Skip to main content
Log in

Awakening the Secondary Metabolite Pathways of Promicromonospora kermanensis Using Physicochemical and Biological Elicitors

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The drug discovery rate is dramatically decreasing due to the rediscovery of known compounds. Genome mining approaches have revealed that a large portion of the actinobacterial genome that encodes bioactive metabolites is cryptic and not expressed under standard lab conditions. In the present study, we aimed to induce antibiotic encoding biosynthetic genes in a member of Micrococcales as a new species of Promicromonospora, Promicromonospora kermanensis, by chemical and biological elicitors as it was considered to produce numerous valuable bioactive metabolites based on the whole genome results. Induction has been done via chemical (antibiotics, histone deacetylase inhibitors (HDAIs), rare earth elements (REEs), fatty acid synthesis inhibitors, and extreme pH changes) and biological elicitors (live and dead Gram-positive and negative bacteria). The results showed that valproic acid (as HDAIs), DMSO, lanthanum chloride (as REE), triclosan (as fatty acid synthesis inhibitors), alkaline pH, and supernatant of Pseudomonas aeruginosa UTMC 1404 culture could act as stimuli to provoke antibacterial synthetic pathways in Promicromonospora kermanensis DSM 45485. Moreover, it was revealed that eliciting agents in cell filtrated of P. aeruginosa culture is resistant to detergent, acidic, and basic condition and have amphipathic nature. The inducing effect of alkaline pH on metabolite induction of Actinobacteria was first reported in this study. In the follow-up studies, the induced antibacterial producing clusters can be subjected to the characterization, and the implemented approach in this study can be used for metabolites induction in other selected species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Zaman, S. B., Hussain, M. A., Nye, R., Mehta, V., Mamun, K. T., & Hossain, N. (2017). A review on antibiotic resistance: alarm bells are ringing. Cureus, 9(6), 1403.

  2. O’Neil, J. (2014). Antimicrobial resistance: tackling a crisis for the health and wealth of nations. Review on Antimicrobial Resistance, 20, 1–16.

    Google Scholar 

  3. Wink, J., Mohammadipanah, F., & Hamedi, J (2017). Biology and biotechnology of actinobacteria. Springer, Berlin.

  4. Genilloud, O. (2019). Natural products discovery and potential for new antibiotics. Current Opinion in Microbiology, 51, 81–87.

    Article  CAS  Google Scholar 

  5. Mohamed, A., Nguyen, C. H., & Mamitsuka, H. (2015). Current status and prospects of computational resources for natural product dereplication: a review. Briefings in Bioinformatics, 17(2), 309–321.

    Article  Google Scholar 

  6. Seyedsayamdost, M. R. (2014). High-throughput platform for the discovery of elicitors of silent bacterial gene clusters. Proceedings of the National Academy of Sciences, 111(20), 7266–7271.

    Article  CAS  Google Scholar 

  7. Romano, S., Jackson, S. A., Patry, S., & Dobson, A. D. (2018). Extending the “one strain many compounds”(OSMAC) principle to marine microorganisms. Marine Drugs, 16(7), 244.

    Article  Google Scholar 

  8. Baltz, R. H. (2016). Genetic manipulation of secondary metabolite biosynthesis for improved production in Streptomyces and other actinomycetes. Journal of Industrial Microbiology & Biotechnology, 43(2-3), 343–370.

    Article  CAS  Google Scholar 

  9. Hug, J. J., Bader, C. D., Remškar, M., Cirnski, K., & Müller, R. (2018). Concepts and methods to access novel antibiotics from actinomycetes. Antibiotics, 7(2), 44.

    Article  Google Scholar 

  10. Bode, H. B., Bethe, B., Höfs, R., & Zeeck, A. (2002). Big effects from small changes: possible ways to explore nature's chemical diversity. ChemBioChem, 3(7), 619–627.

    Article  CAS  Google Scholar 

  11. Covington, B. C., Spraggins, J. M., Ynigez-Gutierrez, A. E., Hylton, Z. B., & Bachmann, B. O. (2018). Response of hypogean actinobacterial genera secondary metabolism to chemical and biological stimuli. Applied and Environmental Microbiology, 84(19), e01125–18.

  12. Tawfike, A., Attia, E. Z., Desoukey, S. Y., Hajjar, D., Makki, A. A., Schupp, P. J., Edrada-Ebel, R., & Abdelmohsen, U. R. (2019). New bioactive metabolites from the elicited marine sponge-derived bacterium Actinokineospora spheciospongiae sp. nov. AMB Express, 9(1), 12.

    Article  Google Scholar 

  13. Van der Meij, A., Willemse, J., Schneijderberg, M. A., Geurts, R., Raaijmakers, J. M., & van Wezel, G. P. (2018). Inter-and intracellular colonization of Arabidopsis roots by endophytic actinobacteria and the impact of plant hormones on their antimicrobial activity. Antonie Van Leeuwenhoek, 111(5), 679–690.

    Article  Google Scholar 

  14. Takano, E. (2006). γ-Butyrolactones: Streptomyces signalling molecules regulating antibiotic production and differentiation. Current Opinion in Microbiology, 9(3), 287–294.

    Article  CAS  Google Scholar 

  15. Haferburg, G., & Kothe, E. (2013). Activation of silent genes in actinobacteria by exploiting metal stress, Actinobacteria. Application in bioremediation and production of industrial enzymes (pp. 56–73). Boca Raton: CRC Press.

    Google Scholar 

  16. Xu, D., Han, L., Li, C., Cao, Q., Zhu, D., Barrett, N. H., Harmody, D., Chen, J., Zhu, H., & McCarthy, P. J. (2018). Bioprospecting deep-sea actinobacteria for novel anti-infective natural products. Frontiers in Microbiology, 9, 787.

    Article  Google Scholar 

  17. Kim, Y. J., Song, J. Y., Moon, M. H., Smith, C. P., Hong, S.-K., & Chang, Y. K. (2007). pH shock induces overexpression of regulatory and biosynthetic genes for actinorhodin production in Streptomyces coelicolor A3 (2). Applied Microbiology and Biotechnology, 76(5), 1119–1130.

    Article  CAS  Google Scholar 

  18. Hassan, S. S. u., Jin, H.-Z., Abu-Izneid, T., Rauf, A., Ishaq, M., & Suleria, H. A. R. (2019). Stress-driven discovery in the natural products: A gateway towards new drugs. Biomedicine & Pharmacotherapy, 109, 459–467.

    Article  Google Scholar 

  19. Moore, J. M., Bradshaw, E., Seipke, R. F., Hutchings, M. I., & McArthur, M. (2012). Use and discovery of chemical elicitors that stimulate biosynthetic gene clusters in Streptomyces bacteria. Methods in Enzymology. Elsevier, 517, 367–385.

  20. Ochi, K., & Hosaka, T. (2013). New strategies for drug discovery: Activation of silent or weakly expressed microbial gene clusters. Applied Microbiology and Biotechnology, 97(1), 87–98.

    Article  CAS  Google Scholar 

  21. So, A. G., & Davie, E. W. (1964). The effects of organic solvents on protein biosynthesis and their influence on the amino acid code. Biochemistry, 3(8), 1165–1169.

    Article  CAS  Google Scholar 

  22. Chen, G., Li, X., Waters, B., & Davies, J. (2000). Enhanced production of microbial metabolites in the presence of dimethyl sulfoxide. The Journal of Antibiotics, 53(10), 1145–1153.

    Article  CAS  Google Scholar 

  23. Zhu, L.-W., Zhong, J.-J., & Tang, Y.-J. (2008). Significance of fungal elicitors on the production of ganoderic acid and Ganoderma polysaccharides by the submerged culture of medicinal mushroom Ganoderma lucidum. Process Biochemistry, 43(12), 1359–1370.

    Article  CAS  Google Scholar 

  24. Antoraz, S., Santamaría, R. I., Díaz, M., Sanz, D., & Rodríguez, H. (2015). Toward a new focus in antibiotic and drug discovery from the Streptomyces arsenal. Frontiers in Microbiology, 6, 461.

    Article  Google Scholar 

  25. Sidda, J. D., & Corre, C. (2012). Gamma-butyrolactone and furan signaling systems in Streptomyces. Methods in Enzymology. Elsevier, 517, 71–87.

  26. Garg, N., Manchanda, G., & Kumar, A. (2014). Bacterial quorum sensing: circuits and applications. Antonie Van Leeuwenhoek, 105(2), 289–305.

    Article  Google Scholar 

  27. Tanaka, Y., Izawa, M., Hiraga, Y., Misaki, Y., Watanabe, T., & Ochi, K. (2017). Metabolic perturbation to enhance polyketide and nonribosomal peptide antibiotic production using triclosan and ribosome-targeting drugs. Applied Microbiology and Biotechnology, 101(11), 4417–4431.

    Article  CAS  Google Scholar 

  28. Mohammadipanah, F., del Carmen Montero-Calasanz, M., Schumann, P., Spröer, C., Rohde, M., & Klenk, H.-P. (2017). Promicromonospora kermanensis sp. nov., an actinobacterium isolated from soil. International Journal of Systematic and Evolutionary Microbiology, 67(2), 262–267.

    Article  CAS  Google Scholar 

  29. Okada, B. K., Wu, Y., Mao, D., Bushin, L. B., & Seyedsayamdost, M. R. (2016). Mapping the trimethoprim-induced secondary metabolome of Burkholderia thailandensis. ACS Chemical Biology, 11(8), 2124–2130.

    Article  CAS  Google Scholar 

  30. Craney, A., Ozimok, C., Pimentel-Elardo, S. M., Capretta, A., & Nodwell, J. R. (2012). Chemical perturbation of secondary metabolism demonstrates important links to primary metabolism. Chemistry & Biology, 19(8), 1020–1027.

    Article  CAS  Google Scholar 

  31. Olano, C., Lombo, F., Méndez, C., & Salas, J. A. (2008). Improving production of bioactive secondary metabolites in actinomycetes by metabolic engineering. Metabolic Engineering, 10(5), 281–292.

    Article  CAS  Google Scholar 

  32. Patterson, G. M., & Bolis, C. M. (1997). Fungal cell wall polysaccharides elicit an antifungal secondary metabolite (phytoalexin) in the cyanobacterium scytonema ocelutum 2. Journal of Phycology, 33(1), 54–60.

    Article  CAS  Google Scholar 

  33. Fisch, K., Gillaspy, A., Gipson, M., Henrikson, J., Hoover, A., Jackson, L., Najar, F., Wägele, H., & Cichewicz, R. (2009). Chemical induction of silent biosynthetic pathway transcription in Aspergillus niger. Journal of Industrial Microbiology & Biotechnology, 36(9), 1199–1213.

    Article  CAS  Google Scholar 

  34. Bok, J. W., Chiang, Y.-M., Szewczyk, E., Reyes-Dominguez, Y., Davidson, A. D., Sanchez, J. F., Lo, H.-C., Watanabe, K., Strauss, J., & Oakley, B. R. (2009). Chromatin-level regulation of biosynthetic gene clusters. Nature Chemical Biology, 5(7), 462–464.

    Article  CAS  Google Scholar 

  35. Tyurin, A. P., Alferova, V. A., & Korshun, V. A. (2018). Chemical elicitors of antibiotic biosynthesis in actinomycetes. Microorganisms, 6(2), 52.

    Article  Google Scholar 

  36. Song, L., Barona-Gomez, F., Corre, C., Xiang, L., Udwary, D. W., Austin, M. B., Noel, J. P., Moore, B. S., & Challis, G. L. (2006). Type III polyketide synthase β-ketoacyl-ACP starter unit and ethylmalonyl-CoA extender unit selectivity discovered by Streptomyces coelicolor genome mining. Journal of the American Chemical Society, 128(46), 0.14754–0.14755.

    Article  Google Scholar 

  37. Bentley, S. D., Chater, K. F., Cerdeño-Tárraga, A.-M., Challis, G. L., Thomson, N., James, K. D., Harris, D. E., Quail, M. A., Kieser, H., & Harper, D. (2002). Complete genome sequence of the model actinomycete Streptomyces coelicolor A3 (2). Nature, 417(6885), 141–147.

    Article  Google Scholar 

  38. Pettit, R. K. (2011). Small-molecule elicitation of microbial secondary metabolites. Microbial Biotechnology, 4(4), 471–478.

    Article  CAS  Google Scholar 

  39. Kawai, K., Wang, G., Okamoto, S., & Ochi, K. (2007). The rare earth, scandium, causes antibiotic overproduction in Streptomyces spp. FEMS Microbiology Letters, 274(2), 311–315.

    Article  CAS  Google Scholar 

  40. Tanaka, Y., Hosaka, T., & Ochi, K. (2010). Rare earth elements activate the secondary metabolite–biosynthetic gene clusters in Streptomyces coelicolor A3 (2). The Journal of Antibiotics, 63(8), 477–481.

    Article  CAS  Google Scholar 

  41. Hayes, A., Hobbs, G., Smith, C. P., Oliver, S. G., & Butler, P. R. (1997). Environmental signals triggering methylenomycin production by Streptomyces coelicolor A3 (2). Journal of Bacteriology, 179(17), 5511–5515.

    Article  CAS  Google Scholar 

  42. Horinouchi, S. (2003). AfsR as an integrator of signals that are sensed by multiple serine/threonine kinases in Streptomyces coelicolor A3 (2). Journal of Industrial Microbiology and Biotechnology, 30(8), 462–467.

    Article  CAS  Google Scholar 

  43. Mohammadipanah, F, & Zamanzadeh, M. (2019). Bacterial mechanisms promoting the tolerance to drought stress in plants, In secondary metabolites of plant growth promoting Rhizomicroorganisms (Harikesh Bahadur Singh H. B., Keswani C., Reddy M. S., Sansinenea E. & García-Estrada C.), Springer, Singapore, pp.185–224.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatemeh Mohammadipanah.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 2231 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadipanah, F., Kermani, F. & Salimi, F. Awakening the Secondary Metabolite Pathways of Promicromonospora kermanensis Using Physicochemical and Biological Elicitors. Appl Biochem Biotechnol 192, 1224–1237 (2020). https://doi.org/10.1007/s12010-020-03361-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03361-3

Keywords

Navigation