Skip to main content
Log in

Expression of the β-Glucanase Gene from Paenibacillus jamilae Bg1 in Pichia pastoris and Characteristics of the Recombinant Enzyme

  • PRODUCERS, BIOLOGY, SELECTION, AND GENE ENGINEERING
  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

The isolation, heterologous expression, and characterization of a new, thermostable β-glucanase from Paenibacillus jamilae are described. The bgl26 gene from the P. jamilae Bg1 VKPM B-13 093 strain, which consists of 714 nucleotides, encodes endo-1,3-1,4-β-glucanase (EC 3.2.1.73), which contains 213 amino acids and 24 residues of the putative signal peptide in the N-terminal region. The nucleotide sequence of the bgl26 gene and the amino acid sequence of the mature Bgl26 protein have the greatest homology with the sequences of the Paenibacillus macerans endo-1,3-1,4-β-glucanase (82 and 88%, respectively). A gene fragment encoding the mature protein was expressed in Pichia pastoris. The purified recombinant enzyme Bgl26 was active against barley β-glucan. The optimal pH for the enzyme activity was 7.0, and the optimum temperature range was 40–45°C. The specific β-glucanase activity was at the level of 6650 U/mg of protein; KM and Vmax were equal to 6.4 ± 0.3 mg/mL and 9450.1 ± 471.2 μmol/(min mg), respectively. The recombinant protein Bgl26 was characterized by a high pH and thermal stability, as well as resistance to digestive enzymes. It was also shown that Co2+ ions have a positive effect on enzyme activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. McCarthy, T., Hanniffy, O., Savage, A.V., and Tuohy, M.G., Catalytic properties and mode of action of three endo-β-glucanases from Talaromyces emersonii on soluble β-1,4-and β-1,3; 1,4-linked glucans, Int. J. Biol. Macromol., 2003, vol. 33, no. 1 (3), pp. 141–148. https://doi.org/10.1016/S0141-8130(03)00080-1

  2. Ekinci, M.S., McCrae, S.I., and Flint, H.J., Isolation and overexpression of a gene encoding an extracellular beta-(1,3-1,4)-glucanase from Streptococcus bovis JB1, Appl. Environ. Microbiol. 1997, vol. 63, no. 10, pp. 3752–3756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Teng, D., Wang, J.H., Fan, Y., et al., Cloning of β-1, 3-1, 4-glucanase gene from Bacillus licheniformis EGW039 (CGMCC 0635) and its expression in Escherichia coli BL21 (DE3), Appl. Microbiol. Biotechnol., 2006, vol. 72, no. 4, pp. 705–712. https://doi.org/10.1007/s00253-006-0329-2

    Article  CAS  PubMed  Google Scholar 

  4. Huang, H., Yang, P., Luo, H., et al., High-level expression of a truncated 1,3-1,4-β-D-glucanase from Fibrobacter succinogenes in Pichia pastoris by optimization of codons and fermentation, Appl. Microbiol. Biotechnol., 2008, vol. 78, no. 1, pp. 95–103. https://doi.org/10.1007/s00253-007-1290-4

    Article  CAS  PubMed  Google Scholar 

  5. Martinez, M.J., Reyes, F., Lahoz, R., and Perez-Leblic, M.I., Lytic enzymes in autolysis of Botrytis cinerea,FEMS Microbiol. Lett., 1983, vol. 19, nos. 2–3, pp. 157–160. https://doi.org/10.1111/j.1574-6968.1983.tb00532.x

    Article  CAS  Google Scholar 

  6. Bang, M.L., Villadsen, I., and Sandal, T., Cloning and characterization of an endo-β-1,3 (4)glucanase and an aspartic protease from Phaffia rhodozyma CBS 6938, Appl. Microbiol. Biotechnol., 1999, vol. 51, no. 2, pp. 215–222.

    Article  CAS  PubMed  Google Scholar 

  7. Boyce, A. and Walsh, G., Production, purification and application-relevant characterisation of an endo-1,3 (4)-β-glucanase from Rhizomucor miehei,Appl. Microbiol.Biotechnol., 2007, vol. 76, no. 4, pp. 835–841. https://doi.org/10.1007/s00253-007-1058-x

    Article  CAS  PubMed  Google Scholar 

  8. Kawai, R., Igarashi, K., Yoshida, M., et al., Hydrolysis of β-1,3/1,6-glucan by glycoside hydrolase family 16 endo-1,3 (4)-β-glucanase from the basidiomycete Phanerochaete chrysosporium,Appl. Microbiol. Biotechnol., 2006, vol. 71, no. 6, pp. 898–906. https://doi.org/10.1007/s00253-005-0214-4

    Article  CAS  PubMed  Google Scholar 

  9. Martín-Cuadrado, A.B., Del Dedo, J.E., De Medina-Redondo, M., et al., The Schizosaccharomyces pombe endo-1,3-β-glucanase Eng1 contains a novel carbohydrate binding module required for septum localization, Mol. Microbiol., 2008, vol. 69, no. 1, pp. 188–200. https://doi.org/10.1111/j.1365-2958.2008.06275.x

    Article  CAS  PubMed  Google Scholar 

  10. Anderson, M.A. and Stone, B.A., A new substrate for investigating the specificity of β-glucan hydrolases, FEBS Lett., 1975, vol. 52, no. 2, pp. 202–207. https://doi.org/10.1016/0014-5793

  11. Almirall, M. and Esteve-Garcia, E., In vitro stability of a β-glucanase preparation from Trichoderma longibrachiatum and its effect in a barley based diet fed to broiler chicks, Anim. Feed Sci. Technol., 1995, vol. 54, nos. 1–4, pp. 149–158. https://doi.org/10.1016/0377-8401(94)00757-Z

  12. Choct, M., Enzymes supplementation of poultry diets based on viscous cereals, in Enzymes Farm Animal Nutrition, Bedford, M.R. and Partridge, G.G., Eds., Wallingford, UK: CAB Int., 2001, pp. 145–160.

    Google Scholar 

  13. Community Register of Feed Additives Pursuant to Regulation (EC) No. 1831/2003, Appendixes 3 and 4, Annex: List of Additives. European Commission 2007. http://ec.europa.eu/food.

  14. Vahjen, W. and Simon, O., Biochemical characteristics of non-starch polysaccharide hydrolyzing enzyme preparations designed as feed additives for poultry and piglet nutrition, Arch. Anim. Nutrit., 1999, vol. 52, no. 1, pp. 1–14.

    CAS  Google Scholar 

  15. Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding, Anal. Biochem., 1976, vol. 72, pp. 248–254.

    Article  CAS  PubMed  Google Scholar 

  16. Miller, G.L., Use of dinitrosalicylic acid reagent for determination of reducing sugar, Anal. Chem., 1959, vol. 31, no. 3, pp. 426–428.

    Article  CAS  Google Scholar 

  17. Borriss, R., Buettner, K., and Maentsaelae, P., Structure of the beta-1,3-1,4-glucanase gene of Bacillus macerans: homologies to other beta-glucanases, Mol. Gen. Genet., 1990, vol. 222, nos. 2–3, pp. 278–283.

    Article  CAS  PubMed  Google Scholar 

  18. Wolf, M., Geczi, A., Simon, O., and Borriss, R., Genes encoding xylan and β-glucan hydrolysing enzymes in Bacillus subtilis: characterization, mapping and construction of strains deficient in lichenase, cellulase and xylanase, Microbiology, 1995, vol. 141, no. 2, pp. 281–290.

    Article  CAS  PubMed  Google Scholar 

  19. Hahn, M., Olsen, O., Politz, O., et al., Crystal structure and site-directed mutagenesis of Bacillus macerans endo-1,3- 1,4-glucanase, J. Biol. Chem., 1995, vol. 270, no. 7, pp. 3081–3088.

    Article  CAS  PubMed  Google Scholar 

  20. Gaiser, O.J., Piotukh, K., Ponnuswamy, M.N., et al., Structural basis for the substrate specificity of a Bacillus 1,3-1,4-β-glucanase, J. Mol. Biol., 2006, vol. 357, no. 4, pp. 1211–1225. https://doi.org/10.1016/j.jmb.2006.01.014

    Article  CAS  PubMed  Google Scholar 

  21. Cereghino, J.L. and Cregg, J.M., Heterologous protein expression in the methylotrophic yeast Pichia pastoris,FEMS Microbiol. Rev., 2000, vol. 24, no. 1, pp. 45–66. https://doi.org/10.1111/j.1574-6976.2000.tb00532.x

    Article  CAS  PubMed  Google Scholar 

  22. Wen, T.N., Chen, J.L., Lee, S.H., et al., A truncated Fibrobacter succinogenes 1,3-1,4-β-D-glucanase with improved enzymatic activity and thermotolerance, Biochemistry, 2005, vol. 44, no. 25, pp. 9197–9205. https://doi.org/10.1021/bi0500630

    Article  CAS  PubMed  Google Scholar 

  23. Bai, Y., Wang, J., Zhang, Z., et al., A novel family 9 β‑1,3 (4)-glucanase from thermoacidophilic Alicyclobacillus sp. A4 with potential applications in the brewing industry, Appl. Microbiol. Biotechnol., 2010, vol. 87, no. 1, pp. 251–259. https://doi.org/10.1007/s00253-010-2452-3

    Article  CAS  PubMed  Google Scholar 

  24. Teng, D., Fan, Y., Yang, Y.L., et al., Codon optimization of Bacillus licheniformis β-1,3-1,4-glucanase gene and its expression in Pichia pastoris,Appl. Microbiol. Biotechnol., 2007, vol. 74, no. 5, pp. 1074–1083. https://doi.org/10.1007/s00253-006-0765-z

    Article  CAS  PubMed  Google Scholar 

  25. Furtado, G.P., Ribeiro, L.F., Santos, C.R., et al., Biochemical and structural characterization of a β-1,3-1,4-glucanase from Bacillus subtilis 168, Process Biochem., 2011, vol. 46, pp. 1202–1206.

    Article  CAS  Google Scholar 

  26. Masilamani, R., Sharma, OP., Muthuvel, S.K., and Natarajan, S., Cloning, expression of β-1,3-1,4 glucanase from Bacillus subtilis SU40 and the effect of calcium ion on the stability of recombinant enzyme: in vitro and in silico analysis, Bioinformation, 2013, vol. 9, no. 19, p. 958. https://doi.org/10.6026/97320630009958

    Article  PubMed  PubMed Central  Google Scholar 

  27. Welfle, K., Politz, O., Borriss, R., Misselwitz, R., and Welfle, H., Individual amino acids in the N-terminal loop region determine the thermostability and unfolding characteristics of bacterial glucanases, Protein Sci., 1996, vol. 5, no. (11), pp. 2255–2265.

Download references

ACKNOWLEDGMENTS

The work was carried out on the equipment of the Multipurpose Scientific Installation of the All-Russia Collection of Industrial Microorganisms of the Kurchatov Institute National Resource Center (GOSNIIgenetika).

Funding

The work was financially supported by the Ministry of Science and Higher Education of the Russian Federation (Unique Project Identifier RFMEFI60717X0179).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. N. Borshchevskaya.

Ethics declarations

The authors declare that they have no conflicts of interest.

This article does not contain any studies involving animals performed by any of the authors.

This article does not contain any studies involving human participants performed by any of the authors.

Additional information

Translated by I. Gordon

Abbreviations: aa—amino acid residue(s); CL—culture liquid; CMC—carboxymethylcellulose; DNS—3,5-dinitrosalicylic acid; DNS method—method for xylanase activity measurement with DNS; EDTA—ethylendiamine tetraacetic acid; GH—glycosyl hydrolase; GH16—glycosyl hydrolase family 16; LB medium—lysogeny-broth medium; PAGE—polyacrylamide gel electrophoresis; PCR—polymerase chain reaction; SDS—sodium dodecyl(lauryl)sulfate; YPD medium—medium containing yeast extract, peptone, and dextrose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borshchevskaya, L.N., Gordeeva, T.L., Kalinina, A.N. et al. Expression of the β-Glucanase Gene from Paenibacillus jamilae Bg1 in Pichia pastoris and Characteristics of the Recombinant Enzyme. Appl Biochem Microbiol 56, 854–860 (2020). https://doi.org/10.1134/S0003683820080025

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683820080025

Keywords:

Navigation