Skip to main content
Log in

Direct Electron Transfer at a Glucose Oxidase–Chitosan-Modified Vulcan Carbon Paste Electrode for Electrochemical Biosensing of Glucose

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

This article describes the investigation of direct electron transfer (DET) between glucose oxidase (GOD) and the electrode materials in an enzyme-catalyzed reaction for the development of improved bioelectrocatalytic system. The GOD pedestal electrochemical reaction takes place by means of DET in a tailored Vulcan carbon paste electrode surfaces with GOD and chitosan (CS), allowing efficient electron transfer between the electrode and enzyme. The key understanding of the stability, biocatalytic activity, selectivity, and redox properties of these enzyme-based glucose biosensors is studied without using any reagents, and the properties are characterized using electrochemical techniques like cyclic voltammogram, amperometry, and electrochemical impedance spectroscopy. Furthermore, the interaction between the enzyme and the electrode surface is studied using ultraviolet–visible (UV–Vis) and Fourier transform infrared (FTIR) spectroscopy. The present glucose biosensor exhibited better linearity, limit of detection (LOD = 0.37 ± 0.02 mol/L) and a Michaelis–Menten constant of 0.40 ± 0.01 mol/L. The proposed enzyme electrode exhibited excellent sensitivity, selectivity, reproducibility, and stability. This provides a simple “reagent-less” approach and efficient platform for the direct electrochemistry of GOD and developing novel bioelectrocatalytic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 1
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. The Diabetes Control and Complications Trial (DCCT) Research Group. (1993). The New England Journal of Medicine, 329, 977–986.

    Article  Google Scholar 

  2. Sieg, A., Guy, R. H., & Begona Deldago-Charro, M. (2004). Journal of Pharmaceutical Sciences, 50, 1383–1390.

    CAS  Google Scholar 

  3. Sekretaryova, A. N., Vokhmyanina, D. V., Chulanova, T. O., Karyakina, E. E., & Karyakin, A. A. (2012). Analytical Chemistry, 84, 1220–1223.

    Article  CAS  Google Scholar 

  4. Dai, Z., Yan, F., Chen, J., & Ju, H. (2003). Analytical Chemistry, 75, 5429–5434.

    Article  CAS  Google Scholar 

  5. Luo, X., Killard, A. J., & Smyth, M. R. (2006). Electroanalysis, 18, 1131–1134.

    Article  CAS  Google Scholar 

  6. Gortan, L., Karan, H. I., Hale, P. D., Inagaki, T., Okamoto, Y., & Skothim, T. A. (1990). Analytica Chimica Acta, 228, 23–30.

    Article  Google Scholar 

  7. Liu, S., & Ju, H. (2003). Biosensors and Bioelectronics, 19, 177–183.

    Article  CAS  Google Scholar 

  8. Rivas, G. A., Rubianes, M. D., Pedano, M. L., Ferreyra, N. F., Luque, G. L., Rodrguez, M. C., et al. (2007). Electroanalysis, 19, 823–831.

    Article  CAS  Google Scholar 

  9. Wu, S., Ju, X. H., & Liu, Y. (2007). Advanced Functional Materials, 17, 585–592.

    Article  CAS  Google Scholar 

  10. Liu, K. P., Zhang, J. J., Yang, G. H., Wang, C. M., & Zhu, J. J. (2010). Electrochemistry Communications, 12, 402–405.

    Article  CAS  Google Scholar 

  11. Xiao, C. H., Chu, X. C., Wu, B. H., Pang, H. L., Zhang, X. H., & Chen, J. H. (2010). Talanta, 80, 1719–1724.

    Article  CAS  Google Scholar 

  12. Nadzhafova, O., Etienne, M., & Walcarius, A. (2007). Electrochemistry Communications, 9, 1189–1195.

    Article  CAS  Google Scholar 

  13. Wu, H., Wang, J., Kang, X. H., Wang, C. M., Wang, D. H., Liu, J., et al. (2009). Talanta, 80, 403–406.

    Article  CAS  Google Scholar 

  14. Kang, X. H., Wang, J., Wu, H., Aksay, I. A., Liu, J., & Lin, Y. H. (2009). Biosensors and Bioelectronics, 25, 901–905.

    Article  CAS  Google Scholar 

  15. Jia, F., Shan, C. S., Li, F. H., & Niu, L. (2008). Biosensors and Bioelectronics, 24, 945–950.

    Article  CAS  Google Scholar 

  16. Pingarron, J. M., Yanez-Sedeno, P., & Gonzalez-Cortes, A. (2008). Electrochimica Acta, 53, 5848–5866.

    Article  CAS  Google Scholar 

  17. Azamian, B. R., Davis, J. J., Coleman, K. S., Bagshaw, C. B., & Green, M. L. H. (2002). Journal of American Chemical Society, 124, 12664–12665.

    Article  CAS  Google Scholar 

  18. Wen, D., Liu, Y., Yang, G. C., & Dong, S. J. (2007). Electrochimica Acta, 52, 5312–5317.

    Article  CAS  Google Scholar 

  19. Joseph, W., & Mustafa, M. (2003). Analytical Chemistry, 75, 2075–2079.

    Article  Google Scholar 

  20. Shan, C. S., Yang, H. F., Han, D. X., Zhang, Q., Ivaska, A., & Niu, L. (2010). Biosensors and Bioelectronics, 25, 1070–1074.

    Article  CAS  Google Scholar 

  21. Laviron, E. (1979). Journal of Electroanalytical Chemistry, 101, 19–28.

    Article  CAS  Google Scholar 

  22. Shan, C. S., Yang, H. F., Song, J. F., Han, D. X., Ivaska, A., & Niu, L. (2009). Analytical Chemistry, 81, 2378–2382.

    Article  CAS  Google Scholar 

  23. Portaccio, M., Durante, D., & Viggiano, A. (2007). Electroanalysis, 19, 1787–1793.

    Article  CAS  Google Scholar 

  24. Sankararao, M., Anandhakumar, S., & Mathiyarasu, J. (2013). SWOT the electrochemical reactivity of different carbon paste electrodes. Unpublished work.

  25. Chng, E. L. K., & Pumera, M. (2011). Chemistry of Asian Journal, 6, 2304–2307.

    Article  CAS  Google Scholar 

  26. Wang, J., Pamidi, P. V. A., Renschler, C. L., & White, C. (1996). Journal of Electroanalytical Chemistry, 404, 137–142.

    Article  Google Scholar 

  27. Guiseppi-Elie, A., Lei, C. H., & Baughman, R. H. (2002). Nanotechnology, 13, 559–564.

    Article  CAS  Google Scholar 

  28. Cai, C. X., & Chen, J. (2004). Analytical Biochemistry, 332, 75–83.

    Article  CAS  Google Scholar 

  29. Ambrosi, A., & Pumera, M. (2011). Journal of Physical Chemistry C, 115, 25281–25284.

    Article  CAS  Google Scholar 

  30. Pumera, M., Ambrosi, A., & Khim Chng, E. L. (2012). Chemical Science, 3, 3347–3355.

    Article  CAS  Google Scholar 

  31. You, C. P., Xu, X., Tian, B. Z., Kong, J. L., Zhao, D. Y., & Liu, B. H. (2009). Talanta, 78, 705–710.

    Article  CAS  Google Scholar 

  32. You, C. P., Li, X., Zhang, S., Kong, J. L., Zhao, D. Y., & Liu, B. H. (2009). Microchimica Acta, 167, 109–116.

    Article  CAS  Google Scholar 

  33. You, C. P., Li, X., Zhang, S., Kong, J. L., Zhao, D. Y., & Liu, B. H. (2009). Bioelectrochemistry, 74, 246–253.

    Article  Google Scholar 

  34. Yu, J., Yu, D., Zhao, T., & Zeng, B. (2008). Talanta, 74, 1586–1591.

    Article  CAS  Google Scholar 

  35. Periasamy, A. P., Chang, Y. J., & Chen, S. M. (2011). Bioelectrochemistry, 80, 114–120.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support DST/TSG/PT/2009/82 from the Department of Science and Technology, New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayaraman Mathiyarasu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mutyala, S., Mathiyarasu, J. Direct Electron Transfer at a Glucose Oxidase–Chitosan-Modified Vulcan Carbon Paste Electrode for Electrochemical Biosensing of Glucose. Appl Biochem Biotechnol 172, 1517–1529 (2014). https://doi.org/10.1007/s12010-013-0642-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0642-z

Keywords

Navigation