Skip to main content
Log in

Development of Glucose Sensor Using Gold Nanoparticles and Glucose-Oxidase Functionalized Tapered Fiber Structure

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Diabetes mellitus is a common health issue in human beings. It is very important to develop a highly selective and sensitive biosensor for the detection of glucose concentration in the human body. The proposed sensor is based on localized surface plasmon resonance (LSPR) technique. An optical tapered fiber structure is used to develop the proposed sensor. Gold nanoparticles (AuNPs) are used to increase the sensitivity of the sensor probe. AuNPs of size ~ 10 nm is synthesized for this purpose. The characterization of AuNPs was performed with the UV-vis spectroscopy, transmission electron microscope (TEM), and scanning electron microscope (SEM). Further, glucose oxidase enzyme is used to increase the selectivity of the sensor. The selectivity of sensor is tested with different analytes such as cholesterol, urea, L-cysteine, ascorbic acid, and galactose that are generally found in the serum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Cao J, Sun T, Grattan KTV (2014) Gold nanorod-based localized surface plasmon resonance biosensors: a review. Sensors Actuators B Chem 195:332–351. https://doi.org/10.1016/j.snb.2014.01.056

    Article  CAS  Google Scholar 

  2. Hassan HU, Nielsen K, Aasmul S, Bang O (2015) Polymer optical fiber compound parabolic concentrator tip for enhanced coupling efficiency for fluorescence based glucose sensors. Biomed Opt Express 6:5008–5020. https://doi.org/10.1364/BOE.6.005008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Huang J, Li M, Zhang P, Zhang P, Ding L (2016a) Temperature controlling fiber optic glucose sensor based on hydrogel-immobilized GOD complex. Sensors Actuators B Chem 237:24–29. https://doi.org/10.1016/j.snb.2016.06.062

    Article  CAS  Google Scholar 

  4. Huang J, Zhang P, Li M, Zhang P, Ding L (2016b) Complex of hydrogel with magnetic immobilized GOD for temperature controlling fiber optic glucose sensor. Biochem Eng J 114:262–267. https://doi.org/10.1016/j.bej.2016.07.012

    Article  CAS  Google Scholar 

  5. Hwang D-W, Lee S, Seo M, Chung TD (2018) Recent advances in electrochemical non-enzymatic glucose sensors – a review. Anal Chim Acta 1033:1–34. https://doi.org/10.1016/j.aca.2018.05.051

    Article  PubMed  CAS  Google Scholar 

  6. Idris S, Azeman NH, Noor Azmy NA, Ratnam CT, Mahdi MA, Bakar AA (2018) Gamma irradiated Py/PVA for GOx immobilization on tapered optical fiber for glucose biosensing. Sensors Actuators B Chem 273:1404–1412. https://doi.org/10.1016/j.snb.2018.07.053

    Article  CAS  Google Scholar 

  7. Jiang B et al (2018) Label-free glucose biosensor based on enzymatic graphene oxide-functionalized tilted fiber grating. Sensors Actuators B Chem 254:1033–1039. https://doi.org/10.1016/j.snb.2017.07.109

    Article  CAS  Google Scholar 

  8. Kumar S et al (2019) LSPR-based cholesterol biosensor using a tapered optical fiber structure. Biomed Opt Express 10:2150–2160. https://doi.org/10.1364/BOE.10.002150

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Li Y, Ma H, Gan L, Liu Q, Yan Z, Liu D, Sun Q (2018) Immobilized optical fiber microprobe for selective and high sensitive glucose detection. Sensors Actuators B Chem 255:3004–3010. https://doi.org/10.1016/j.snb.2017.09.123

    Article  CAS  Google Scholar 

  10. Lin T-Q, Lu Y-L, Hsu C-C (2010) Fabrication of glucose fiber sensor based on immobilized GOD technique for rapid measurement. Opt Express 18:27560–27566. https://doi.org/10.1364/OE.18.027560

    Article  PubMed  CAS  Google Scholar 

  11. Luo B, Yan Z, Sun Z, Li J, Zhang L (2014) Novel glucose sensor based on enzyme-immobilized 81° tilted fiber grating. Opt Express 22:30571–30578. https://doi.org/10.1364/OE.22.030571

    Article  PubMed  CAS  Google Scholar 

  12. Luo B, Yan Z, Sun Z, Liu Y, Zhao M, Zhang L (2015) Biosensor based on excessively tilted fiber grating in thin-cladding optical fiber for sensitive and selective detection of low glucose concentration. Opt Express 23:32429–32440. https://doi.org/10.1364/OE.23.032429

    Article  PubMed  CAS  Google Scholar 

  13. Maruthupandy M, Rajivgandhi G, Muneeswaran T, Vennila T, Quero F, Song J-M (2019) Chitosan/silver nanocomposites for colorimetric detection of glucose molecules. Int J Biol Macromol 121:822–828. https://doi.org/10.1016/j.ijbiomac.2018.10.063

    Article  PubMed  CAS  Google Scholar 

  14. Novais S, Ferreira CIA, Ferreira MS, Pinto JL (2018) Optical fiber tip sensor for the measurement of glucose aqueous solutions. IEEE Photon J 10:1–9. https://doi.org/10.1109/JPHOT.2018.2869944

    Article  Google Scholar 

  15. Qiu HW et al (2015) A novel graphene-based tapered optical fiber sensor for glucose detection. Appl Surf Sci 329:390–395. https://doi.org/10.1016/j.apsusc.2014.12.093

    Article  CAS  Google Scholar 

  16. Semwal V, Gupta BD (2018) LSPR- and SPR-based fiber-optic cholesterol sensor using immobilization of cholesterol oxidase over silver nanoparticles coated graphene oxide nanosheets. IEEE Sensors J 18:1039–1046. https://doi.org/10.1109/JSEN.2017.2779519

    Article  CAS  Google Scholar 

  17. Shehab M, Ebrahim S, Soliman M (2017) Graphene quantum dots prepared from glucose as optical sensor for glucose. J Lumin 184:110–116. https://doi.org/10.1016/j.jlumin.2016.12.006

    Article  CAS  Google Scholar 

  18. Srivastava SK, Verma R, Gupta BD (2012) Surface plasmon resonance based fiber optic glucose biosensor. In: Asia Pacific Optical Sensors Conference, vol 8351. SPIE, Bellingham

    Google Scholar 

  19. Sun X et al (2018) Non-enzymatic glucose detection based on phenylboronic acid modified optical fibers. Opt Commun 416:32–35. https://doi.org/10.1016/j.optcom.2018.01.064

    Article  CAS  Google Scholar 

  20. Tokuda T et al (2014) CMOS image sensor-based implantable glucose sensor using glucose-responsive fluorescent hydrogel. Biomed Opt Express 5:3859–3870. https://doi.org/10.1364/BOE.5.003859

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Wang Y et al (2017) The woven fiber organic electrochemical transistors based on polypyrrole nanowires/reduced graphene oxide composites for glucose sensing. Biosens Bioelectron 95:138–145. https://doi.org/10.1016/j.bios.2017.04.018

    Article  PubMed  CAS  Google Scholar 

  22. Yin M-J, Huang B, Gao S, Zhang AP, Ye X (2016) Optical fiber LPG biosensor integrated microfluidic chip for ultrasensitive glucose detection. Biomed Opt Express 7:2067–2077. https://doi.org/10.1364/BOE.7.002067

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Yuan Y et al (2017) Investigation for terminal reflection optical fiber SPR glucose sensor and glucose sensitive membrane with immobilized GODs. Opt Express 25:3884–3898. https://doi.org/10.1364/OE.25.003884

    Article  PubMed  CAS  Google Scholar 

  24. Yuan H et al (2018) Fiber-optic surface plasmon resonance glucose sensor enhanced with phenylboronic acid modified Au nanoparticles. Biosens Bioelectron 117:637–643. https://doi.org/10.1016/j.bios.2018.06.042

    Article  PubMed  CAS  Google Scholar 

  25. Zhang X et al (2018) Hydrogen peroxide and glucose concentration measurement using optical fiber grating sensors with corrodible plasmonic nanocoatings. Biomed Opt Express 9:1735–1744. https://doi.org/10.1364/BOE.9.001735

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No.61501214), National Key R&D Program of China (2016YFB0402105), the Belt and Road Special Project approved by Shandong Province for Introduction of Foreign Experts in 2018, and Liaocheng University, China (31805180301, 31805180326).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xia Zhang or Santosh Kumar.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Q., Zhang, X., Kumar, S. et al. Development of Glucose Sensor Using Gold Nanoparticles and Glucose-Oxidase Functionalized Tapered Fiber Structure. Plasmonics 15, 841–848 (2020). https://doi.org/10.1007/s11468-019-01104-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-019-01104-7

Keywords

Navigation