Skip to main content
Log in

Microwave-assisted dilute acid pretreatment of different agricultural bioresources for fermentable sugar production

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Microwave-assisted pretreatment can be used for fermentable sugar production from lignocellulosic biomass. In this study, the optimum hydrolysis conditions of barley husk, oat husk, wheat bran, and rye bran were determined in power level, treatment time, solid-to-liquid ratio and dilute acid ratio as follows: 700 W, 6.92 min, 1:18.26 w/v, and 3.67% for barley husk, 600 W, 6.96 min, 1:17.22 w/v, and 3.47% for oat husk, 600 W, 6.92 min, 1:16.69 w/v, and 1.85% for wheat bran, and 460 W, 6.15 min, 1:17.14 w/v, and 2.72% for rye bran. The fermentable sugar concentrations were 37.21 (0.68 g/g), 38.84 (0.67 g/g), 49.65 (0.83 g/g), and 36.27 g/L (0.62 g/g) under optimum conditions, respectively. The results showed that microwave-assisted pretreatment is a promising technology which can be successfully implemented for the hydrolysis of lignocellulosic biomass for high sugar yield. On the other hand, hydrolysates included some inhibitors such as organic acids, furans, and phenolic compounds. Lignocellulosic biomass used in this study can be employed as good feedstocks for value-added product production in the fermentation process, after the inhibitors have been detoxified/removed with different detoxification methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bledzki AK, Mamun AA, Volk J (2010) Barley husk and coconut shell reinforced polypropylene composites: the effect of fibre physical, chemical and surface properties. Compos Sci Technol 70:840–846

    Article  CAS  Google Scholar 

  • Chai T, Draxler RR (2014) Root mean square error (RMSE) or mean absolute error (MAE)?–Arguments against avoiding RMSE in the literature. Geosci Model Dev 7:1247–1250

    Article  Google Scholar 

  • Chaud LCS, Silva DDVd, Mattos RTd, Felipe MdGdA (2012) Evaluation of oat hull hemicellulosic hydrolysate fermentability employing Pichia stipitis. Braz Arch Biol Technol 55:771–777

    Article  CAS  Google Scholar 

  • Chen WH, Tu YJ, Sheen HK (2011) Distruption of sugarcane bagasse lignocellulose structure by means of dilute sulfuric acid pretreatment with microwave-assisted heating. Appl Energy 88:2726–2734

    Article  CAS  Google Scholar 

  • Chen WH, Ye SC, Sheen HK (2012) Hydrolysis characteristic of sugarcane bagasse pretreated by dilute acid solution in a microwve irridiation environment. Appl Energy 93:237–244

    Article  CAS  Google Scholar 

  • Cruz JM, Moldes AB, Bustos G, Torrado A, Domínguez JM (2007) Integral utilisation of barley husk for the production of food additives. J Sci Food Agric 87:1000–1008

    Article  CAS  Google Scholar 

  • Falck P, Aronsson A, Grey C, Stålbrand H, Karlsson EN, Adlercreutz P (2014) Production of arabinoxylan-oligosaccharide mixtures of varying composition from rye bran by a combination of process conditions and type of xylanase. Bioresour Technol 174:118–125

    Article  CAS  Google Scholar 

  • FAOSTAT (2016) http://faostat3.fao.org/download/Q/QC/E. Accessed 04.Aug.2016

  • Germec M et al (2016a) Ethanol production from rice hull using Pichia stipitis and optimization of acid pretreatment and detoxification processes. Biotechnol Prog 32(4):872–882

    Article  CAS  Google Scholar 

  • Germec M, Tarhan K, Yatmaz E, Tetik N, Karhan M, Demirci A, Turhan I (2016b) Ultrasound-assisted dilute acid hydrolysis of tea processing waste for production of fermentable sugar. Biotechnol Prog 32(2):393–403

    Article  CAS  Google Scholar 

  • Inan H, Turkay O, Akkiris C (2014) Microwave and microwave-alkali effect on barley straw for total sugar yield. Int J Glob Warm 6:212–221

    Article  Google Scholar 

  • Jacquemin L, Mogni A, Zeitoun R, Guinot C, Sablayrolles C, Saulnier L, Pontalier P-Y (2015) Comparison of different twin-screw extraction conditions for the production of arabinoxylans. Carbohydr Polym 116:86–94

    Article  CAS  Google Scholar 

  • Jiang S, Guo N, X-j Li (2016) The saccharification of destarched wheat bran with microwave-assisted acid treatment. Energy Sour A 38:209–213

    Article  CAS  Google Scholar 

  • Kajala I et al (2016) Rye bran as fermentation matrix boosts in situ dextran production by Weissella confusa compared to wheat bran. Appl Microbiol Biotechnol 100:3499–3510

    Article  CAS  Google Scholar 

  • Kamal-Eldin A et al (2009) Physical, microscopic and chemical characterisation of industrial rye and wheat brans from the Nordic countries. Food Nutr Res 53(1):1912. doi:10.3402/fnr.v53i0.1912

    Article  Google Scholar 

  • Köhnke T, Pujolras C, Roubroeks JP, Gatenholm P (2008) The effect of barley husk arabinoxylan adsorption on the properties of cellulose fibres. Cellulose 15:537–546

    Article  Google Scholar 

  • Kumar R, Tabatabaei M, Karimi K, Horvath IS (2016) Recent updates on lignocellulosic biomass derived ethanol-a review. Biofule Res J 9:347–356

    Article  Google Scholar 

  • Li S, Xu S, Liu S, Yang C, Lu Q (2004) Fast pyrolysis of biomass in free-fall reactor for hydrogen-rich gas. Fuel Process Technol 85:1201–1211

    Article  CAS  Google Scholar 

  • Li H, Qu Y, Yang Y, Chang S, Xu J (2016) Microwave irradiation–A green and efficient way to pretreat biomass. Bioresour Technol 199:34–41

    Article  CAS  Google Scholar 

  • Liu CZ, Cheng XY (2010) Improved hydrogen production via thermofilic fermentation of corn stover by microwave-assisted acid pretreatment. Int J Hydrog Energy 35:8945–8952

    Article  CAS  Google Scholar 

  • Loow Y-L, Wu TY, Jahim JM, Mohammad AW, Teoh WH (2016a) Typical conversion of lignocellulosic biomass into reducing sugars using dilute acid hydrolysis and alkaline pretreatment. Cellulose 23:1491–1520

    Article  CAS  Google Scholar 

  • Loow Y-L, Wu TY, Yang GH, Jahim JM, Teoh WH, Mohammad AW (2016b) Role of energy irradiation in aiding pretreatment of lignocellulosic biomass for improving reducing sugar recovery. Cellulose 23:2761–2789

    Article  CAS  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  • Mussatto SI, Roberto IC (2004) Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes: a review. Bioresour Technol 93:1–10

    Article  CAS  Google Scholar 

  • Palmarola-Adrados B, Galbe M, Zacchi G (2005) Pretreatment of barley husk for bioethanol production. J Chem Technol Biotechnol 80:85–91

    Article  CAS  Google Scholar 

  • Pienkos PT, Zhang M (2009) Role of pretreatment and conditioning processes on toxicity of lignocellulosic biomass hydrolysates. Cellulose 16:743–762

    Article  CAS  Google Scholar 

  • Ravindran R, Jaiswal AK (2016) A comprehensive review on pre-treatment strategy for lignocellulosic food industry waste: challenges and opportunities. Bioresour Technol 199:92–102

    Article  CAS  Google Scholar 

  • Ruiling S, Jilin D, Zhangcun W (2006) The study of the microwave-assisted extraction of naked oat bran β-glucan. Chin Agric Sci Bull 10:075

    Google Scholar 

  • Serna-Saldivar SO (2016) Cereal grains: properties, processing, and nutritional attributes, chap 1. CRC, Baca Raton, FL, pp 4–7

    Google Scholar 

  • Singh R, Shukla A, Tiwari S, Srivastava M (2014) A review on delignification of lignocellulosic biomass for enhancement of ethanol production potential. Renew Sustain Energy Rev 32:713–728

    Article  CAS  Google Scholar 

  • Singleton VL, Orthofer R, Lamuela-Raventos RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol 299:152–178

    Article  CAS  Google Scholar 

  • Sipponen MH, Pastinen OA, Strengell R, Hyötyläinen JM, Heiskanen IT, Laakso S (2010) Increased water resistance of CTMP fibers by oat (Avena sativa L.) husk lignin. Biomacromolecules 11:3511–3518

    Article  CAS  Google Scholar 

  • Sluiter A et al. (2008) Determination of total solids in biomass and total dissolved solids in liquid process samples. National Renewable Energy Laboratory Technical Report No. NREL/TP-510-42621:1–6

  • Wang W, Klopfenstein C (1993) Effect of twin-screw extrusion on the nutritional quality of wheat, barley, and oats. Cereal Chem 70(6):712–715

    CAS  Google Scholar 

  • Welch RW, Hayward MV, Jones DIH (1983) The composition of oat husk and its variation due to genetic and other factors. J Sci Food Agric 34:417–426

    Article  Google Scholar 

  • Wood IP, Cook NM, Wilson DR, Ryden P, Robertson JA, Waldron KW (2016) Ethanol from a biorefinery waste stream: saccharification of amylase, protease and xylanase treated wheat bran. Food Chem 198:125–131

    Article  CAS  Google Scholar 

  • Zhang Z, Vancov V, Mackintosh S, Basu B, Lali A, Qian G, Hubson P, Doherty WOS (2016) Assesing dilute acid pretreatment of different lignocellulosic biomasses for enhanced sugar production. Cellulose 23:3771–3783

    Article  CAS  Google Scholar 

Download references

Acknowldgments

This study was supported by the Akdeniz University Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irfan Turhan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Germec, M., Demirel, F., Tas, N. et al. Microwave-assisted dilute acid pretreatment of different agricultural bioresources for fermentable sugar production. Cellulose 24, 4337–4353 (2017). https://doi.org/10.1007/s10570-017-1408-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-017-1408-5

Keywords

Navigation