Skip to main content
Log in

Penicillium purpurogenum produces a highly stable endo-β-(1,4)-galactanase

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The polysaccharides of galactose present in the pectin of the plant cell wall are degraded by endo-β-1,4-galactanases. The filamentous fungus Penicillium purpurogenum, which grows on a number of natural carbon sources, among them sugar beet pulp which contains pectin, has a gene (ppgal1) coding an endo-β-1,4-galactanase (PpGAL1). This enzyme was expressed heterologously in Pichia pastoris. It has a molecular mass of 38 kDa, a pH optimum of 4–4.5, and an optimal temperature of 60 °C. It is 100 % stable for up to 24 h at pH 4–4.5 and 40 °C. These stability properties, which exceed those from other endo-β-1,4-galactanases reported to date, make it particularly suitable for industrial processes requiring acidic conditions and temperatures up to 40 °C. PpGAL1 is, therefore, a potentially effective tool in the food industry and in other biotechnological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Voragen, A. G. J., Coenen, G. J., Verhoef, R. P., & Schols, H. (2009). Pectin, a versatile polysaccharide present in plant cell walls. Structural Chemistry, 20, 263–275.

    Article  CAS  Google Scholar 

  2. Sakamoto, T., & Ishimaru, M. (2013). Peculiarities and applications of galactanolytic enzymes that act on type I and II arabinogalactans. Applied Microbiology and Biotechnology, 9, 5201–5213.

    Article  Google Scholar 

  3. Henrissat, B., & Davies, G. J. (1997). Structural and sequence-based classification of glycoside hydrolases. Current Opinion in Structural Biology, 7, 637–644.

    Article  CAS  Google Scholar 

  4. Lombard, V., Ramulu, H. G., Drula, E., Coutinho, P. M., & Henrissat, B. (2014). The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Research, 42, D490–D495.

    Article  CAS  Google Scholar 

  5. Ryttersgaard, C., Lo Leggio, L., Coutinho, P. M., Henrissat, B., & Larsen, S. (2002). Aspergillus aculeatus β-1,4-galactanase: substrate recognition and relations to other glycoside hydrolases in clan GH-A. Biochemistry, 41, 15135–15143.

    Article  CAS  Google Scholar 

  6. Ryttersgaard, C., Le Nours, J., Lo Leggio, L., Jørgensen, C. T., Christensen, L. L. H., Bjørnvad, M., & Larsen, S. (2004). The structure of endo-β-1,4-galactanase from Bacillus licheniformis in complex with two oligosaccharide products. Journal of Molecular Biology, 341, 107–117.

    Article  CAS  Google Scholar 

  7. Otten, H., Michalak, M., Mikkelsen, J. D., & Larsen, D. (2013). The binding of zinc ions to Emericella nidulans endo-beta-1,4-galactanase is essential for crystal formation. Acta Crystallographica. Section F, Structural Biology and Crystallization Communications, 69, 850–854.

    Article  CAS  Google Scholar 

  8. Le Nours, J., Ryttersgaard, C., Lo Leggio, L., Østergaard, P. R., Borchert, T. V., Christensen, L. L. H., & Larsen, S. (2003). Structure of two fungal β-1,4- galactanases: searching for the basis for and pH optimum. Protein Science, 12, 1195–1204.

    Article  Google Scholar 

  9. Braithwaite, K. L., Barna, T., Spurway, T. D., Charnock, S. J., Black, G. W., Hughes, N., Lakey, J. H., Virden, R., Hazlewood, G. P., Henrissat, B., & Gilbert, H. J. (1997). Evidence that galactanases from Pseudomonas fluorescens subspecies cellulosa is a retaining family 53 glycosyl hydrolase in which E161 and E270 are the catalytic residues. The Biochemical Journal, 36, 15489–15500.

    Article  CAS  Google Scholar 

  10. Yang, H., Ichinose, H., Yoshida, M., Nakajima, M., Kobayashi, H., & Kaneko, S. (2006). Characterization of a thermostable endo-β-1,4-D-galactanase from the hyperthermophile Thermotoga maritima. Bioscience, Biotechnology, and Biochemistry, 70, 538–541.

    Article  CAS  Google Scholar 

  11. Larsen, D. M., Nyffenegger, C., Swiniarska, M. M., Thygesen, A., Strube, M. L., Meyer, A. S., & Mikkelsen, J. D. (2014). Thermostability enhancement of an endo-1, 4-β-galactanase from Talaromyces stipitatus by site-directed mutagenesis. Applied Microbiology and Biotechnology, 99, 4245–4253.

    Article  Google Scholar 

  12. Fujimoto, H., Nakano, H., Isomura, M., Kitahata, S., & Ajisaka, K. (1997). Enzymatic Synthesis of oligosaccharides containing Gal β→4Gal disaccharide at the non-reducing end using β-galactanase from Penicillium citrinum. Bioscience, Biotechnology, and Biochemistry, 61, 1258–1261.

    Article  CAS  Google Scholar 

  13. Van Laere, K., & Wissing, J. (2002). Nutritional composition with health promoting action containing oligo-saccharides. Patent: WO2002051264A2.

  14. Ni, Y., Yates, K. M., & Zarzycki, R. (1999). Aloe pectins. Patent: US5929051A.

  15. Fanaro, S., Boehm, G., Garssen, J., Knol, J., Mosca, F., Stahl, B., & Vigi, V. (2005). Galacto‐oligosaccharides and long‐chain fructo‐oligosaccharides as prebiotics in infant formulas: a review. Acta Paediatrica, 94, 22–26.

    Article  Google Scholar 

  16. Michalak, M., Thomassen, L. V., Roytio, H., Ouwehand, A. C., Meyer, A. S., & Mikkelsen, J. D. (2012). Expression and characterization of an endo-1,4-β-galactanase from Emericella nidulans in Pichia pastoris for enzymatic design of potentially prebiotic oligosaccharides from potato galactans. Enzyme and Microbial Technology, 50, 121–129.

    Article  CAS  Google Scholar 

  17. Heldt-Hansen, H. P., Kofod, L. V., Budolfsen, G., Nielsen, P. M., Hüttel, S., & Bladt, T. (1996). Application of tailormade pectinases. Progress in Biotechnology, 14, 463–474.

    Article  CAS  Google Scholar 

  18. Hwang, J., Pyun, Y. R., & Kokini, J. L. (1993). Side chains of pectins: some thoughts on their role in plant cell walls and foods. Food Hydrocolloids, 7, 39–53.

    Article  CAS  Google Scholar 

  19. Sørensen, S. O., Pauly, M., Bush, M., Skjøt, M., McCann, M. C., Borkhardt, B., & Ulvskov, P. (2000). Pectin engineering: modification of potato pectin by in vivo expression of an endo-β-1,4-D-galactanase. Proceedings of the National Academy of Sciences of the United States of America, 97, 7639–7644.

    Article  Google Scholar 

  20. Batie, C. J., Crabb, G., Aux, G. W., Cates, E. S., Dinwiddie, J. A., Silverstone, A. R., Quadt, R., & Miller; C. A. (2008). Process for starch liquefaction and fermentation. Patent: US20080299256A1.

  21. Wietgrefe, G., & Bregger, T. (2013). Systems and processes for producing biofuels from biomass. Patent US20130052709A1.

  22. Eisele, T. A., & Drake, S. R. (2005). The partial compositional characteristics of apple juice from 175 apple varieties. Journal of Food Composition and Analysis, 18, 213–221.

    Article  CAS  Google Scholar 

  23. Hurdequint, L., Hurdequint, P., & Ducroo, P. (1994). Method for controlled enzymatic retting of bast fibres and enzymatic retting solution. Patent: WO1994013868A1.

  24. Chereau, D., Decock, B., Fourtot-Brun, C., Lefevre, J., & Petrich-Murray, H. (1995). Enzymatic retting method. Patent: WO1995016808A1.

  25. Knap, I. H., Kofod, L. V., & Ohmann, A. (1997). Animal feed additives. Patent: WO1997016982A1.

  26. Lassen, S. F., Sjoeholm, C., Oestergaard, P, R., & Fischer, M. (2008). Proteases. Patent: US20080286415A1.

  27. Johansen, C. (1998). A method for enzymatic treatment of biofilm. Patent: WO1998026807A1.

  28. Shirai, T., Ishida, H., Noda, J. I., Yamane, T., Ozaki, K., Hakamada, Y., & Ito, S. (2001). Crystal structure of alkaline cellulase K: insight into the alkaline adaptation of an industrial enzyme. Journal of Molecular Biology, 310, 1079–1087.

    Article  CAS  Google Scholar 

  29. Ralet, M. C., Thibault, J. F., & Della Valle, G. (1991). Solubilization of sugar-beet pulp cell wall polysaccharides by extrusion cooking. Lebensmittel-Wissenschaft und Technologie, 24, 107–112.

    CAS  Google Scholar 

  30. Hidalgo, M., Steiner, J., & Eyzaguirre, J. (1992). β-Glucosidase from Penicillium purpurogenum: purification and properties. Biotechnology and Applied Biochemistry, 15, 185–191.

    CAS  Google Scholar 

  31. Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 1959(31), 426–428.

    Article  Google Scholar 

  32. Rabiu, B. A., Jay, A. J., Gibson, G. R., & Rastall, R. A. (2001). Synthesis and fermentation properties of novel galacto-oligosaccharides by β-galactosidases from Bifidobacterium species. Applied and Environmental Microbiology, 67, 2526–2530.

    Article  CAS  Google Scholar 

  33. González-Vogel, A., Eyzaguirre, J., Oleas, G., Callegari, E., & Navarrete, M. (2011). Proteomic analysis in non-denaturing condition of the secretome reveals the presence of multienzyme complexes in Penicillium purpurogenum. Applied Microbiology and Biotechnology, 89, 145–155.

    Article  Google Scholar 

  34. Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30, 2725–2729.

    Article  CAS  Google Scholar 

  35. Saitou, N., & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406–425.

    CAS  Google Scholar 

  36. Nei, M., & Kumar, S. (2000). Molecular evolution and phylogenetics. New York: Oxford University Press.

    Google Scholar 

  37. Yin, Y., Mao, X., Yang, J. C., Chen, X., Mao, F., & Xu, Y. (2012). dbCAN: a web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Research, 40, 445–451.

    Article  Google Scholar 

  38. Nakano, H., Takenishi, S., & Watanabe, Y. (1985). Purification and properties of two galactanases from Penicillium citrinum. Agricultural and Biological Chemistry, 49, 3445–3454.

    CAS  Google Scholar 

  39. Sakamoto, T., Nishimura, Y., Makino, Y., Sunagawa, Y., & Harada, N. (2013). Biochemical characterization of a GH53 endo-β-1,4-galactanase and a GH35 exo-β-1,4-galactanase from Penicillium chrysogenum. Applied Microbiology and Biotechnology, 97, 2895–2906.

    Article  CAS  Google Scholar 

  40. Saulnier, L., & Thibault, J. F. (1999). Ferulic acid and diferulic acids as components of sugar-beet pectins and maize bran heteroxylans. Journal of the Science of Food and Agriculture, 79, 396–402.

    Article  CAS  Google Scholar 

  41. de Vries, R. P., Pařenicová, L., Hinz, S. W., Kester, H., Beldman, G., Benen, J. A., & Visser, J. (2002). The β‐1,4‐endogalactanase A gene from Aspergillus niger is specifically induced on arabinose and galacturonic acid and plays an important role in the degradation of pectic hairy regions. European Journal of Biochemistry, 269, 4985–4993.

    Article  Google Scholar 

  42. Niu, J., Homan, T. G., Arentshorst, M., de Vries, R. P., Visser, J., & Ram, A. F. (2015). The interaction of induction and repression mechanisms in the regulation of galacturonic acid-induced genes in Aspergillus niger. Fungal Genetics and Biology, 82, 32–42.

    Article  CAS  Google Scholar 

  43. Higgins, D. R., & Cregg, J. M. (1998). Introduction to Pichia pastoris. In D. R. Higgins & J. M. Cregg (Eds.), Methods in molecular biology. Vol. 103: Pichia protocols (pp. 8–10). Totowa: Humana press.

    Chapter  Google Scholar 

  44. Bornhorst, J. A., & Falke, J. J. (2000). Purification of proteins using polyhistidine affinity tags. Methods in Enzymology, 326, 245–254.

    Article  CAS  Google Scholar 

  45. Fu, J., Prade, R., & Mort, A. (2001). Expression and action pattern of Botryotinia fuckeliana (Botrytis cinerea) rhamnogalacturonan hydrolase in Pichia pastoris. Carbohydrate Research, 330, 73–81.

    Article  CAS  Google Scholar 

  46. Dutta, S., & Wu, K. C. W. (2014). Enzymatic breakdown of biomass: enzyme active sites, immobilization, and biofuel production. Green Chemistry, 16, 4615–4626.

    Article  CAS  Google Scholar 

  47. Kaya, M., Sousa, A. G., Crépeau, M. J., Sørensen, S. O., & Ralet, M. C. (2014). Characterization of citrus pectin samples extracted under different conditions: influence of acid type and pH of extraction. Annals of Botany, 114, 1319–1326.

    Article  Google Scholar 

  48. Kimura, I., Yoshioka, N., & Tajima, S. (1998). Purification and characterization of an endo-1,4-β-D-galactanase from Aspergillus sojae. Journal of Fermentation and Bioengineering, 85, 48–52.

    Article  CAS  Google Scholar 

  49. van de Vis, J. W., Searle-van Leeuwen, M. J. F., Siliha, H. A., Kormelink, F. J. M., & Voragen, A. G. J. (1991). Purification and characterization of endo-1,4-β-D-galactanases from Aspergillus niger and Aspergillus aculeatus: use in combination with arabinases from Aspergillus niger in enzymic conversion of potato arabinogalactan. Carbohydrate Polymers, 16, 167–187.

    Article  Google Scholar 

  50. Kikuchi, T., Jones, J. T., Aikawa, T., Kosaka, H., & Ogura, N. (2004). A family of glycosyl hydrolase family 45 cellulases from the pine wood nematode Bursaphelenchus xylophilus. FEBS Letters, 572, 201–205.

    Article  CAS  Google Scholar 

  51. van den Brink, J., & de Vries, R. P. (2011). Fungal enzyme sets for plant polysaccharide degradation. Applied Microbiology and Biotechnology, 91, 1477–1492.

    Article  CAS  Google Scholar 

  52. Labavitch, J. M., Freeman, L. E., & Albersheim, P. (1976). Structure of plant cell walls. Purification and characterization of a β-1,4-galactanase which degrades a structural component of the primary cell walls of dicots. The Journal of Biological Chemistry, 251, 5904–5910.

    CAS  Google Scholar 

  53. Payne, C. M., Bomble, Y. J., Taylor, C. B., McCabe, C., Himmel, M. E., Crowley, M. F., & Beckham, G. T. (2001). Multiple functions of aromatic-carbohydrate interactions in a processive cellulase examined with molecular simulation. The Journal of Biological Chemistry, 286, 41028–41035.

    Article  Google Scholar 

  54. Davies, G., & Henrissat, B. (1995). Structures and mechanisms of glycosyl hydrolases. Structure, 3, 853–859.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by grants from FONDECYT (1130180), Universidad Andrés Bello (DI-478-14/R and DI-31-12/R)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaime Eyzaguirre.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Analysis of the ppgal1 promoter. The GARE element (5′ TCCNCCAAT 3′) at -693 is highlighted in green. CREA binding sites at -353, -396, -503, -779, -784, -839 are shown in yellow. G underlined indicates a nucleotide shared by two CREA binding sites. (DOC 30 kb)

Fig. S2

Identification of the GARE element in fungal promoters. The GARE element (5′ TCCNCCAAT 3′), in green, is found in the promoters of the endo-β-1,4-galactanase gen of A. aculeatus (-335), A. niger (-299), E. nidulans (-195), P. chrysogenum (-346) and T. stipitatus (-154). Purple background indicates a nucleotide not conserved in GARE. (DOC 36 kb)

Fig. S3

Model of the molecular surface of the PpGAL1. a. Side view of the model. b. Front view of the model. The acid/base residue (Glu156) is indicated in yellow and the nucleophilic residue (Glu 267) in green. The image was obtained by means of the Swiss-PDB Viewer program. (DOCX 202 kb)

Table S1

(DOCX 476 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zavaleta, V., Eyzaguirre, J. Penicillium purpurogenum produces a highly stable endo-β-(1,4)-galactanase. Appl Biochem Biotechnol 180, 1313–1327 (2016). https://doi.org/10.1007/s12010-016-2169-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2169-6

Keywords

Navigation