Skip to main content

Advertisement

Log in

Immobilization and Stabilization of Beta-Xylosidases from Penicillium janczewskii

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

β-Xylosidases are critical for complete degradation of xylan, the second main constituent of plant cell walls. A minor β-xylosidase (BXYL II) from Penicillium janczewskii was purified by ammonium sulfate precipitation (30% saturation) followed by DEAE-Sephadex chromatography in pH 6.5 and elution with KCl. The enzyme presented molecular weight (MW) of 301 kDa estimated by size exclusion chromatography. Optimal activity was observed in pH 3.0 and 70–75 °C, with higher stability in pH 3.0–4.5 and half-lives of 11, 5, and 2 min at 65, 70, and 75 °C, respectively. Inhibition was moderate with Pb+2 and citrate and total with Cu+2, Hg+2, and Co+2. Partially purified BXYL II and BXYL I (the main β-xylosidase from this fungus) were individually immobilized and stabilized in glyoxyl agarose gels. At 65 °C, immobilized BXYL I and BXYL II presented half-lives of 4.9 and 23.1 h, respectively, therefore being 12.3-fold and 33-fold more stable than their unipuntual CNBr derivatives (reference mimicking soluble enzyme behaviors). During long-term incubation in pH 5.0 at 50 °C, BXYL I and BXYL II glyoxyl derivatives preserved 85 and 35% activity after 25 and 7 days, respectively. Immobilized BXYL I retained 70% activity after 10 reuse cycles of p-nitrophenyl-β-D-xylopyranoside hydrolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

p-NPX:

p-Nitrophenyl β-D-xylopyranoside

PEG:

Polyethylene glycol

PEI:

Polyethylenimine

SDS:

Sodium dodecyl sulfate

References

  1. Dodd, D., & Cann, I. K. O. (2009). Enzymatic deconstruction of xylan for biofuel production. Global Change Biology. Bioenergy, 1(1), 2–17. doi:10.1111/j.1757-1707.2009.01004.x.

    CAS  Google Scholar 

  2. Jordan, D. B., & Wagschal, K. (2010). Properties and applications of microbial β-D-xylosidases featuring the catalytically efficient enzyme from Selenomonas ruminantium. Applied Microbiology and Biotechnology, 86(6), 1647–1658. doi:10.1007/s00253-010-2538-y.

    Article  CAS  Google Scholar 

  3. Zhang, J., & Viikari, L. (2012). Xylo-oligosaccharides are competitive inhibitors of cellobiohydrolase I from Thermoascus aurantiacus. Bioresource Technology, 117, 286–291. doi:10.1016/j.biortech.2012.04.072.

    Article  CAS  Google Scholar 

  4. Dhiman, S. S., Sharma, J., & Battan, B. (2008). Industrial applications and future prospects of microbial xylanases: a review. BioResources, 3(4), 1377–1402.

    Google Scholar 

  5. Deutschmann, R., & Dekker, R. F. H. (2012). From plant biomass to bio-based chemicals: latest developments in xylan research. Biotechnology Advances, 30(6), 1627–1640. doi:10.1016/j.biotechadv.2012.07.001.

    Article  CAS  Google Scholar 

  6. Goswami, G., & Pathak, R. (2013). Microbial xylanases and their biomedical applications: a review. International Journal of Basic & Clinical Pharmacology, 2(3), 237. doi:10.5455/2319-2003.ijbcp20130602.

    Article  Google Scholar 

  7. Juturu, V., & Wu, J. C. (2012). Microbial xylanases: engineering, production and industrial applications. Biotechnology Advances, 30(6), 1219–1227. doi:10.1016/j.biotechadv.2011.11.006.

    Article  CAS  Google Scholar 

  8. Polizeli, M. L. T. M., Rizzatti, A. C. S., Monti, R., Terenzi, H. F., Jorge, J. A., & Amorim, D. S. (2005). Xylanases from fungi: properties and industrial applications. Applied Microbiology and Biotechnology, 67(5), 577–591. doi:10.1007/s00253-005-1904-7.

    Article  CAS  Google Scholar 

  9. Cragg, S. M., Beckham, G. T., Bruce, N. C., Bugg, T. D. H., Distel, D. L., Dupree, P., & Zimmer, M. (2015). Lignocellulose degradation mechanisms across the tree of life. Current Opinion in Chemical Biology, 29, 108–119. doi:10.1016/j.cbpa.2015.10.018.

    Article  CAS  Google Scholar 

  10. Homaei, A. A., Sariri, R., Vianello, F., & Stevanato, R. (2013). Enzyme immobilization: an update. Journal of Chemical Biology, 6(4), 185–205. doi:10.1007/s12154-013-0102-9.

    Article  Google Scholar 

  11. Knob, A., Terrasan, C. R. F., & Carmona, E. C. (2010). β-Xylosidases from filamentous fungi: an overview. World Journal of Microbiology and Biotechnology, 26(3), 389–407. doi:10.1007/s11274-009-0190-4.

    Article  CAS  Google Scholar 

  12. Fernandez-Lafuente, R. (2009). Stabilization of multimeric enzymes: strategies to prevent subunit dissociation. Enzyme and Microbial Technology, 45(6–7), 405–418. doi:10.1016/j.enzmictec.2009.08.009.

    Article  CAS  Google Scholar 

  13. Aragon, C. C., Mateo, C., Ruiz-Matute, A. I., Corzo, N., Fernandez-Lorente, G., Sevillano, L., & Guisan, J. M. (2013). Production of xylo-oligosaccharides by immobilized-stabilized derivatives of endo-xylanase from Streptomyces halstedii. Process Biochemistry, 48(3), 478–483. doi:10.1016/j.procbio.2013.01.010.

    Article  CAS  Google Scholar 

  14. Driss, D., Haddar, A., Ghorbel, R., & Chaabouni, S. E. (2014). Production of xylooligosaccharides by immobilized His-tagged recombinant xylanase from Penicillium occitanis on nickel-chelate Eupergit C. Applied Biochemistry and Biotechnology, 173(6), 1405–1418. doi:10.1007/s12010-014-0932-0.

    Article  CAS  Google Scholar 

  15. Liu, M., Huo, W., Xu, X., & Jin, D. (2015). An immobilized bifunctional xylanase on carbon-coated chitosan nanoparticles with a potential application in xylan-rich biomass bioconversion. Journal of Molecular Catalysis B: Enzymatic, 120, 119–126. doi:10.1016/j.molcatb.2015.07.002.

    Article  CAS  Google Scholar 

  16. Terrasan, C. R. F., Aragon, C. C., Masui, D. C., Pessela, B. C., Fernandez-Lorente, G., Carmona, E. C., & Guisan, J. M. (2016). β-xylosidase from Selenomonas ruminantium: immobilization, stabilization and application for xylooligosaccharide hydrolysis. Biocatalysis and Biotransformation (in print).

  17. Terrasan, C. R. F., Temer, B., Duarte, M. C. T., & Carmona, E. C. (2010). Production of xylanolytic enzymes by Penicillium janczewskii. Bioresource Technology, 101(11), 4139–4143. doi:10.1016/j.biortech.2010.01.011.

    Article  CAS  Google Scholar 

  18. Temer, B., Terrasan, C. R. F., & Carmona, E. C. (2014). α-L-arabinofuranosidase from Penicillium janczewskii: production with brewer’s spent grain and orange waste. African Journal of Biotechnology, 13(17), 1796–1806. doi:10.5897/AJB2013.13361.

    Article  CAS  Google Scholar 

  19. Terrasan, C. R. F., Guisan, J. M., & Carmona, E. C. (2016). Xylanase and β-xylosidase from Penicillium janczewskii: purification, characterization and hydrolysis of substrates. Electronic Journal of Biotechnology, 19(5), 54–62. doi:10.1016/j.ejbt.2016.08.001.

    Article  Google Scholar 

  20. Terrasan, C. R. F., Trobo-Maseda, L., Moreno-Pérez, S., Carmona, E. C., Pessela, B. C., & Guisan, J. M. (2016). Co-immobilization and stabilization of xylanase, β-xylosidase and α-L-arabinofuranosidase from Penicillium janczewskii for arabinoxylan hydrolysis. Process Biochemistry, 51(5), 614–623. doi:10.1016/j.procbio.2016.02.014.

    Article  Google Scholar 

  21. Kersters-Hilderson, H., Claeyssens, M., Van Doorslaer, E., Saman, E., & De Bruyne, C. K. (1982). Complex Carbohydrates Part D. Methods in Enzymology, vol 83. Elsevier. doi:10.1016/0076–6879(82)83062-0.

  22. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. The Journal of Biological Chemistry, 193(1), 265–275.

    CAS  Google Scholar 

  23. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259), 680–685. doi:10.1038/227680a0.

    Article  CAS  Google Scholar 

  24. Mateo, C., Palomo, J. M., Fuentes, M., Betancor, L., Grazu, V., López-Gallego, F., & Guisán, J. M. (2006). Glyoxyl agarose: a fully inert and hydrophilic support for immobilization and high stabilization of proteins. Enzyme and Microbial Technology, 39(2), 274–280. doi:10.1016/j.enzmictec.2005.10.014.

    Article  CAS  Google Scholar 

  25. Fernandez-Lafuente, R., Rosell, C. M., Rodriguez, V., Santana, C., Soler, G., Bastida, A., & Guisán, J. M. (1993). Preparation of activated supports containing low pK amino groups. A new tool for protein immobilization via the carboxyl coupling method. Enzyme and Microbial Technology, 15(7), 546–550. doi:10.1016/0141-0229(93)90016-U.

    Article  CAS  Google Scholar 

  26. Mateo, C., Pessela, B. C. C., Fuentes, M., Torres, R., Betancor, L., Hidalgo, A., & Guisan, J. M. (2006). Stabilization of multimeric enzymes via immobilization and further cross-linking with aldehyde-dextran. 22, 129–41. doi:10.1007/978–1–59745-053-9_12.

  27. Fernandez-Lafuente, R., Rosell, C. M., Rodriguez, V., & Guisan, J. M. (1995). Strategies for enzyme stabilization by intramolecular crosslinking with bifunctional reagents. Enzyme and Microbial Technology, 17(6), 517–523. doi:10.1016/0141-0229(94)00090-E.

    Article  CAS  Google Scholar 

  28. Betancor, L., López-Gallego, F., Alonso-Morales, N., Dellamora, G., Mateo, C., Fernandez-Lafuente, R., & Guisan, J. (2006). Glutaraldehyde in protein immobilization. In J. M. Guisan (Ed.), Immobilization of enzymes and cells SE – 5, vol 22 (pp 57–64). Humana Press. doi:10.1007/978–1–59745-053-9_5.

  29. Ito, T., Yokoyama, E., Sato, H., Ujita, M., Funaguma, T., Furukawa, K., & Hara, A. (2003). Xylosidases associated with the cell surface of Penicillium herquei IFO 4674. Journal of Bioscience and Bioengineering, 96(4), 354–359. doi:10.1016/S1389-1723(03)90136-8.

    Article  CAS  Google Scholar 

  30. Wakiyama, M., Yoshihara, K., Hayashi, S., & Ohta, K. (2008). Purification and properties of an extracellular β-xylosidase from Aspergillus japonicus and sequence analysis of the encoding gene. Journal of Bioscience and Bioengineering, 106(4), 398–404. doi:10.1263/jbb.106.398.

    Article  CAS  Google Scholar 

  31. Knob, A., & Carmona, E. C. (2011). Purification and properties of an acid β-xylosidase from Penicillium sclerotiorum. Annals of Microbiology, 62(2), 501–508. doi:10.1007/s13213-011-0282-x.

    Article  Google Scholar 

  32. Díaz-Malváez, F. I., García-Almendárez, B. E., Hernández-Arana, A., Amaro-Reyes, A., & Regalado-González, C. (2013). Isolation and properties of β-xylosidase from Aspergillus niger GS1 using corn pericarp upon solid state fermentation. Process Biochemistry, 48(7), 1018–1024. doi:10.1016/j.procbio.2013.05.003.

    Article  Google Scholar 

  33. Nieto-Domínguez, M., de Eugenio, L. I., Barriuso, J., Prieto, A., Fernández de Toro, B., Canales-Mayordomo, A., & Martínez, M. J. (2015). Novel pH-stable glycoside hydrolase family 3 β-xylosidase from Talaromyces amestolkiae: an enzyme displaying regioselective transxylosylation. Applied and Environmental Microbiology, 81(18), 6380–6392. doi:10.1128/AEM.01744-15.

    Article  Google Scholar 

  34. Rizzatti, A. C., Jorge, J. A., Terenzi, H. F., Rechia, C. G., & Polizeli, M. L. (2001). Purification and properties of a thermostable extracellular beta-D-xylosidase produced by a thermotolerant Aspergillus phoenicis. Journal of Industrial Microbiology & Biotechnology, 26(3), 156–160. doi:10.1038/sj/jim/7000107.

    Article  CAS  Google Scholar 

  35. Lenartovicz, V., Marques De Souza, C. G., Guillen Moreira, F., & Peralta, R. M. (2003). Temperature and carbon source affect the production and secretion of a thermostable β-xylosidase by Aspergillus fumigatus. Process Biochemistry, 38(12), 1775–1780. doi:10.1016/S0032-9592(02)00261-3.

    Article  CAS  Google Scholar 

  36. Matsuo, M., Fujie, A., Win, M., & Yasui, T. (1987). Four types of beta-xylosidases from Penicillium wortmanni IFO 7237. Agricultural and Biological Chemistry, 51(9), 2367–2379. doi:10.1271/bbb1961.51.2367.

    CAS  Google Scholar 

  37. Kumar, S., & Ramón, D. (1996). Purification and regulation of the synthesis of a β-xylosidase from Aspergillus nidulans. FEMS Microbiology Letters, 135(2–3), 287–293. doi:10.1111/j.1574-6968.1996.tb08003.x.

    CAS  Google Scholar 

  38. Bolivar, J. M., Wilson, L., Ferrarotti, S. A., Fernandez-Lafuente, R., Guisan, J. M., & Mateo, C. (2006). Stabilization of a formate dehydrogenase by covalent immobilization on highly activated glyoxyl-agarose supports. Biomacromolecules, 7(3), 669–673. doi:10.1021/bm050947z.

    Article  CAS  Google Scholar 

  39. Jordan, D. B., Li, X. L., Dunlap, C. A., Whitehead, T. R., & Cotta, M. A. (2007). β-D-xylosidase from Selenomonas ruminantium of glycoside hydrolase family 43. Applied Biochemistry and Biotechnology, 137–40, 93–104. doi:10.1007/s12010-007-9042-6.

    Google Scholar 

Download references

Acknowledgements

This work was partially sponsored by FAPESP (Project 2010/16582-0) and the Spanish Ministry of Science and Innovation (Project BIO-2012-36861). C.R.F.T. gratefully acknowledges PROPe/UNESP and CAPES/Ministry of Education, Brazil, through the Program Science Without Borders for the postdoctoral scholarship (3134-13-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to César Rafael Fanchini Terrasan.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

Stability of BXYL I from P. janczewskii in pH 10.0 medium with polyethylene glycol. Incubation was carried out with 0.1 M sodium bicarbonate buffer pH 10.0 containing 50% (w/v) PEG MW 6000 and 35,000 in an ice-bath and at room temperature. The activity was assayed in 0.05 M sodium acetate buffer pH 5.0 at 25 °C. Incubation was carried out at room temperature (dashed lines) and in an ice-cold bath (full lines). β-xylosidase activity (%) in medium with PEG (, ▵) 6000 and (, ) PEG 35,000 (JPEG 107 kb)

High Resolution Image (EPS 6 kb)

ESM 2

Immobilization course of BXYL I from P. janczewskii on glyoxyl agarose. Immobilization was performed in 0.1 M sodium bicarbonate buffer pH 10.0 containing 50% (w/v) PEG MW 35,000. Immobilization was initially performed in an ice-cold bath and subsequently the temperature was allowed to gradually increase to room temperature (≈ 25 °C). The activity was assayed in 0.05 M sodium acetate buffer pH 5.0 at 25 °C. β-xylosidase activity (%) in the (●) control, () supernatant and () suspension. Vertical dashed line indicates the change in incubation temperature (JPEG 120 kb)

High Resolution Image (EPS 4 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Terrasan, C.R.F., Romero-Fernández, M., Orrego, A.H. et al. Immobilization and Stabilization of Beta-Xylosidases from Penicillium janczewskii . Appl Biochem Biotechnol 182, 349–366 (2017). https://doi.org/10.1007/s12010-016-2331-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2331-1

Keywords

Navigation