of mango seed shell. Industrial Crops and Products, 85, 174–180.

    Article  CAS  Google Scholar 

  9. Orozco, R. S., Hernandez, P. B., Morales, G. R., Nunez, F. U., Villafuerte, J. O., Lugo, V. L., Ramirez, N. F., Diaz, C. E. B., & Vazquez, P. C. (2014). Characterization of lignocellulosic fruit waste as an alternative feedstock for bioethanol production. BioResources., 9(2), 1873–1885.

    Google Scholar 

  10. Torres-Leon, C., Rojas, R., Contreras-Esquivel, J. C., Serna-Cock, L., Belmares-Cerda, R. E., & Aguilar, C. N. (2016). Mango seed: functional and nutritional properties. Trends in Food Science and Technology, 55, 109–117.

    Article  CAS  Google Scholar 

  11. Dalli, S. S., Patel, M., & Rakshit, S. K. (2017). Development and evaluation of poplar hemicellulose prehydrolysate upstream processes for the enhanced fermentative production of xylitol. Biomass Bioenerg., 105, 402–410.

    Article  CAS  Google Scholar 

  12. Pal, S., Mondal, A. K., & Sahoo, D. K. (2016). Molecular strategies for enhancing microbial production of xylitol. Process Biochemistry, 51(7), 809–819.

    Article  CAS  Google Scholar 

  13. Kou, L., Song, Y., Zhang, X., & Tan, T. (2017). Comparison of four types of energy grasses as lignocellulosic feedstock for the production of bioethanol. Bioresource Technology, 241, 424–429.

    Article  CAS  Google Scholar 

  14. Lenihan, P., Orozco, A., O’Neill, E., Ahmad, M. N. M., Rooney, D. W., & Walker, G. M. (2010). Dilute acid hydrolysis of lignocellulosic biomass. Chemical Engineering Journal, 156(2), 395–403.

    Article  CAS  Google Scholar 

  15. Ballesteros, M. (2010). Enzymatic hydrolysis of lignocellulosic biomass. In: Bioalcohol production, 1st edition (Waldron, K.W., ed.), Woodhead Publishing, pp.159–177.

  16. Luo, X., Liu, J., Zheng, P., Li, M., Zhou, Y., Huang, L., Chen, L., & Shuai, L. (2019). Promoting enzymatic hydrolysis of lignocellulosic biomass by inexpensive soy protein. Biotechnology for Biofuels, 12(1), 51.

    Article  Google Scholar 

  17. Yang, B., Dai, Z., Ding, S., & Wyman, C. E. (2011). Enzymatic hydrolysis of cellulosic biomass. Biofuels., 2(4), 421–450.

    Article  CAS  Google Scholar 

  18. Nielsen, S. S. (2009). Phenol-sulfuric acid method for total carbohydrates. In: Food Science Texts Series (Nielsen, S.S., ed.), Springer, Boston.

  19. ASTM D1762-84 (2013). Standard test method for chemical analysis of wood charcoal. ASTM International, West Conshohocken, PA, 2013.

  20. Sluitzer, A., Ruiz, R., Scarlata, C., Sluiter, J., & Templeton, D. (2005). Determination of extractives in biomass (LAP). National Renewable Energy Laboratory, Golden, CO, USA. NREL/TP-510-42619.

  21. Sluitzer, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., & Crocker, D. (2012). Determination of structural carbohydrates and lignin in biomass (LAP). National Renewable Energy Laboratory, Golden, CO, USA. NREL/TP-510-42618.

  22. Trindade, W. G., Hoareau, W., Megiatto, J. D., Razera, I. A. T., Castellan, A., & Frollini, E. (2005). Thermoset phenolic matrices reinforced with unmodified and surface-grafted furfuryl alcohol sugar cane bagasse and curaua fibers: properties of fibers and composites. Biomacromolecules., 6(5), 2485–2496.

    Article  CAS  Google Scholar 

  23. Boonchuay, P., Techapun, C., Leksawasdi, N., Seesuriyachan, P., Hanmoungjai, P., Watanabe, M., Takenaka, S., & Chaiyaso, T. (2018). An integrated process for xylooligosaccharide and bioethanol production from corncob. Bioresource Technology, 256, 399–407.

    Article  CAS  Google Scholar 

  24. Bañuelos, J. A., Velazquez-Hernandez, I., Guerra-Balcazar, M., & Arjona, N. (2018). Production, characterization and evaluation of the energetic capability of bioethanol from Salicornia bigelovii as a renewable energy source. Renewable Energy, 123, 125–134.

    Article  Google Scholar 

  25. Guerrero, A. B., Ballesteros, I., & Ballesteros, M. (2018). The potential of agricultural banana waste for bioethanol production. Fuel., 213, 176–185.

    Article  CAS  Google Scholar 

  26. Isikgor, F. H., & Remzi Becer, C. (2015). Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polymer Chemistry, 6(25), 4497–4559.

    Article  CAS  Google Scholar 

  27. Singh, Y. D., Mahanta, P., & Bora, U. (2017). Comprehensive characterization of lignocellulosic biomass through proximate, ultimate, and compositional analysis for bioenergy production. Renewable Energy, 103, 490–500.

    Article  CAS  Google Scholar 

  28. Li, Z., Yu, Y., Sun, J., Li, D., Huang, Y., & Feng, Y. (2016). Effect of extractives on digestibility of cellulose in corn stover with liquid hot water pretreatment. BioResources., 11(1), 54–70.

    CAS  Google Scholar 

  29. Perez-Arevalo, J. J., Callejon-Ferre, A. J., Velazquez-Marti, B., & Suarez-Medina, M. D. (2015). Prediction models based on higher heating value from the elemental analysis of neem, mango, avocado, banana, and carob trees in Guayas (Ecuador). J Renew Sustain Ener., 7(5), 053122.

    Article  Google Scholar 

  30. Demirbas, A. (2017). Higher heating values of lignin types from wood and non-wood lignocellulosic biomasses. Energ Source Part A., 39(6), 592–598.

    Article  CAS  Google Scholar 

  31. Kumar, P., Barrett, D. M., Delwiche, M. J., & Stroeve, P. (2009). Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Industrial and Engineering Chemistry Research, 48(8), 3713–3729.

    Article  CAS  Google Scholar 

  32. Lima, C. S. S., Conceicao, M. M., Silva, F. L. H., Lima, E. E., Conrado, L. S., & Leao, D. A. S. (2013). Characterization of acid hydrolysis of sisal. Applied Energy., 102, 254–259.

    Article  CAS  Google Scholar 

  33. Xavier, F. D., Bezerra, G. S., Santos, S. F. M., Oliveira, L. S. C., Silva, F. L. H., Silva, A. J. O., & Conceicao, M. M. (2017). Evaluation of the simultaneous production of xylitol and ethanol from sisal fiber. Biomolecules., 8, 2.

    Article  Google Scholar 

  34. Zabed, H., Sahu, J. N., Suely, A., Boyce, A. N., & Faruq, G. (2017). Bioethanol production from renewable sources: current perspectives and technological progress. Renewable and Sustainable Energy Reviews, 71, 475–501.

    Article  CAS  Google Scholar 

  35. Zahed, O., Jouzani, G. S., Abbasalizadeh, S., Khodaiyan, F., & Tabatabaei, M. (2015). Continuous co-production of ethanol and xylitol from rice straw hydrolysate in a membrane bioreactor. Folia Microbiologica, 61, 179–189.

    Article  Google Scholar 

  36. Yang, J., Kim, J. E., Kim, J. K., Lee, S., Yu, J., & Kim, K. H. (2017). Evaluation of commercial cellulase preparations for the efficient hydrolysis of hydrothermally pretreated empty fruit bunches. BioResources., 12(4), 7834–7840.

    Article  CAS  Google Scholar 

  37. Silvello, M. A. C., Martinez, J., & Goldbeck, R. (2018). Increase of reducing sugars release by enzymatic hydrolysis of sugarcane bagasse intensified by ultrasonic treatment. Biomass Bioenerg., 122, 481–489.

    Article  Google Scholar 

  38. Pengilly, C., Garcia-Aparicio, M. P., Diedericks, D., Brienzo, M., & Gorgens, J. F. (2015). Enzymatic hydrolysis of steam-pretreated sweet sorghum bagasse by combinations of cellulase and endo-xylanase. Fuel., 154, 352–360.

    Article  CAS  Google Scholar 

  39. Azhar, S. H. M., Abdulla, R., Jambo, S. A., Marbawi, H., Gansau, J. A., Faik, A. A. M., & Rodrigues, K. F. (2017). Yeasts in sustainable bioethanol production: a review. BB Reports., 10, 52–61.

    Google Scholar 

  40. Shahbazi, A., & Zhang, B. (2010). Dilute and concentrated acid hydrolysis of lignocellulosic biomass. In: Bioalcohol production, 1st edition (Waldron, K.W., ed.). Woodhead Publishing, pp. 143–158.

  41. Gao, Y., Xu, J., Yuan, Z., Zhang, Y., Liu, Y., & Liang, C. (2014). Optimization of fed-batch enzymatic hydrolysis from alkali-pretreated sugarcane bagasse for high-concentration sugar production. Bioresource Technology, 167, 41–45.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are genuinely indebted to the Department of Science and Technology—Engineering Research and Development for Technology (ERDT) for F.D.C.S.’s scholarship and research grant. Likewise, Novozyme A/S, Denmark is acknowledged for the enzyme samples. The authors would also like to recognize Ms. Pearly Jane Mendoza and Mr. Marvin Comendador for invaluable assistance during the conduct of this research.

Funding

This work was supported by the Department of Science and Technology—Engineering Research and Development for Technology (ERDT) program through the scholarship granted to F.D.C.S.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: F.D.C.S., C.F.Y.L., and E.B.T. Methodology: F.D.C.S. Formal analysis and investigation: F.D.C.S. Writing—original draft preparation: F.D.C.S. Writing—review and editing: F.D.C.S., C.F.Y.L., and E.B.T. Funding acquisition: F.D.C.S., C.F.Y.L., and E.B.T. Resources: F.D.C.S., C.F.Y.L., and E.B.T. Supervision: F.D.C.S., C.F.Y.L., and E.B.T. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Francis Dave C. Siacor.

Ethics declarations

Competing Interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Mango seed husk as a lignocellulosic material is a potential feedstock for bioethanol production.

• Chemical and enzyme-assisted pretreatment of mango seed husk generated sugar-rich hydrolysates.

• Dilute acid pretreatment using 4% H2SO4 at 95 °C for 1 h produces sugar-rich hydrolysates with minimum inhibitor content.

• Enzyme hydrolysis using a cellulase mixture at 50 °C for up to 72 h resulted in a hydrolysate having optimal sugar concentration.

• The combination of both dilute acid and enzymatic hydrolysis in the pretreatment process of mango seed husks significantly increased the sugar concentration of the resulting hydrolysates.

The presenting author in ACB2019 is F.D.C.S.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siacor, F.D.C., Lobarbio, C.F.Y. & Taboada, E.B. Pretreatment of Mango (Mangifera indica L. Anacardiaceae) Seed Husk for Bioethanol Production by Dilute Acid Treatment and Enzymatic Hydrolysis. Appl Biochem Biotechnol 193, 1338–1350 (2021). https://doi.org/10.1007/s12010-020-03387-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03387-7

Keywords

Navigation