Skip to main content
Log in

The Role of the Pyruvate Acetyl-CoA Switch in the Production of 1,3-Propanediol by Klebsiella pneumoniae

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Pyruvate dehydrogenase-complex (AcoABCD) and pyruvate formate-lyase (PFL) are two pathways responsible for synthesis of acetyl-CoA from pyruvate (pyruvate acetyl-CoA switch). The two pathways were individually deleted in Klebsiella pneumoniae, and the role of the pyruvate acetyl-CoA switch in 1,3-propanediol production was investigated. Fermentation results showed that the two pathways were both active in the wild-type strain. Acetyl-CoA formation between the two pathways was equal in the wild-type strain. The pflB mutant produced high level of lactic acid, and deletion of ldhA eliminated lactic acid synthesis. The conversion ratio of glycerol to 1,3-propanediol in the pflB-ldhA mutant reached 0.541 g/g, which was 9.4 % higher than that of the wild-type strain. However, the productivity of 1,3-propanediol was decreased in the pflB-ldhA mutant. In contrast, the productivity of 1,3-propanediol was increased by 19 % in the acoABCD mutant, with the disadvantage of lower substrate conversion ratio. Regulating the pyruvate acetyl-CoA switch presents a novel way to improve the conversion ratio or productivity of 1,3-propanediol produced by K. pneumoniae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alexeeva, S., de Kort, B., Sawers, G., Hellingwerf, K. J., & de Mattos, M. J. T. (2000). Effects of limited aeration and of the ArcAB system on intermediary pyruvate catabolism in Escherichia coli. Journal of Bacteriology, 182, 4934–4940.

    Article  CAS  Google Scholar 

  2. Ashok, S., Raj, S. M., Rathnasingh, C., & Park, S. (2011). Development of recombinant Klebsiella pneumoniae ∆dhaT strain for the co-production of 3-hydroxypropionic acid and 1, 3-propanediol from glycerol. Applied Microbiology and Biotechnology, 90, 1253–1265.

    Article  CAS  Google Scholar 

  3. Chen, C., Wei, D., Shi, J., Wang, M., & Hao, J. (2014). Mechanism of 2,3-butanediol stereoisomer formation in Klebsiella pneumoniae. Applied Microbiology and Biotechnology, 98, 4603–4613.

    Article  CAS  Google Scholar 

  4. Feldmann, S., Sprenger, G. A., & Sahm, H. (1989). Ethanol production from xylose with a pyruvate-formate-lyase mutant of Klebsiella planticola carrying a pyruvate-decarboxylase gene from Zymomonas mobilis. Applied Microbiology and Biotechnology, 31, 152–157.

    Article  CAS  Google Scholar 

  5. Gust, B., Challis, G. L., Fowler, K., Kieser, T., & Chater, K. F. (2003). PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proceedings of the National Academy of Sciences, 100, 1541.

    Article  CAS  Google Scholar 

  6. Hao, J., Lin, R., Zheng, Z., Liu, H., & Liu, D. (2008). Isolation and characterization of microorganisms able to produce 1, 3-propanediol under aerobic conditions. World Journal of Microbiology and Biotechnology, 24, 1731–1740.

    Article  CAS  Google Scholar 

  7. Hasegawa, T., Hashimoto, K.-I., Kawasaki, H., & Nakamatsu, T. (2008). Changes in enzyme activities at the pyruvate node in glutamate-overproducing Corynebacterium glutamicum. Journal of Bioscience and Bioengineering, 105, 12–19.

    Article  CAS  Google Scholar 

  8. Huang, Y., Li, Z., Shimizu, K., & Ye, Q. (2012). Simultaneous production of 3-hydroxypropionic acid and 1, 3-propanediol from glycerol by a recombinant strain of Klebsiella pneumoniae. Bioresource Technology, 103, 351–359.

    Article  CAS  Google Scholar 

  9. Jung, M.-Y., Mazumdar, S., Shin, S. H., Yang, K.-S., Lee, J., & Oh, M.-K. (2014). Improvement of 2, 3-butanediol yield in Klebsiella pneumoniae by deletion of the pyruvate formate-lyase gene. Applied and Environmental Microbiology, 80, 6195–6203.

    Article  Google Scholar 

  10. Melchiorsen, R. C., Jokumsen, V. K., Villadsen, J., Israelsen, H., & Arnau, J. (2002). The level of pyruvate-formate lyase controls the shift from homolactic to mixed-acid product formation in Lactococcus lactis. Applied Microbiology and Biotechnology, 58, 338–344.

    Article  CAS  Google Scholar 

  11. Menzel, K., Ahrens, K., Zeng, A. P., & Deckwer, W. D. (1998). Kinetic, dynamic, and pathway studies of glycerol metabolism by Klebsiella pneumoniae in anaerobic continuous culture: IV. Enzymes and fluxes of pyruvate metabolism. Biotechnol. Bioeng., 60, 617–626.

    Article  CAS  Google Scholar 

  12. Park, J. M., Song, H., Lee, H. J., & Seung, D. (2013). In silico aided metabolic engineering of Klebsiella oxytoca and fermentation optimization for enhanced 2, 3-butanediol production. Journal of Industrial Microbiology & Biotechnology, 40, 1057–1066.

    Article  CAS  Google Scholar 

  13. Singh, A., Lynch, M. D., & Gill, R. T. (2009). Genes restoring redox balance in fermentation-deficient E. coli NZN111. Metabolic Engineering, 11, 347–354.

    Article  CAS  Google Scholar 

  14. Utrilla, J., Gosset, G., & Martinez, A. (2009). ATP limitation in a pyruvate formate lyase mutant of Escherichia coli MG1655 increases glycolytic flux to D-lactate. Journal of Industrial Microbiology & Biotechnology, 36, 1057–1062.

    Article  CAS  Google Scholar 

  15. Wang, D., Wang, C., Wei, D., Shi, J., Kim, C. H., Jiang, B., Han, Z., & Hao, J. (2016). Gluconic acid production by gad mutant of Klebsiella pneumoniae. World Journal of Microbiology and Biotechnology, 32, 132.

    Article  Google Scholar 

  16. Wang, D., Zhou, J., Chen, C., Wei, D., Shi, J., Jiang, B., Liu, P., & Hao, J. (2015). R-acetoin accumulation and dissimilation in Klebsiella pneumoniae. Journal of Industrial Microbiology & Biotechnology, 42, 1–11.

    Article  Google Scholar 

  17. Wei, D., Wang, M., Jiang, B., Shi, J., & Hao, J. (2014). Role of dihydroxyacetone kinases I and II in the dha regulon of Klebsiella pneumoniae. Journal of Biotechnology, 177, 13–19.

    Article  CAS  Google Scholar 

  18. Wei, D., Wang, M., Shi, J., & Hao, J. (2012). Red recombinase assisted gene replacement in Klebsiella pneumoniae. Journal of Industrial Microbiology & Biotechnology, 39, 1219–1226.

    Article  CAS  Google Scholar 

  19. Wei, D., Xu, J., Sun, J., Shi, J., & Hao, J. (2013). 2-Ketogluconic acid production by Klebsiella pneumoniae CGMCC 1.6366. Journal of Industrial Microbiology & Biotechnology, 40, 561–570.

    Article  CAS  Google Scholar 

  20. Witt, U., Müller, R. J., Augusta, J., Widdecke, H., & Deckwer, W. D. (1994). Synthesis, properties and biodegradability of polyesters based on 1, 3-propanediol. Macromolecular Chemistry and Physics, 195, 793–802.

    Article  CAS  Google Scholar 

  21. Xu, Y. Z., Guo, N. N., Zheng, Z. M., Ou, X. J., Liu, H. J., & Liu, D. H. (2009). Metabolism in 1, 3-propanediol fed-batch fermentation by a D-lactate deficient mutant of Klebsiella pneumoniae. Biotechnology and Bioengineering, 104, 965–972.

    Article  CAS  Google Scholar 

  22. Zeng, A.-P., & Biebl, H. (2002). Bulk chemicals from biotechnology: the case of 1, 3-propanediol production and the new trends. Advances in Biochemical Engineering/Biotechnology, 74, 239–259.

    Article  CAS  Google Scholar 

  23. Zeng, A. P., Menzel, K., & Deckwer, W. D. (1996). Kinetic, dynamic, and pathway studies of glycerol metabolism by Klebsiella pneumoniae in anaerobic continuous culture: II. Analysis of metabolic rates and pathways under oscillation and steady-state conditions. Biotechnol. Bioeng., 52, 561–571.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the KRIBB Research Initiative Program (Grant No. KGM2211531), Chinese Academy of Sciences President’s International Fellowship Initiative (Grant No. 2015VBA029), and National Natural Science Foundation of China (Grant No. 20906076, 21576279).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Min Wang or Jian Hao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Wang, D., Wang, C. et al. The Role of the Pyruvate Acetyl-CoA Switch in the Production of 1,3-Propanediol by Klebsiella pneumoniae . Appl Biochem Biotechnol 181, 1199–1210 (2017). https://doi.org/10.1007/s12010-016-2278-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2278-2

Keywords

Navigation