Skip to main content
Log in

Anti-Hypertensive Peptides Derived from Caseins: Mechanism of Physiological Action, Production Bioprocesses, and Challenges for Food Applications

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

This review is focused on the state-of-art of peptides with inhibitory activity towards angiotensin I-converting enzyme (ACE) — thus, with anti-hypertensive potential — derived from enzymatic hydrolysis of caseins. Firstly, molecular characteristics of caseins relevant to a better understanding of this subject were concisely commented. Next, a brief description of the pathophysiology of hypertension was explained, focusing on the ACE role in regulation of blood pressure in human body. Then, casein-derived peptides with ACE inhibitory capacity were specifically addressed. The main in vitro and in vivo bioassays often reported in literature to assess the anti-hypertensive potential of peptides were presented, illustrated with recently published studies, and discussed in terms of advantages and limitations of both approaches. Characteristics related to amino acid composition and sequence of peptides with high ACE-inhibitory potential were also commented. Process parameters of enzymatic hydrolysis (types and origins of casein substrates, types of enzymes, pH, temperature, and times of reactions) were discussed. Patents dealing with casein-derived anti-hypertensive peptides were examined not only in terms of amino acid sequences, but also regarding their novelty claims in hydrolysis process parameters. Finally, some trends, challenges, and opportunities inferred from this literature analysis were commented, emphasizing the importance of this research topic in food products development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AC:

Affinity chromatography

ACE:

Angiotensin converting enzyme

AHTPDB:

Anti-hypertensive peptides data base

Ang I:

Angiotensin I

Ang II:

Angiotensin II

ESI:

Electrospray ionization

E:S:

Enzyme-to-substrate ratio

GMP:

Glycomacropeptide

GRAS:

Generally recognized as safe

HHL:

Hippuryl-l-histidyl-l-leucine

HILIC:

Hydrophilic interaction liquid chromatography

HPLC:

High performance liquid chromatography

HT:

Hypertension

IEC:

Ion-exchange chromatography

IEF:

Isoelectric focusing

KKS:

Kallikrein-kinin System

LC:

Liquid chromatography

MALDI:

Matrix-assisted laser desorption/ionization

MRM:

Multiple reaction monitoring

MS:

Mass spectrometry

MS/MS:

Tandem mass spectrometry

NO:

Nitric oxide

PGI2 :

Prostaglandins 2

QIT:

Quadrupole ion trap

RAS:

Renin-angiotensin system

RP-HPLC:

Reversed phase-HPLC

SEC:

Size-exclusion chromatography

SHR:

Spontaneously hypertensive rat

TOF:

Time-of-flight

UF:

Ultrafiltration

UHPLC:

Ultra high pressure liquid chromatography

αs1-CN:

AlphaS1-casein

αs2-CN:

AlphaS2-casein

β-CN:

Beta-casein

κ-CN:

Kappa-casein

λ :

Wavelength (nm)

References

  1. Escudero, E., Toldrá, F., Sentandreu, M. A., Nishimura, H., & Arihara, K. (2012). Anti-hypertensive activity of peptides identified in the in vitro gastrointestinal digest of pork meat. Meat Science, 91(3), 382–384. https://doi.org/10.1016/j.meatsci.2012.02.007.

    Article  CAS  PubMed  Google Scholar 

  2. Eckert, E., Zambrowicz, A., Pokora, M., Setner, B., Dąbrowska, A., Szołtysik, M., Szewczuk, Z., Polanowski, A., Trziszka, T., & Chrzanowska, J. (2014). Egg-yolk protein by-product as a source of ACE-inhibitory peptides obtained with using unconventional proteinase from Asian pumpkin (Cucurbita ficifolia). Journal of Proteomics, 110, 107–116. https://doi.org/10.1016/j.jprot.2014.08.003.

    Article  CAS  PubMed  Google Scholar 

  3. Rao, S., Sun, J., Liu, Y., Zeng, H., Su, Y., & Yang, Y. (2012). ACE inhibitory peptides and antioxidant peptides derived from in vitro digestion hydrolysate of hen egg white lysozyme. Food Chemistry, 135(3), 1245–1252. https://doi.org/10.1016/j.foodchem.2012.05.059.

    Article  CAS  PubMed  Google Scholar 

  4. Ma, Y., & Wang, T. (2011). Identification and validation of soy peptides with in-vitro hemagglutination activity. Journal of the American Oil Chemists’ Society, 88(6), 833–842. https://doi.org/10.1007/s11746-010-1725-4.

    Article  CAS  Google Scholar 

  5. Nakahara, T., Sano, A., Yamaguchi, H., Sugimoto, K., Chikata, H., Kinoshita, E., & Uchida, R. (2010). Anti-hypertensive effect of peptide-enriched soy sauce-like seasoning and identification of its angiotensin I-converting enzyme inhibitory substances. Journal of Agricultural and Food Chemistry, 58(2), 821–827. https://doi.org/10.1021/jf903261h.

    Article  CAS  PubMed  Google Scholar 

  6. Regazzo, D., Da Dalt, L., Lombardi, A., Andrighetto, C., Negro, A., & Gabai, G. (2010). LA2 manifest different degrees of ACE-inhibitory and immunomodulatory activities. Dairy Science & Technology, 90(4), 469–476. https://doi.org/10.1051/dst/2010009.

    Article  CAS  Google Scholar 

  7. Konrad, B., Anna, D., Marek, S., Marta, P., Aleksandra, Z., & Józefa, C. (2014). The evaluation of dipeptidyl peptidase (DPP)-IV, α-glucosidase and angiotensin converting enzyme (ACE) inhibitory activities of whey proteins hydrolyzed with serine protease isolated from Asian pumpkin (Cucurbita ficifolia). International Journal of Peptide Research and Therapeutics, 20(4), 483–491. https://doi.org/10.1007/s10989-014-9413-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Castro, R. J. S., & Sato, H. H. (2015). Biologically active peptides: Processes for their generation, purification and identification and applications as natural additives in the food and pharmaceutical industries. Food Research International, 74, 185–198. https://doi.org/10.1016/j.foodres.2015.05.013.

    Article  CAS  PubMed  Google Scholar 

  9. Mellander. (1950). The physiological importance of the casein phosphopeptide calcium salts. II. Peroral calcium dosage of infants. Acta Society Medicine Uppsala, 55, 247–255.

    CAS  Google Scholar 

  10. Oueis, E., Sabot, C., & Renard, P.-Y. (2015). New insights into the kinetic target-guided synthesis of protein ligands. Chemical Communications, 51(61), 12158–12169. https://doi.org/10.1039/C5CC04183J.

    Article  CAS  PubMed  Google Scholar 

  11. Jakala, P., & Vapaatalo, H. (2010). Anti-hypertensive peptides from milk proteins. Pharmaceuticals, 3(1), 251–272. https://doi.org/10.3390/ph3010251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Brandelli, A., Daroit, D. J., & Corrêa, A. P. F. (2015). Whey as a source of peptides with remarkable biological activities. Food Research International, 73, 149–161. https://doi.org/10.1016/j.foodres.2015.01.016.

    Article  CAS  Google Scholar 

  13. Xie, N., Wang, C., Ao, J., & Li, B. (2013). Non-gastrointestinal-hydrolysis enhances bioavailability and antioxidant efficacy of casein as compared with its in vitro gastrointestinal digest. Food Research International, 51(1), 114–122. https://doi.org/10.1016/j.foodres.2012.12.001.

    Article  CAS  Google Scholar 

  14. Stuknyte, M., Noni, I., Guglielmetti, S., Minuzzo, M., & Mora, D. (2011). Potential immunomodulatory activity of bovine casein hydrolysates produced after digestion with proteinases of lactic acid bacteria. International Dairy Journal, 21(10), 763–769. https://doi.org/10.1016/j.idairyj.2011.04.011.

    Article  CAS  Google Scholar 

  15. Zhao, H., Zhou, F., Wang, L., Fengling, B., Dziugan, P., Walczak, P., & Zhang, B. (2014). Characterization of a bioactive peptide with cytomodulatory effect released from casein. European Food Research and Technology, 238(2), 315–322. https://doi.org/10.1007/s00217-013-2106-7.

    Article  CAS  Google Scholar 

  16. Malinowski, J., Klempt, M., Clawin-Rädecker, I., Lorenzen, P. C., & Meisel, H. (2014). Identification of a NFκB inhibitory peptide from tryptic β-casein hydrolysate. Food Chemistry, 165, 129–133. https://doi.org/10.1016/j.foodchem.2014.05.075.

    Article  CAS  PubMed  Google Scholar 

  17. Srinivas, S., & Prakash, V. (2010). Bioactive peptides from bovine milk α-casein: isolation, characterization and multifunctional properties. International Journal of Peptide Research and Therapeutics, 16(1), 7–15. https://doi.org/10.1007/s10989-009-9196-x.

    Article  CAS  Google Scholar 

  18. Krakoff, L. R., Gillespie, R. L., Ferdinand, K. C., Fergus, I. V., Akinboboye, O., Williams, K. A., Walsh, M. N., Bairey Merz, C. N., & Pepine, C. J. (2014). Hypertension recommendations from the eighth joint national committee panel members raise concerns for elderly black and female populations. Journal of the American College of Cardiology, 64(4), 394–402. https://doi.org/10.1016/j.jacc.2014.06.014.

    Article  PubMed  PubMed Central  Google Scholar 

  19. WHO: World Health Organization (2013). A global brief on hypertension. Available from: http://www.who.int/cardiovascular_diseases/publications/global_brief_hypertension/en/. Accessed 05 Sept 2017.

  20. Ahhmed, A. M., & Muguruma, M. (2010). A review of meat protein hydrolysates and hypertension. Meat Science, 86(1), 110–118. https://doi.org/10.1016/j.meatsci.2010.04.032.

    Article  CAS  PubMed  Google Scholar 

  21. Majumder, K., & Wu, J. (2014). Molecular targets of anti-hypertensive peptides: understanding the mechanisms of action based on the pathophysiology of hypertension. International Journal of Molecular Sciences, 16(1), 256–283. https://doi.org/10.3390/ijms16010256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Williams, B., Poulter, N. R., Brown, M. J., Davis, M., McInnes, G. T., Potter, J. F., et al. (2004). Guidelines for management of hypertension: report of the fourth working party of the British Hypertension Society, 2004—BHS IV. Journal of Human Hypertension, 18(3), 139–185. https://doi.org/10.1038/sj.jhh.1001683.

    Article  CAS  PubMed  Google Scholar 

  23. Fitzgerald, R. J., Murray, B. A., & Walsh, D. J. (2004). Hypotensive peptides from milk proteins. Journal of Nutrition, 134(4), 980–988.

    Article  Google Scholar 

  24. Kumar, R., Chaudhary, K., Sharma, M., Nagpal, G., Chauhan, J. S., Singh, S., et al. (2015). AHTPDB: a comprehensive platform for analysis and presentation of anti-hypertensive peptides. Nucleic Acids Research, 43, 956–962.

    Article  CAS  Google Scholar 

  25. Nielsen, S. D., Beverly, R. L., Qu, Y., & Dallas, D. C. (2017). Milk bioactive peptide database: a comprehensive database of milk protein-derived bioactive peptides and novel visualization. Food Chemistry, 232, 673–682. https://doi.org/10.1016/j.foodchem.2017.04.056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Haug, A., Høstmark, A. T., & Harstad, O. M. (2007). Bovine milk in human nutrition – A review. Lipids in Health and Disease, 6(1), 25. https://doi.org/10.1186/1476-511X-6-25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sgarbieri, V. C. (2005). Revisão: Propriedades estruturais e físico-químicas das proteínas do leite. Brazilian Journal of Food Technology, 8(1), 43–56.

    CAS  Google Scholar 

  28. Pereira, P. C. (2014). Milk nutritional composition and its role in human health. Nutrition, 30(6), 619–627. https://doi.org/10.1016/j.nut.2013.10.011.

    Article  CAS  PubMed  Google Scholar 

  29. Fox, P. F., & Brodkorb, A. (2008). The casein micelle: historical aspects, current concepts and significance. International Dairy Journal, 18(7), 677–684.

    Article  CAS  Google Scholar 

  30. Bendtsen, L. Q., Lorenzen, J. K., Bendsen, N. T., Rasmussen, C., & Astrup, A. (2013). Effect of dairy proteins on appetite, energy expenditure, body weight, and composition: a review of the evidence from controlled clinical trials. Advances in Nutrition, 4(4), 418–438. https://doi.org/10.3945/an.113.003723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dalgleish, D. G. (2011). On the structural models of bovine casein micelles—review and possible improvements. Soft Matter, 7(6), 2265–2272. https://doi.org/10.1039/C0SM00806K.

    Article  CAS  Google Scholar 

  32. Yada, R. Y. (2000). The caseins. In R. Y. Yada (Ed.), Proteins in food processing. Boca Raton: CRC, p 674.

  33. Cheema, M., Mohan, M. S., Campagna, S. R., Jurat-Fuentes, J. L., & Harte, F. M. (2015). The association of low-molecular-weight hydrophobic compounds with native casein micelles in bovine milk. Journal of Dairy Science, 98(8), 5155–5163. https://doi.org/10.3168/jds.2015-9461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Holt, C., Carver, J. A., Ecroyd, H., & Thorn, D. C. (2013). Invited review: caseins and the casein micelle: their biological functions, structures, and behavior in foods. Journal of Dairy Science, 96(10), 6127–6146. https://doi.org/10.3168/jds.2013-6831.

    Article  CAS  PubMed  Google Scholar 

  35. Mocanu, A. M., Moldoveanu, C., Odochian, L., Paius, C. M., Apostolescu, N., & Neculau, R. (2012). Study on the thermal behavior of casein under nitrogen and air atmosphere by means of the TG-FTIR technique. Thermochimica Acta, 546, 120–126. https://doi.org/10.1016/j.tca.2012.07.031.

    Article  CAS  Google Scholar 

  36. Guo, M. R., Fox, P. F., Flynn, A., & Kindstedt, P. S. (1995). Susceptibility of β-lactoglobulin and sodium caseinate to proteolysis by pepsin and trypsin. Journal of Dairy Science, 78(11), 2336–2344. https://doi.org/10.3168/jds.S0022-0302(95)76860-6.

    Article  CAS  PubMed  Google Scholar 

  37. Agboola, S. O., & Dalgleish, D. G. (1996). Enzymatic hydrolysis of milk proteins used for emulsion formation. 1. Kinetics of protein breakdown and storage stability of the emulsions. Journal of Agricultural and Food Chemistry, 44(11), 3631–3636. https://doi.org/10.1021/jf9602840.

    Article  CAS  Google Scholar 

  38. Haliloglu, T., & Bahar, I. (2015). Adaptability of protein structures to enable functional interactions and evolutionary implications. Current Opinion in Structural Biology, 35, 17–23. https://doi.org/10.1016/j.sbi.2015.07.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lam, R. S. H., & Nickerson, M. T. (2013). Food proteins: A review on their emulsifying properties using a structure–function approach. Food Chemistry, 141(2), 975–984. https://doi.org/10.1016/j.foodchem.2013.04.038.

    Article  CAS  PubMed  Google Scholar 

  40. Sahu, A., Kasoju, N., & Bora, U. (2008). Fluorescence study of the curcumin-casein micelle complexation and its application as a drug nanocarrier to cancer cells. Biomacromolecules, 9(10), 2905–2912. https://doi.org/10.1021/bm800683f.

    Article  CAS  PubMed  Google Scholar 

  41. Roach, A., & Harte, F. (2008). Disruption and sedimentation of casein micelles and casein micelle isolates under high-pressure homogenization. Innovative Food Science and Emerging Technologies, 9(1), 1–8. https://doi.org/10.1016/j.ifset.2007.03.027.

    Article  CAS  Google Scholar 

  42. Mao, X.-Y., Ni, J.-R., Sun, W.-L., Hao, P.-P., & Fan, L. (2007). Value-added utilization of yak milk casein for the production of angiotensin-I-converting enzyme inhibitory peptides. Food Chemistry, 103(4), 1282–1287. https://doi.org/10.1016/j.foodchem.2006.10.041.

    Article  CAS  Google Scholar 

  43. Korhonen, H., & Pihlanto, A. (2006). Bioactive peptides: production and functionality. International Dairy Journal, 16(9), 945–960. https://doi.org/10.1016/j.idairyj.2005.10.012.

    Article  CAS  Google Scholar 

  44. Contreras, M. D. M., Sevilla, M. A., Monroy-Ruiz, J., Amigo, L., Gómez-Sala, B., Molina, E., et al. (2011). Food-grade production of an anti-hypertensive casein hydrolysate and resistance of active peptides to drying and storage. International Dairy Journal, 21(7), 470–476. https://doi.org/10.1016/j.idairyj.2011.02.004.

    Article  CAS  Google Scholar 

  45. Kent, R. M., Guinane, C. M., O’Connor, P. M., Fitzgerald, G. F., Hill, C., Stanton, C., & Ross, R. P. (2012). Production of the antimicrobial peptides Caseicin A and B by Bacillus isolates growing on sodium caseinate. Letters in Applied Microbiology, 55(2), 141–148. https://doi.org/10.1111/j.1472-765X.2012.03271.x.

    Article  CAS  PubMed  Google Scholar 

  46. Rojas-Ronquillo, R., Cruz-Guerrero, A., Flores-Nájera, A., Rodríguez-Serrano, G., Gómez-Ruiz, L., Reyes-Grajeda, J. P., Jiménez-Guzmán, J., & García-Garibay, M. (2012). Antithrombotic and angiotensin-converting enzyme inhibitory properties of peptides released from bovine casein by Lactobacillus casei Shirota. International Dairy Journal, 26(2), 147–154. https://doi.org/10.1016/j.idairyj.2012.05.002.

    Article  CAS  Google Scholar 

  47. Kumar, S., Chouhan, V. S., Sanghi, A., & Teotia, U. V. S. (2013). Antioxidative effect of yak milk caseinates hydrolyzed with three different proteases. Veterinary World, 6(10), 799–802. https://doi.org/10.14202/vetworld.2013.799-802.

    Article  CAS  Google Scholar 

  48. Di Pierro, G., O’Keeffe, M. B., Poyarkov, A., Lomolino, G., & Fitzgerald, R. J. (2014). Antioxidant activity of bovine casein hydrolysates produced by Ficus carica L.-derived proteinase. Food Chemistry, 156, 305–311. https://doi.org/10.1016/j.foodchem.2014.01.080.

    Article  CAS  PubMed  Google Scholar 

  49. Chang, O. K., Seol, K.-H., Jeong, S.-G., Oh, M.-H., Park, B.-Y., Perrin, C., & Ham, J.-S. (2013). Casein hydrolysis by Bifidobacterium longum KACC91563 and antioxidant activities of peptides derived therefrom. Journal of Dairy Science, 96(9), 5544–5555. https://doi.org/10.3168/jds.2013-6687.

    Article  CAS  PubMed  Google Scholar 

  50. Schulz, E., Gori, T., & Münzel, T. (2011). Oxidative stress and endothelial dysfunction in hypertension. Hypertension Research : Official Journal of the Japanese Society of Hypertension, 34(6), 665–673. https://doi.org/10.1038/hr.2011.39.

    Article  CAS  Google Scholar 

  51. Hall, J. E., Granger, J. P., do Carmo, J. M., da Silva, A. A., Dubinion, J., George, E., et al. (2012). Hypertension: physiology and pathophysiology. Comprehensive Physiology, 2(4), 2393–2442. https://doi.org/10.1002/cphy.c110058.

    Article  PubMed  Google Scholar 

  52. Marc, Y., & Llorens-Cortes, C. (2011). The role of the brain renin–angiotensin system in hypertension: Implications for new treatment. Progress in Neurobiology, 95(2), 89–103. https://doi.org/10.1016/j.pneurobio.2011.06.006.

    Article  CAS  PubMed  Google Scholar 

  53. Matsui, T., & Matsumoto, K. (2006). Anti-hypertensive peptides from natural resources. Advances in Phytomedicine, 2, 255–271. https://doi.org/10.1016/S1572-557X(05)02015-5.

    Article  CAS  Google Scholar 

  54. Skeggs, B. Y. L. T., Ph, D., Marsh, W., Kahn, J. R., & Shumway, A. N. P. (1954). The existence of two forms of hypertensin. The Journal of Experimental Medicine, 3, 275–282.

    Article  Google Scholar 

  55. Yamamoto, N., Akino, A., & Takano, T. (1994). Anti-hypertensive effect of the peptides derived from casein by an extracellular proteinase from Lactobacillushelveticus CP790. Journal of Dairy Science, 77(4), 917–922. https://doi.org/10.3168/jds.S0022-0302(94)77026-0.

    Article  CAS  PubMed  Google Scholar 

  56. Tom, B., Dendorfer, A., & Danser, A. H. (2003). Bradykinin, angiotensin-(1–7), and ACE inhibitors: how do they interact? The International Journal of Biochemistry & Cell Biology, 35(6), 792–801. https://doi.org/10.1016/S1357-2725(02)00273-X.

    Article  CAS  Google Scholar 

  57. Udenigwe, C. C., & Mohan, A. (2014). Mechanisms of food protein-derived anti-hypertensive peptides other than ACE inhibition. Journal of Functional Foods, 8(1), 45–52. https://doi.org/10.1016/j.jff.2014.03.002.

    Article  CAS  Google Scholar 

  58. Henda, Y. B., Labidi, A., Arnaudin, I., Bridiau, N., Delatouche, R., Maugard, T., Piot, J. M., Sannier, F., Thiéry, V., & Bordenave-Juchereau, S. (2013). Measuring angiotensin-I converting enzyme inhibitory activity by micro plate assays: Comparison using marine cryptides and tentative threshold determinations with captopril and losartan. Journal of Agricultural and Food Chemistry, 61(45), 10685–10690. https://doi.org/10.1021/jf403004e.

    Article  CAS  PubMed  Google Scholar 

  59. Van Thiel, B. S., Van Der Pluijm, I., Te Riet, L., Essers, J., & Danser, A. H. J. (2015). The renin-angiotensin system and its involvement in vascular disease. European Journal of Pharmacology, 763(Pt A), 3–14. https://doi.org/10.1016/j.ejphar.2015.03.090.

    Article  CAS  PubMed  Google Scholar 

  60. Cooper-DeHoff, R. M., & Johnson, J. A. (2015). Hypertension pharmacogenomics: in search of personalized treatment approaches. Nature Reviews Nephrology, 12(2), 110–122. https://doi.org/10.1038/nrneph.2015.176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Jiang, Z., Tian, B., Brodkorb, A., & Huo, G. (2010). Production, analysis and in vivo evaluation of novel angiotensin-I-converting enzyme inhibitory peptides from bovine casein. Food Chemistry, 123(3), 779–786. 75. https://doi.org/10.1016/j.foodchem.2010.05.026.

    Article  CAS  Google Scholar 

  62. Ibrahim, H. R., Ahmed, A. S., & Miyata, T. (2017). Novel angiotensin-converting enzyme inhibitory peptides from caseins and whey proteins of goat milk. Journal of Advanced Research, 8(1), 63–71. https://doi.org/10.1016/j.jare.2016.12.002.

    Article  CAS  PubMed  Google Scholar 

  63. Corrons, M. A., Liggieri, C. S., Trejo, S. A., & Bruno, M. A. (2017). ACE-inhibitory peptides from bovine caseins released with peptidases from Maclura pomifera latex. Food Research International, 93, 8–15. https://doi.org/10.1016/j.foodres.2017.01.003.

    Article  CAS  PubMed  Google Scholar 

  64. Lin, K., Zhang, L., Han, X., & Cheng, D. (2017). Novel angiotensin I-converting enzyme inhibitory peptides from protease hydrolysates of Qula casein: quantitative structure-activity relationship modeling and molecular docking study. Journal of Functional Foods, 32, 266–277. https://doi.org/10.1016/j.jff.2017.03.008.

    Article  CAS  Google Scholar 

  65. Norris, R., Poyarkov, A., O’Keeffe, M. B., & Fitzgerald, R. J. (2014). Characterisation of the hydrolytic specificity of Aspergillus niger derived prolyl endoproteinase on bovine β-casein and determination of ACE inhibitory activity. Food Chemistry, 156, 29–36. https://doi.org/10.1016/j.foodchem.2014.01.056.

    Article  CAS  PubMed  Google Scholar 

  66. Souza, E. C., Coimbra, J. S. D. R., de Oliveira, E. B., & Bonomo, R. C. F. (2014). Recovery of casein-derived peptides with in vitro inhibitory activity of angiotensin converting enzyme (ACE) using aqueous two-phase systems. Journal of Chromatography B, 973, 84–88. https://doi.org/10.1016/j.jchromb.2014.10.014.

    Article  CAS  Google Scholar 

  67. Holder, A., Birke, A., Eisele, T., Klaiber, I., Fischer, L., & Hinrichs, J. (2013). Selective isolation of angiotensin-I-converting enzyme-inhibitory peptides from micellar casein and β-casein hydrolysates via ultrafiltration. International Dairy Journal, 31(1), 34–40. https://doi.org/10.1016/j.idairyj.2012.11.003.

    Article  CAS  Google Scholar 

  68. Miguel, M., Contreras, M. M., Recio, I., & Aleixandre, A. (2009). ACE-inhibitory and anti-hypertensive properties of a bovine casein hydrolysate. Food Chemistry, 112(1), 211–214. https://doi.org/10.1016/j.foodchem.2008.05.041.

    Article  CAS  Google Scholar 

  69. Contreras, M. D. M., Carrón, R., Montero, M. J., Ramos, M., & Recio, I. (2009). Novel casein-derived peptides with anti-hypertensive activity. International Dairy Journal, 19(10), 566–573. https://doi.org/10.1016/j.idairyj.2009.05.004.

    Article  CAS  Google Scholar 

  70. Cushman, D. W., & Cheung, H. S. (1971). Spectophotometric assay and properties of the angiotensin I-converting enzyme of rabbit lung. Biochemical Pharmacology, 20(7), 1637–1648. https://doi.org/10.1016/0006-2952(71)90292-9.

    Article  CAS  PubMed  Google Scholar 

  71. Sentandreu, M. Á., & Toldrá, F. (2006). A rapid, simple and sensitive fluorescence method for the assay of angiotensin-I converting enzyme. Food Chemistry, 97(3), 546–554. https://doi.org/10.1016/j.foodchem.2005.06.006.

    Article  CAS  Google Scholar 

  72. Gobba, C., Tompa, G., & Otte, J. (2014). Bioactive peptides from caseins released by cold active proteolytic enzymes from Arsukibacterium ikkense. Food Chemistry, 165, 205–215. https://doi.org/10.1016/j.foodchem.2014.05.082.

    Article  CAS  PubMed  Google Scholar 

  73. Huang, L., Ma, H., Li, Y., & Li, S. (2012). Anti-hypertensive activity of recombinant peptide IYPR expressed in Escherichia coli as inclusion bodies. Protein Expression and Purification, 83(1), 15–20. https://doi.org/10.1016/j.pep.2012.02.004.

    Article  CAS  PubMed  Google Scholar 

  74. Quirós, A., Contreras, M. D. M., Ramos, M., Amigo, L., & Recio, I. (2009). Stability to gastrointestinal enzymes and structure-activity relationship of β-casein-peptides with anti-hypertensive properties. Peptides, 30(10), 1848–1853. https://doi.org/10.1016/j.peptides.2009.06.031.

    Article  CAS  PubMed  Google Scholar 

  75. Wu, Z., Pan, D., Zhen, X., & Cao, J. (2013). Angiotensin I-converting enzyme inhibitory peptides derived from bovine casein and identified by MALDI-TOF-MS/MS. Journal of the Science of Food and Agriculture, 93(6), 1331–1337. https://doi.org/10.1002/jsfa.5894.

    Article  CAS  PubMed  Google Scholar 

  76. Corrêa, A. P. F., Daroit, D. J., Fontoura, R., Meira, S. M. M., Segalin, J., & Brandelli, A. (2014). Hydrolysates of sheep cheese whey as a source of bioactive peptides with antioxidant and angiotensin-converting enzyme inhibitory activities. Peptides, 61, 48–55. https://doi.org/10.1016/j.peptides.2014.09.001.

    Article  CAS  PubMed  Google Scholar 

  77. Lin, L., Lv, S., & Li, B. (2012). Angiotensin-I-converting enzyme (ACE)-inhibitory and anti-hypertensive properties of squid skin gelatin hydrolysates. Food Chemistry, 131(1), 225–230. https://doi.org/10.1016/j.foodchem.2011.08.064.

    Article  CAS  Google Scholar 

  78. Boutrou, R., Henry, G., & Rivera, L. S. (2015). On the trail of milk bioactive peptides in human and animal intestinal tracts during digestion: a review. Dairy Science & Technology, 95(6), 815–829. https://doi.org/10.1007/s13594-015-0210-0.

    Article  CAS  Google Scholar 

  79. Xu, J.-L., Pang, J.-N., Chen, F.-F., Li, T.-J., & Zhao, X.-H. (2017). Anti-hypertensive activities of the plasteins derived from casein hydrolysates in spontaneously hypertensive rats. CYTA - Journal of Food, 15(1), 105–109.

    CAS  Google Scholar 

  80. Kanso, H., Mallem, M. Y., Rabesona, H., Thorin, C., Haertle, T., Chobert, J., et al. (2014). Vasorelaxant effects of camel and bovine casein hydrolysates in rat thoracic aorta and mesenteric artery. International Dairy Journal, 39(1), 113–120. https://doi.org/10.1016/j.idairyj.2014.05.004.

    Article  CAS  Google Scholar 

  81. Rousseau-Ralliard, D., Goirand, F., Tardivel, S., Lucas, A., Algaron, F., Mollé, D., et al. (2010). Inhibitory effect of αS1- and αS2-casein hydrolysates on angiotensin I-converting enzyme in human endothelial cells in vitro, rat aortic tissue ex vivo, and renovascular hypertensive rats in vivo. Journal of Dairy Science, 93(7), 2906–2921. https://doi.org/10.3168/jds.2010-3060.

    Article  CAS  PubMed  Google Scholar 

  82. Contreras, M. D. M., Sanchez, D., Sevilla, M. Á., Recio, I., & Amigo, L. (2013). Resistance of casein-derived bioactive peptides to simulated gastrointestinal digestion. International Dairy Journal, 32(2), 71–78. https://doi.org/10.1016/j.idairyj.2013.05.008.

    Article  CAS  Google Scholar 

  83. Jauhiainen, T., Ronnback, M., Vapaatalo, H., Wuolle, K., Kautiainen, H., & Korpela, R. (2007). Lactobacillus helveticus fermented milk reduces arterial stiffness in hypertensive subjects. International Dairy Journal, 17(10), 1209–1211. https://doi.org/10.1016/j.idairyj.2007.03.002.

    Article  CAS  Google Scholar 

  84. Mizuno, S., Matsuura, K., Gotou, T., Nishimura, S., Kajimoto, O., Yabune, M., Kajimoto, Y., & Yamamoto, N. (2005). Anti-hypertensive effect of casein hydrolysate in a placebo-controlled study in subjects with high-normal blood pressure and mild hypertension. The British Journal of Nutrition, 94(1), 84–91. https://doi.org/10.1079/BJN20051422.

    Article  CAS  PubMed  Google Scholar 

  85. Ernst, H. (2003). Patent information for strategic technology management. World Patent Information, 25(3), 233–242. https://doi.org/10.1016/S0172-2190(03)00077-2.

    Article  Google Scholar 

  86. Grigorov, M., Germond, J.-E., Tournade, S., &Affolter, M. (2014). Lactobacillus helveticus strains for producing hypotensive peptides. Patent: US 8,637,296 B2

  87. Sanchez, R. I., Bosque, A. Q. D., Hernández-Ledesma, B., Ruiz, J. Á. G., Castro, M. M., Garrido, M. L. A, ...Gomes, M. C.Contreras, MaríadelMar (2006). Bioactive peptides identified in enzymatic hydrolyzates of milk caseins and method of obtaining same. Patent: EP 1,905,779 A1.

  88. Edens, L., Roos, A. De, Schouten, O. L., &Deen, P. A. (2011). Blood pressure lowering peptides in a single enzymatic step Patent: US 7,879,804 B2.

  89. VanDer, M. C., Vlaardingen, B.-K., Vlaardingen, R. D., &Vlaardingen, J. S. (2010). Hydrolysed casein product comprising tripeptides IPP and/or VPP. Patent: US 7,785,824 B2.

  90. Recio, I. S., Contreras, G. M., Amigo, L. G., Ramos, M. G., Montero, M. J. G., Carrón, D. L. C. R., &Sevilla, M. A. T. (2010). Use of a casein-derived peptide and compositions thereof as anti-hypertensive. Patent: EP 2,253,324 A1.

  91. Tamura, Y., Miyakawa, H., Yamada, A., Saito, H., Kawaguchi, Y., Ochi, H., …Inoue, E. (2006). Peptide having angiotensin converting enzyme inhibitory effect. Patent: US 7,022,676 B2.

  92. Yamamoto, N., Ueno, K., &Ejiri, M. (2006). Process for producing tripeptides. Patent: US 6,994,987 B1.

  93. Geerlings, A., Hidalgo, Z. F., Boza, P. J., &Jimenez, L. J. (2005). Anti-hypertensive peptides from casein hydrolysates. Patent: EP 1,568,707 A1.

  94. Tossavainen, O., Suomalainen, T., Sahlstein, J., &Makinen, A.-M. (2001). Process for producing a product containing anti-hypertensive tripeptides. Patent: US 6,972,282 B1.

  95. Ahn, J., Cao, M. J., Yu, Y. Q., & Engen, J. R. (2013). Accessing the reproducibility and specificity of pepsin and other aspartic proteases. Biochimica et Biophysica Acta - Proteins and Proteomics, 1834(6), 1222–1229. https://doi.org/10.1016/j.bbapap.2012.10.003.

    Article  CAS  Google Scholar 

  96. Norris, R., O’Keeffe, M. B., Poyarkov, A., & FitzGerald, R. J. (2015). Peptide identification and angiotensin converting enzyme (ACE) inhibitory activity in prolyl endoproteinase digests of bovine αs-casein. Food Chemistry, 188, 210–217. https://doi.org/10.1016/j.foodchem.2015.04.130.

    Article  CAS  PubMed  Google Scholar 

  97. García-Tejedor, A., Sánchez-Rivera, L., Recio, I., Salom, J. B., & Manzanares, P. (2015). Dairy Debaryomyces hansenii strains produce the anti-hypertensive casein-derived peptides LHLPLP and HLPLP. LWT - Food Science and Technology, 61(2), 550–556. https://doi.org/10.1016/j.lwt.2014.12.019.

    Article  CAS  Google Scholar 

  98. Yamada, A., Sakurai, T., Ochi, D., Mitsuyama, E., Yamauchi, K., & Abe, F. (2013). Novel angiotensin I-converting enzyme inhibitory peptide derived from bovine casein. Food Chemistry, 141(4), 3781–3789. https://doi.org/10.1016/j.foodchem.2013.06.089.

    Article  CAS  PubMed  Google Scholar 

  99. Ghassem, M., Arihara, K., Babji, A. S., Said, M., & Ibrahim, S. (2011). Purification and identification of ACE inhibitory peptides from Haruan (Channa striatus) myofibrillar protein hydrolysate using HPLC–ESI-TOF MS/MS. Food Chemistry, 129(4), 1770–1777. https://doi.org/10.1016/j.foodchem.2011.06.051.

    Article  CAS  Google Scholar 

  100. Meisel, H. (1997). Biochemical proprerties of bioactive peptides derived from milk protein: potential nutraceutical for food and pharmaceutical applications. LLivestock Production Science, 50(1-2), 125–138. https://doi.org/10.1016/S0301-6226(97)00083-3.

    Article  Google Scholar 

  101. Li, G.-H., Le, G.-W., Shi, Y.-H., & Shrestha, S. (2004). Angiotensin I–converting enzyme inhibitory peptides derived from food proteins and their physiological and pharmacological effects. Nutrition Research, 24(7), 469–486. https://doi.org/10.1016/S0271-5317(04)00058-2.

    Article  CAS  Google Scholar 

  102. Kapel, R., Chabeau, A., Lesage, J., & Riviere, G. (2006). Production, in continuous enzymatic membrane reactor, of an anti-hypertensive hydrolysate from an industrial alfalfa white protein concentrate exhibiting ACE inhibitory and opioid activities. Food Chemistry, 98(1), 120–126. https://doi.org/10.1016/j.foodchem.2005.05.062.

    Article  CAS  Google Scholar 

  103. Rios, G. M., Belleville, M. P., Paolucci, D., & Sanchez, J. (2004). Progress in enzymatic membrane reactors – A review. Journal of Membrane Science, 242(1-2), 189–196. https://doi.org/10.1016/j.memsci.2003.06.004.

    Article  CAS  Google Scholar 

  104. Rao, S., Su, Y., Li, J., Xu, Z., & Yang, Y. (2009). Design and expression of recombinant anti-hypertensive peptide multimer gene in Escherichia coli BL21. Journal of Microbiology and Biotechnology, 19(12), 1620–1627. https://doi.org/10.4014/jmb.0905.05055.

    Article  CAS  PubMed  Google Scholar 

  105. Pina, A. S., & Roque, A. C. A. (2009). Studies on the molecular recognition between bioactive peptides and angiotensin-converting enzyme. Journal of molecular recognition : JMR, 22(2), 162–168. https://doi.org/10.1002/jmr.905.

    Article  CAS  PubMed  Google Scholar 

  106. Shi, A., Liu, H., Liu, L., Hu, H., Wang, Q., & Adhikari, B. (2014). Isolation, purification and molecular mechanism of a peanut protein-derived ACE-inhibitory peptide. PLoS One, 9(10), 23–25.

    Google Scholar 

  107. Natesh, R., Schwager, S. L. U., Evans, H. R., Sturrock, E. D., & Acharya, K. R. (2004). Structural details on the binding of anti-hypertensive drugs captopril and enalaprilat to human testicular angiotensin I-converting enzyme. Biochemistry, 43(27), 8718–8724. https://doi.org/10.1021/bi049480n.

    Article  CAS  PubMed  Google Scholar 

  108. Udenigwe, C. C., Gong, M., & Wu, S. (2013). In silico analysis of the large and small subunits of cereal RuBisCO as precursors of cryptic bioactive peptides. Process Biochemistry, 48(11), 1794–1799. https://doi.org/10.1016/j.procbio.2013.08.013.

    Article  CAS  Google Scholar 

Download references

Funding

The authors acknowledge the Brazilian funding agencies CNPq and FAPEMIG, for the financial support. Ms. M.R. Oliveira and Ms. T.J. Silva also acknowledge the Brazilian funding agency CNPq, for their scholarships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Basílio de Oliveira.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Mara Rose de Oliveira and Thaís Jordânia Silva contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira, M.R., Silva, T.J., Barros, E. et al. Anti-Hypertensive Peptides Derived from Caseins: Mechanism of Physiological Action, Production Bioprocesses, and Challenges for Food Applications. Appl Biochem Biotechnol 185, 884–908 (2018). https://doi.org/10.1007/s12010-018-2692-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-018-2692-8

Keywords

Navigation