Skip to main content
Log in

A Fiber Optic Biosensor Based on Hydrogel-Immobilized Enzyme Complex for Continuous Determination of Cholesterol and Glucose

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A multiparameter fiber optic biosensor for continuous determination of cholesterol and glucose was developed. This sensor was based on poly(N-isopropylacrylamide) (PNIPAAm)-immobilized glucose oxidase (GOx) complex (PIGC) and immobilized cholesterol oxidase (COD). The immobilized COD catalysis to the oxidation of cholesterol and PIGC catalysis to the oxidation of glucose could be performed at different temperatures. Therefore, the sensor could detect cholesterol and glucose continuously by changing temperature. The optimal detection conditions for glucose were achieved with pH 6.5, 30 °C, and 10 mg GOx (in 100-mg carrier), and those for cholesterol were achieved with pH 7.5, 33 °C, and 25 mg COD (in 250-mg carrier). The sensor has the cholesterol detection range of 20–250 mg/dL and the glucose detection range of 50–700 mg/dL. This biosensor has outstanding repeatability and selectivity, and the detection results of the practical samples are satisfactory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lu, P., Yu, J., Lei, Y., Lu, S., Wang, C., Liu, D., & Guo, Q. (2015). Synthesis and characterization of nickel oxide hollow spheres-reduced graphene oxide-nafion composite and its biosensing for glucose. Sensors and Actuators B: Chemical, 208(208), 90–98. https://doi.org/10.1016/j.snb.2014.10.140.

    Article  CAS  Google Scholar 

  2. Basu, A. K., Chattopadhyay, P., Roychoudhuri, U., & Chakraborty, R. (2007). Development of cholesterol biosensor based on immobilized cholesterol esterase and cholesterol oxidase on oxygen electrode for the determination of total cholesterol in food samples. Bioelectrochemistry, 70(2), 375–379. https://doi.org/10.1016/j.bioelechem.2006.05.006.

    Article  CAS  PubMed  Google Scholar 

  3. Hayek, T., Kaplan, M., Kerry, R., & Aviram, M. (2007). Macrophage NADPH oxidase activation, impaired cholesterol fluxes, and increased cholesterol biosynthesis in diabetic mice: a stimulatory role for d-glucose. Atherosclerosis, 195(2), 277–286. https://doi.org/10.1016/j.atherosclerosis.2006.12.026.

    Article  CAS  PubMed  Google Scholar 

  4. Song, S., Sun, L., Yuan, L., Sun, T., Zhao, Y., Zuo, W., Cong, Y., Li, X., & Wang, J. (2008). Method to determine enantiomeric excess of glucose by nonchiral high-performance liquid chromatography using circular dichroism detection. Journal of Chromatography. A, 1179(2), 125–130. https://doi.org/10.1016/j.chroma.2007.11.092.

    Article  CAS  PubMed  Google Scholar 

  5. Sato, T., Katayama, K., Arai, T., Sako, T., & Tazaki, H. (2008). Simultaneous determination of serum mannose and glucose concentrations in dog serum using high performance liquid chromatography. Research in Veterinary Science, 84(1), 26–29. https://doi.org/10.1016/j.rvsc.2007.03.002.

    Article  CAS  PubMed  Google Scholar 

  6. Daneshfar, A., Khezeli, T., & Lotfi, H. J. (2009). Determination of cholesterol in food samples using dispersive liquid–liquid microextraction followed by HPLC–UV. Journal of Chromatography B, 877(4), 456–460. https://doi.org/10.1016/j.jchromb.2008.12.050.

    Article  CAS  Google Scholar 

  7. Ahn, J., Jeong, I., Kwak, B., Leem, D., Yoon, T., Yoon, C., Jeong, J., Park, J., & Kim, J. (2012). Rapid determination of cholesterol in milk containing emulsified foods. Food Chemistry, 135(4), 2411–2417. https://doi.org/10.1016/j.foodchem.2012.07.060.

    Article  CAS  PubMed  Google Scholar 

  8. Matsui, Y., Hamamoto, K., Kitazumi, Y., Shirai, O., & Kano, K. (2017). Diffusion-controlled mediated electron transfer-type bioelectrocatalysis using microband electrodes as ultimate amperometric glucose sensors. Analytical Sciences, 33(7), 845–851. https://doi.org/10.2116/analsci.33.845.

    Article  CAS  PubMed  Google Scholar 

  9. Lu, P., Liu, Q. B., Xiong, Y. Z., Wang, Q., Lei, Y. T., Lu, S. J., Lu, L. W., & Yao, L. (2015). Nanosheets-assembled hierarchical microstructured Ni(OH)2 hollow spheres for highly sensitive enzyme-free glucose sensors. Electrochimica Acta, 168, 148–156. https://doi.org/10.1016/j.electacta.2015.04.003.

    Article  CAS  Google Scholar 

  10. Hall, G. F., & Turnler, A. P. F. (1991). An organic phase enzyme electrode for cholesterol. Analytical Letters, 24(8), 1375–1388. https://doi.org/10.1080/00032719108052978.

    Article  CAS  Google Scholar 

  11. Wang, C. Y., Tan, X. R., Chen, S. H., Hu, F. X., Zhong, H. A., & Zhang, Y. (2012). The construction of glucose biosensor based on platinum nanoclusters—multiwalled carbon nanotubes nanocomposites. Applied Biochemistry and Biotechnology, 166(4), 889–902. https://doi.org/10.1007/s12010-011-9478-6.

    Article  CAS  PubMed  Google Scholar 

  12. Mutyala, S., & Mathiyarasu, J. (2014). Direct electron transfer at a glucose oxidase–chitosan-modified Vulcan carbon paste electrode for electrochemical biosensing of glucose. Applied Biochemistry and Biotechnology, 172(3), 1517–1529. https://doi.org/10.1007/s12010-013-0642-z.

    Article  CAS  PubMed  Google Scholar 

  13. Palod, P. A., Pandey, S. S., Hayase, S., & Singh, V. (2014). Template-assisted electrochemical growth of polypyrrole nanotubes for development of high sensitivity glucose biosensor. Applied Biochemistry and Biotechnology, 174(3), 1059–1072. https://doi.org/10.1007/s12010-014-0988-x.

    Article  CAS  PubMed  Google Scholar 

  14. Barik, M. A., Sarma, M. K., Sarkar, C. R., & Dutta, J. C. (2014). Highly sensitive potassium-doped polypyrrole/carbon nanotube-based enzyme field effect transistor (ENFET) for cholesterol detection. Applied Biochemistry and Biotechnology, 174(3), 1104–1114. https://doi.org/10.1007/s12010-014-1029-5.

    Article  CAS  PubMed  Google Scholar 

  15. Srinivasan, G., Chen, J., Parisi, J., Brückner, C., Yao, X., & Lei, Y. (2015). An injectable PEG-BSA-Coumarin-GOx hydrogel for fluorescence turn-on glucose detection. Applied Biochemistry and Biotechnology, 177(5), 1115–1126. https://doi.org/10.1007/s12010-015-1800-2.

    Article  CAS  PubMed  Google Scholar 

  16. Chang, G., Tatsu, Y., Goto, T., Imaishi, H., & Morigaki, K. (2010). Glucose concentration determination based on silica sol–gel encapsulated glucose oxidase optical biosensor arrays. Talanta, 83(1), 61–65. https://doi.org/10.1016/j.talanta.2010.08.039.

    Article  CAS  PubMed  Google Scholar 

  17. Nirala, N. R., Abraham, S., Kumar, V., Bansal, A., Srivastava, A., & Saxena, P. S. (2015). Colorimetric detection of cholesterol based on highly efficient peroxidase mimetic activity of graphene quantum dots. Sensors and Actuators B: Chemical, 218, 42–50. https://doi.org/10.1016/j.snb.2015.04.091.

    Article  CAS  Google Scholar 

  18. Wu, X. J., & Choi, M. M. F. (2003). Hydrogel network entrapping cholesterol oxidase and octadecylsilica for optical biosensing in hydrophobic organic or aqueous micelle solvents. Analytical Chemistry, 75(3), 4019–4027. https://doi.org/10.1021/ac020736+.

    Article  CAS  PubMed  Google Scholar 

  19. Chung, H., Arnold, M. A., Rhiel, M., & Murhammer, D. W. (1995). Simultaneous measurement of glucose and glutamine in aqueous solutions by near infrared spectroscopy. Applied Biochemistry and Biotechnology, 50(2), 109–125. https://doi.org/10.1007/BF02783448.

    Article  CAS  PubMed  Google Scholar 

  20. Huang, Q. L., An, Y. R., Tang, L. L., Jiang, X. L., Chen, H., Bi, W. J., Wang, Z. C., & Zhang, W. (2011). A dual enzymatic-biosensor for simultaneous determination of glucose and cholesterol in serum and peritoneal macrophages of diabetic mice: evaluation of the diabetes-accelerated atherosclerosis risk. Analytica Chimica Acta, 707(1–2), 135–141. https://doi.org/10.1016/j.aca.2011.09.003.

    Article  CAS  PubMed  Google Scholar 

  21. Wolfbeis, O. S. (2006). Fiber-optic chemical sensors and biosensors. Analytical Chemistry, 78(12), 3859–3874.

    Article  CAS  PubMed  Google Scholar 

  22. Qiu, Y., & Park, K. (2001). Environment-sensitive hydrogels for drug delivery. Advanced Drug Delivery Reviews, 53(3), 321–339. https://doi.org/10.1016/S0169-409X(01)00203-4.

    Article  CAS  PubMed  Google Scholar 

  23. Wang, B., Xu, X. D., Wang, Z. C., Cheng, S. X., Zhang, X. Z., & Zhuo, R. X. (2008). Synthesis and properties of pH and temperature sensitive P(NIPAAm-co-DMAEMA) hydrogels. Colloids and Surfaces, B: Biointerfaces, 64(1), 34–41. https://doi.org/10.1016/j.colsurfb.2008.01.001.

    Article  CAS  PubMed  Google Scholar 

  24. Satarkar, N. S., & Hilt, J. Z. (2008). Hydrogel nanocomposites as remote-controlled biomaterials. Acta Biomaterialia, 4(1), 11–16. https://doi.org/10.1016/j.actbio.2007.07.009.

    Article  CAS  PubMed  Google Scholar 

  25. Zhang, J. T., Keller, T. F., Bhat, R., Garipcan, B., & Jandt, K. D. (2010). A novel two-level microstructured poly(N-isopropylacrylamide) hydrogel for controlled release. Acta Biomaterialia, 6(10), 3890–3898. https://doi.org/10.1016/j.actbio.2010.05.009.

    Article  CAS  PubMed  Google Scholar 

  26. Zhang, X. Z., & Zhuo, R. X. (2001). Dynamic properties of temperature sensitive poly(N-isopropylacrylamide) gel crosslinked through siloxane linkage. Langmuri, 17(1), 12–16. https://doi.org/10.1021/la000170p.

    Article  CAS  Google Scholar 

  27. Huang, J., Li, M. S., Zhang, P. P., Zhang, P. F., & Ding, L. Y. (2016). Temperature controlling fiber optic glucose sensor based on hydrogel-immobilized GOD complex. Sensors and Actuators B: Chemical, 237, 24–27. https://doi.org/10.1016/j.snb.2016.06.062.

    Article  CAS  Google Scholar 

  28. Huang, J., Fang, H., Liu, C., Gu, E. D., & Jiang, D. S. (2008). A novel fiber optic biosensor for the determination of adrenaline based on immobilized laccase catalysis. Analytical Letters, 41(8), 1430–1442. https://doi.org/10.1080/00032710802119525.

    Article  CAS  Google Scholar 

  29. Cifuentes, A., & Marín, E. (2015). Implementation of a field programmable gate array-based lock-in amplifier. Measurement, 69, 31–41. https://doi.org/10.1016/j.measurement.2015.02.037.

    Article  Google Scholar 

  30. Huang, J., Wang, H., Li, D. P., Zhao, W. Q., Ding, L. Y., & Han, Y. (2011). A new immobilized glucose oxidase using SiO2 nanoparticles as carrier. Materials Science and Engineering: C, 31(7), 1374–1378. https://doi.org/10.1016/j.msec.2011.05.003.

    Article  CAS  Google Scholar 

  31. Grembecka, M., Lebiedzińska, A., & Szefer, P. (2014). Simultaneous separation and determination of erythritol, xylitol, sorbitol, mannitol, maltitol, fructose, glucose, sucrose and maltose in food products by high performance liquid chromatography coupled to charged aerosol detector. Microchemical Journal, 117(21), 77–82. https://doi.org/10.1016/j.microc.2014.06.012.

    Article  CAS  Google Scholar 

  32. Zhai, H., Feng, T., Dong, L., Wang, L., Wang, X., Liu, H., Liu, Y., Chen, L., & Xie, M. (2016). Development of dual-emission ratiometric probe-based on fluorescent silica nanoparticle and CdTe quantum dots for determination of glucose in beverages and human body fluids. Food Chemistry, 204, 444–452. https://doi.org/10.1016/j.foodchem.2016.02.159.

    Article  CAS  PubMed  Google Scholar 

  33. Luo, Y., Kong, F. Y., Li, C., Shi, J. J., Lv, W. X., & Wang, W. (2016). One-pot preparation of reduced graphene oxide-carbon nanotube decorated with Au nanoparticles based on protein for non-enzymatic electrochemical sensing of glucose. Sensors and Actuators B: Chemical, 234, 625–632. https://doi.org/10.1016/j.snb.2016.05.046.

    Article  CAS  Google Scholar 

  34. Chaichi, M. J., & Ehsani, M. (2015). A novel glucose sensor based on immobilization of glucose oxidase on the chitosan-coated Fe3O4 nanoparticles and the luminol-H2O2-gold nanoparticle chemiluminescence detection system. Sens. Actuators B, 223, 713–722. https://doi.org/10.1016/j.snb.2015.09.125.

  35. Guo, Z., Li, L., & Shen, H. (1999). Study and analytical application of bromopyrogallol red as a hydrogen donor substrate for peroxidase. Analytica Chimica Acta, 379(1–2), 63–68. https://doi.org/10.1016/S0003-2670(98)00625-4.

    Article  CAS  Google Scholar 

  36. Sun, Q., Fang, S., Fang, Y., Qian, Z., & Feng, H. (2017). Fluorometric detection of cholesterol based on β-cyclodextrin functionalized carbon quantum dots via competitive host-guest recognition. Talanta, 167, 513–519. https://doi.org/10.1016/j.talanta.2017.02.060.

    Article  CAS  PubMed  Google Scholar 

  37. Soylemez, S., Udum, Y. A., Kesik, M., Hızlıateş, C. G., Ergun, Y., & Toppare, L. (2015). Electrochemical and optical properties of a conducting polymer and its use in a novel biosensor for the detection of cholesterol. Sen. Actuators B, 212, 425–433. https://doi.org/10.1016/j.snb.2015.02.045.

    Article  CAS  Google Scholar 

  38. Zhang, M., Yuan, R., Chai, Y., Chen, S., Zhong, H., Wang, C., & Cheng, Y. (2012). A biosensor for cholesterol based on gold nanoparticles-catalyzed luminol electrogenerated chemiluminescence. Biosensors and Biolelectronics, 32(1), 288–292. https://doi.org/10.1016/j.bios.2011.12.008.

    Article  CAS  Google Scholar 

  39. Wu, Y., Ma, Y., Xu, G., Wei, F., Ma, Y., Song, Q., Wang, X., Tang, T., Song, Y., Shi, M., Xu, X., & Hu, Q. (2017). Metal-organic framework coated Fe3O4 magnetic nanoparticles with peroxidase-like activity for colorimetric sensing of cholesterol. Sensors and Actuators B: Chemical, 249, 195–202. https://doi.org/10.1016/j.snb.2017.03.145.

    Article  CAS  Google Scholar 

Download references

Funding

This study was financially supported by National Natural Science Foundation of China (Nos 61575150, 61377092).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liyun Ding or Jun Huang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, H., Li, M., Ding, L. et al. A Fiber Optic Biosensor Based on Hydrogel-Immobilized Enzyme Complex for Continuous Determination of Cholesterol and Glucose. Appl Biochem Biotechnol 187, 1569–1580 (2019). https://doi.org/10.1007/s12010-018-2897-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-018-2897-x

Keywords

Navigation