Skip to main content
Log in

Comprehensive review on some food-derived bioactive peptides with anti-hypertension therapeutic potential for angiotensin-converting enzyme (ACE) inhibition

  • Review
  • Published:
Journal of Proteins and Proteomics Aims and scope Submit manuscript

Abstract

Angiotensin-converting enzyme (ACE) inhibitory peptides have lately attracted interest since functional foods that help maintain homeostatic regulations have been developed. Rarely discussed are the intrinsic ACE-peptide interactions and their positioning, both of which help illustrate the ACE inhibitory functionalities in food-derived peptides. In this study, 173 ACE inhibitory peptides were collated using the UWM-BIOPEP database. The sequences were grouped into short, medium, and long peptides. The hydrophobicity/hydrophilicity property of peptides was analyzed using Peptide2 and the peptide binding site on ACE was predicted using PepSite2. Peptide residues interacting with ACE were denoted as reactive amino acids. Molecular docking analysis was conducted to simulate ACE-peptide binding and delineate the roles of reactive amino acids at the ultimate, penultimate, and antepenultimate positions of N—(N1, N2, and N3) and C—(C1, C2, and C3) terminals. Peptide2 analysis suggested that hydrophobic property was prominent in the peptides. The C-terminals were prominent in ACE binding for long-chained peptides through interaction with ACE hotspots. Moreover, branched-chain amino acids (BCAA) such as leucine and isoleucine were crucial at the N-terminals. The bulky side chain of BCAA forms a hydrophobic shield that protects the Zn-peptide chelate complex from water attacks. The hydrophobic fence in turn stabilizes the disrupted tetrahedral Zn-coordinate complex of ACE. This finding provided a thorough exploration of how peptide structures are related and what function they play in ACE inhibitory action. The database analysis, therefore, gave a clearer insight and comprehensive understanding into the protein-peptide interactions and provided a mechanistic explanation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Data availability

The datasets generated and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Acharya KR, Sturrock ED, Riordan JF, Ehlers MR (2003) ACE revisited: a new target for structure-based drug design. Nat Rev Drug Discovery 2:891–902. https://doi.org/10.1038/nrd1227

    Article  CAS  PubMed  Google Scholar 

  • Asoodeh A, Haghighi L, Chamani J, Ansari-Ogholbeyk MA, Mojallal-Tabatabaei Z, Lagzian M (2014) Potential angiotensin I converting enzyme inhibitory peptides from gluten hydrolysate: biochemical characterization and molecular docking study. J Cereal Sci 60:92–98. https://doi.org/10.1016/j.jcs.2014.01.019

    Article  CAS  Google Scholar 

  • Bahadori M, Hemmateenejad B, Yousefinejad S (2019) Quantitative sequence-activity modeling of ACE peptide originated from milk using ACC–QTMS amino acid indices. Amino Acids 51:1209–1220. https://doi.org/10.1007/s00726-019-02761-y

    Article  CAS  PubMed  Google Scholar 

  • Balgir PP, Kaur T, Sharma M (2016) Antihypertensive peptides derived from food sources. MOJ Food Process Technol 2:1–6

    Article  Google Scholar 

  • Barley MH, Turner NJ, Goodacre R (2018) Improved descriptors for the quantitative structure–activity relationship modeling of peptides and proteins. J Chem Inf Model 58:234–243

    Article  CAS  PubMed  Google Scholar 

  • Brandl M, Weiss MS, Jabs A, Sühnel J, Hilgenfeld R (2001) C-h⋯π-interactions in proteins. J Mol Biol 307:357–377. https://doi.org/10.1006/JMBI.2000.4473

    Article  CAS  PubMed  Google Scholar 

  • Byun HG, Kim SK (2002) Structure and activity of angiotensin I converting enzyme inhibitory peptides derived from alaskan pollack skin. J Biochem Mol Biol 35:239–243. https://doi.org/10.5483/bmbrep.2002.35.2.239

    Article  CAS  PubMed  Google Scholar 

  • Ding Q, Sheikh AR, Chen Q, Hu Y, Sun N, Su X, Luo L, Ma H, He R (2021) Understanding the mechanism for the structure-activity relationship of food-derived ACEI peptides. Food Rev Intl. https://doi.org/10.1080/87559129.2021.1936005

    Article  Google Scholar 

  • Fears KP, Petrovykh DY, Clark TD (2013) Evaluating protocols and analytical methods for peptide adsorption experiments. Biointerphases 8:1–15. https://doi.org/10.1186/1559-4106-8-20

    Article  CAS  Google Scholar 

  • Fitzgerald RJ, Murray BA, Walsh DJ (2004) The Emerging Role of Dairy Proteins and Bioactive Peptides in Nutrition and Health Hypotensive Peptides from Milk Proteins 1:2

  • Fuchs S, Xiao HD, Hubert C, Michaud A, Campbell DJ, Adams JW, Capecchi MR, Corvol P, Bernstein KE (2008) Angiotensin-converting enzyme C-terminal catalytic domain is the main site of angiotensin I cleavage in vivo. Hypertension 51:267–274. https://doi.org/10.1161/HYPERTENSIONAHA.107.097865

    Article  CAS  PubMed  Google Scholar 

  • Ghatage T, Goyal SG, Dhar A, Bhat A (2021) Novel therapeutics for the treatment of hypertension and its associated complications: peptide- and nonpeptide-based strategies. Hypertens Res 44:740–755. https://doi.org/10.1038/s41440-021-00643-z

    Article  PubMed  PubMed Central  Google Scholar 

  • Gobbetti M, Stepaniak L, De Angelis M, Corsetti A, Di Cagno R (2002) Latent bioactive peptides in milk proteins: proteolytic activation and significance in dairy processing. Crit Rev Food Sci Nutr 42:223–239

    Article  CAS  PubMed  Google Scholar 

  • Gu RZ, Liu WY, Lin F, Jin ZT, Chen L, Yi WX, Lu J, Cai MY (2012) Antioxidant and angiotensin I-converting enzyme inhibitory properties of oligopeptides derived from black-bone silky fowl (Gallus gallus domesticus Brisson) muscle. Food Res Int 49:326–333. https://doi.org/10.1016/j.foodres.2012.07.009

    Article  CAS  Google Scholar 

  • Hemmateenejad B, Yousefinejad S, Mehdipour AR (2011) Novel amino acids indices based on quantum topological molecular similarity and their application to QSAR study of peptides. Amino Acids 40:1169–1183. https://doi.org/10.1007/s00726-010-0741-x

    Article  CAS  PubMed  Google Scholar 

  • Hernandezledesma B, Quiros A, Amigo L, Recio I (2007) Identification of bioactive peptides after digestion of human milk and infant formula with pepsin and pancreatin. Int Dairy J 17(1):42–49

    Article  CAS  Google Scholar 

  • Ishiguro K, Sameshima Y, Kume T, Ikeda KI, Matsumoto J, Yoshimoto M (2012) Hypotensive effect of a sweetpotato protein digest in spontaneously hypertensive rats and purification of angiotensin I-converting enzyme inhibitory peptides. Food Chem 131:774–779. https://doi.org/10.1016/j.foodchem.2011.09.038

    Article  CAS  Google Scholar 

  • Jabs A, Weiss MS, Hilgenfeld R (1999) Non-proline Cis peptide bonds in proteins. J Mol Biol 286:291–304. https://doi.org/10.1006/JMBI.1998.2459

    Article  CAS  PubMed  Google Scholar 

  • Jakala P, Vapaatalo H (2010) Antihypertensive peptides from milk proteins. Pharmaceuticals 3:251–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jao C-L, Huang S-L, Hsu K-C (2012) Angiotensin I-converting enzyme inhibitory peptides: inhibition mode, bioavailability, and antihypertensive effects. Biomedicine 2:130–136

    Article  Google Scholar 

  • Kathuria SV, Chan YH, Nobrega RP, Özen A, Matthews CR (2016) Clusters of isoleucine, leucine, and valine side chains define cores of stability in high-energy states of globular proteins: sequence determinants of structure and stability. Protein Sci 25:662–675. https://doi.org/10.1002/pro.2860

    Article  CAS  PubMed  Google Scholar 

  • Kim YE, Yoon S, Yu D et al (1999) Novel angiotensin-I-converting enzyme inhibitory peptides derived from recombinant human as1-casein expressed in Escherichia coli. J Ournal of Dairy Research 66:431–439

    Article  CAS  Google Scholar 

  • Li H, Prairie N, Udenigwe CC, Adebiyi AP, Tappia PS, Aukema HM, Jones PJ, Aluko RE (2011) Blood pressure lowering effect of a pea protein hydrolysate in hypertensive rats and humans. J Agric Food Chem 59:9854–9860

    Article  CAS  PubMed  Google Scholar 

  • Li M, Xia S, Zhang Y, Li X (2018a) Optimization of ACE inhibitory peptides from black soybean by microwave-assisted enzymatic method and study on its stability. LWT 98:358–365

    Article  CAS  Google Scholar 

  • Li J, Liu Z, Zhao Y, Zhu X, Yu R, Dong S, Wu H (2018b) Novel natural angiotensin converting enzyme (ACE)-inhibitory peptides derived from sea cucumber-modified hydrolysates by adding exogenous proline and a study of their structure⇓activity relationship. Mar Drugs. https://doi.org/10.3390/md16080271

    Article  PubMed  PubMed Central  Google Scholar 

  • Li M, Fan W, Xu Y (2021) Identification of angiotensin converting enzyme (ACE) inhibitory and antioxidant peptides derived from Pixian broad bean paste. LWT 151:112221. https://doi.org/10.1016/J.LWT.2021.112221

    Article  CAS  Google Scholar 

  • Liu X, Fernandez M, Wouters MA, Heyberger S, Husain A (2001) Arg1098 is critical for the chloride dependence of human angiotensin I-converting enzyme C-domain catalytic activity. J Biol Chem 276:33518–33525. https://doi.org/10.1074/jbc.M101495200

    Article  CAS  PubMed  Google Scholar 

  • Losacco M, Gallerani R, Gobbetti M, Minervini F, De Leo F (2007) Production of active angiotensin-I converting enzyme inhibitory peptides derived from bovine β-casein by recombinant DNA technologies. Biotechnol J Healthc Nutr Technol 2:1425–1434

    CAS  Google Scholar 

  • Lv GS, Huo GC, Fu XY (2003) Expression of milk-derived antihypertensive peptide in escherichia coli. J Dairy Sci 86:1927–1931

    Article  CAS  PubMed  Google Scholar 

  • Ma K, Wang Y, Wang M, Wang Z, Wang X, Ju X, He R (2021) Antihypertensive activity of the ACE–renin inhibitory peptide derived from Moringa oleifera protein. Food Funct 2:1–12

    Google Scholar 

  • Majumder K, Chakrabarti S, Morton JS, Panahi S, Kaufman S, Davidge ST, Wu J (2013) Egg-derived tri-peptide IRW exerts antihypertensive effects in spontaneously hypertensive rats. PLoS ONE. https://doi.org/10.1371/journal.pone.0082829

    Article  PubMed  PubMed Central  Google Scholar 

  • Masuyer G, Yates CJ, Sturrock ED, Ravi Acharya K (2014) Angiotensin-I converting enzyme (ACE): structure, biological roles, and molecular basis for chloride ion dependence. Biol Chem 395(10):1135–1149

    Article  CAS  PubMed  Google Scholar 

  • Mei H, Liao Z, Zhou Y, Li SZ (2005) A new set of amino acid descriptors and its application in peptide QSARs. Biopolymers 80:775–786. https://doi.org/10.1002/bip.20296

    Article  CAS  PubMed  Google Scholar 

  • Meisel H (1998) Overview on milk protein-derived peptides. Int Dairy J 8:363–373

    Article  CAS  Google Scholar 

  • Meisel H (2006) ACE inhibitory peptides. In: Mine Y, Shahidi F (eds) Nutraceutical proteins and peptides in health and disease. CRC Taylor & Francis Group, Boca Raton, pp 269–315

    Google Scholar 

  • Minkiewicz P, Iwaniak A, Darewicz M (2019) BIOPEP-UWM database of bioactive peptides: current opportunities. Int J Mol Sci 20:5978. https://doi.org/10.3390/ijms20235978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mojica L, Luna-Vital DA, González De Mejía E (2017) Characterization of peptides from common bean protein isolates and their potential to inhibit markers of type-2 diabetes, hypertension and oxidative stress. J Sci Food Agric 97:401–2410. https://doi.org/10.1002/jsfa.8053

    Article  CAS  Google Scholar 

  • Nakamura Y, Yamamoto N, Sakai K, Takano T (1995) Antihypertensive effects of sour milk and peptides isolated from it that are inhibitors to angiotensin I-converting enzyme. J Dairy Sci 78:1253–1257

    Article  CAS  PubMed  Google Scholar 

  • Natesh R, Schwager S, Sturrock E (2003) Crystal structure of the human angiotensin-converting enzyme–lisinopril complex. Nature 421:551–554

    Article  CAS  PubMed  Google Scholar 

  • Natesh R, Schwager SL, Evans HR, Sturrock ED, Acharya KR (2004) Structural details on the binding of antihypertensive drugs captopril and enalaprilat to human testicular angiotensin I-converting enzyme. Biochemistry 43:8718–8724. https://doi.org/10.1021/bi049480n

    Article  CAS  PubMed  Google Scholar 

  • Nurminen ML, Sipola M et al (2000) Alpha-lactorphin lowers blood pressure measured by radiotelemetry in normotensive and spontaneously hypertensive rats. Life Sci 66:1535–1543

    Article  CAS  PubMed  Google Scholar 

  • Parit R, Jayavel S (2021) Association of ACE inhibitors and angiotensin type II blockers with ACE2 overexpression in COVID-19 comorbidities: a pathway-based analytical study. Eur J Pharmacol 896:173899. https://doi.org/10.1016/j.ejphar.2021.173899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel P, Patel M, Pathak Y (2021) Current status of bioactive peptides in clinical studies. In: Bioactive Peptides. CRC Press, pp 403–423

  • Pihlanto A, Makine S (2013) Antihypertensive properties of plant protein derived peptides, bioactive food peptides in health and disease. In: Hernández-Ledesma B (ed) pp 145–182

  • Priyanto AD, Doerksen RJ, Chang CI, Sung WC, Widjanarko SB, Kusnadi J, Lin YC, Wang TC, Hsu JL (2015) Screening, discovery, and characterization of angiotensin-I converting enzyme inhibitory peptides derived from proteolytic hydrolysate of bitter melon seed proteins. J Proteomics 128:424–435. https://doi.org/10.1016/J.JPROT.2015.08.018

    Article  CAS  PubMed  Google Scholar 

  • Rahimi M, Ghaffari SM, Salami M, Mousavy SJ, Niasari-Naslaji A, Jahanbani R, Yousefinejad S, Khalesi M, Moosavi-Movahedi A (2016) ACE- inhibitory and radical scavenging activities of bioactive peptides obtained from camel milk casein hydrolysis with proteinase K. Dairy Sci Technol 96:489–499. https://doi.org/10.1007/s13594-016-0283-4

    Article  CAS  Google Scholar 

  • Rao S, Su Y, Li J et al (2009) Design and expression of recombinant antihypertensive peptide multimer gene in Escherichia coli BL21. J Microb Biot 19:1620–1627

    Article  CAS  Google Scholar 

  • Rawendra RDS et al (2014) Isolation and characterization of a novel angiotensin-converting enzyme-inhibitory tripeptide from enzymatic hydrolysis of soft-shelled turtle (Pelodiscus sinensis) egg white: in vitro, in vivo, and in silico study. J Agric Food Chem 62:12178–12212

    Article  CAS  PubMed  Google Scholar 

  • Roy F, Boye JI, Simpson BK (2010) Bioactive proteins and peptides in pulse crops: pea, chickpea and lentil. Food Res Int 43:432–442. https://doi.org/10.1016/J.FOODRES.2009.09.002

    Article  CAS  Google Scholar 

  • Ryan JT, Ross RP, Bolton D, Fitzgerald G (2011) Bioactive peptides from muscle sources: meat and fish. Nutrient 3:765–791

    Article  CAS  Google Scholar 

  • Samaei SP, Martini S, Tagliazucchi D, Gianotti A, Babini E (2021) Antioxidant and angiotensin I-converting enzyme (ACE) inhibitory peptides obtained from alcalase protein hydrolysate fractions of hemp (Cannabis sativa L.) bran. J Agric Food Chem 69:9220–9228. https://doi.org/10.1021/acs.jafc.1c01487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt T, Situ AJ, Ulmer TS (2016) Structural and thermodynamic basis of proline-induced transmembrane complex stabilization OPEN. Nat Publ Group. https://doi.org/10.1038/srep29809

    Article  Google Scholar 

  • Singh BP, Aluko RE, Hati S, Solanki D (2021) Bioactive peptides in the management of lifestyle-related diseases: current trends and future perspectives. Crit Rev Food Sci Nutr. https://doi.org/10.1080/10408398.2021.1877109

    Article  PubMed  Google Scholar 

  • Sitanggang AB, Putri JE, Palupi NS, Hatzakis E, Syamsir E, Budijanto S (2021) Enzymatic preparation of bioactive peptides exhibiting ACE inhibitory activity from soybean and velvet bean: a systematic review. Molecules. https://doi.org/10.3390/molecules26133822

    Article  PubMed  PubMed Central  Google Scholar 

  • Suetsuna K, Osajima K (1986) The inhibitory activities against angiotensin I-converting enzyme of basic peptides originating from sardine and hair tail meat. Bull Jpn Soc Sci Fish 52:1981–1984

    Article  CAS  Google Scholar 

  • Sun S, Xu X, Sun X, Zhang X, Chen X, Xu N (2019) Preparation and identification of ACE inhibitory peptides from the marine Macroalga Ulva intestinalis. Mar Drugs 17:1–17. https://doi.org/10.3390/md17030179

    Article  CAS  Google Scholar 

  • Surma S, Romańczyk M, Witalińska-Łabuzek J, Czerniuk MR, Łabuzek K, Filipiak KJ (2021) Periodontitis, blood pressure, and the risk and control of arterial hypertension: epidemiological, clinical, and pathophysiological aspects-review of the literature and clinical trials. Infflamm Cardiovasc Dis. https://doi.org/10.1007/s11906-021-01140-x

    Article  Google Scholar 

  • Tomatsu M, Shimakage A, Shinbo M, Yamada S, Takahashi S (2013) Novel angiotensin I-converting enzyme inhibitory peptides derived from soya milk. Food Chem 136:612–616. https://doi.org/10.1016/j.foodchem.2012.08.080

    Article  CAS  PubMed  Google Scholar 

  • Tzakos AG, Galanis AS, Spyroulias GA, Cordopatis P, Manessi-Zoupa E, Gerothanassis IP (2003) Structure-function discrimination of the N- and C- catalytic domains of human angiotensin-converting enzyme: implications for Cl- activation and peptide hydrolysis mechanisms. Protein Eng 16:993–1003. https://doi.org/10.1093/protein/gzg122

    Article  CAS  PubMed  Google Scholar 

  • Vallabha VS, Tiku PK (2014) Antihypertensive peptides derived from soy protein by fermentation. Int J Pept Res Ther 20:161–168

    Article  Google Scholar 

  • Villegas JM et al (2014) Milk-derived angiotensin-I-converting enzyme-inhibitory peptides generated by Lactobacillus delbrueckii subsp. lactis CRL. Peptidomics 1:22–29

    Article  Google Scholar 

  • Wang J, Hu J, Cui J, Bai X, Du Y, Miyaguchi Y, Lin B (2008) Purification and identification of a ACE inhibitory peptide from oyster proteins hydrolysate and the antihypertensive effect of hydrolysate in spontaneously hypertensive rats. Food Chem 111:302–308. https://doi.org/10.1016/j.foodchem.2008.03.059

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Aluko RE, Nakai S (2006) Structural requirements of angiotensin I-converting enzyme inhibitory peptides: quantitative structure-activity relationship modeling of peptides containing 4–10 amino acid residues. QSAR Comb Sci 25:873–880. https://doi.org/10.1002/qsar.200630005

    Article  CAS  Google Scholar 

  • Xiang L, Qiu Z, Zhao R, Zheng Z, Qiao X (2021) Advancement and prospects of production, transport, functional activity and structure-activity relationship of food-derived angiotensin converting enzyme (ACE) inhibitory peptides. Crit Rev Food Sci Nutr. https://doi.org/10.1080/10408398.2021.1964433

    Article  PubMed  Google Scholar 

  • Xie J, Chen X, Wu J, Zhang Y, Zhou Y, Zhang L, Tang Y, Wei D (2018) Antihypertensive effects, molecular docking study, and isothermal titration calorimetry assay of angiotensin I-converting enzyme inhibitory peptides from Chlorella vulgaris. J Agric Food Chem 66:1359–1368

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Wu C, Sun-Waterhouse D, Zhao T, Waterhouse GI, Zhao M, Su G (2021) Identification of post-digestion angiotensin-I converting enzyme (ACE) inhibitory peptides from soybean protein Isolate: their production conditions and in silico molecular docking with ACE. Food Chem 345:128855

    Article  CAS  PubMed  Google Scholar 

  • Xue L, Yin R, Howell K, Zhang P (2021) Activity and bioavailability of food protein-derived angiotensin-I-converting enzyme-inhibitory peptides. Comp Rev Food Sci Food Safe. https://doi.org/10.1111/1541-4337.12711

    Article  Google Scholar 

  • Yamamoto N (1997) Antihypertensive peptides derived from food proteins. Biopolym Peptide Sci Sect 43:129–134

    Article  CAS  Google Scholar 

  • Yates CJ, Masuyer G, Schwager SL, Akif M, Sturrock ED, Acharya KR (2014) Molecular and thermodynamic mechanisms of the chloride-dependent human angiotensin-I-converting enzyme (ACE). J Biol Chem 289:1798–1814. https://doi.org/10.1074/jbc.M113.512335

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Mikiashvili N, Bonku R, Smith IN (2021) Allergenicity, antioxidant activity and ACE-inhibitory activity of protease hydrolyzed peanut flour. Food Chem 360:129992. https://doi.org/10.1016/J.FOODCHEM.2021.129992

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

OOA writing—original draft preparation, formal analysis, and final editing. PGY investigation, writing—original draft preparation, and formal analysis. CYG conceptualization, supervision, and project administration.

Corresponding author

Correspondence to Chee-Yuen Gan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Research involving human participants and/or animals

This research does not involve the use of human participants or animals.

Informed consent

No informed consent is required for this study.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 115 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olalere, O.A., Yap, PG. & Gan, CY. Comprehensive review on some food-derived bioactive peptides with anti-hypertension therapeutic potential for angiotensin-converting enzyme (ACE) inhibition. J Proteins Proteom 14, 129–161 (2023). https://doi.org/10.1007/s42485-023-00106-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42485-023-00106-8

Keywords

Navigation