Skip to main content
Log in

Characteristics of Recombinant Phytase (rSt-Phy) of the Thermophilic mold Sporotrichum thermophile and its applicability in dephytinizing foods

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Sporotrichum thermophile produces very low titres of phytase (St-Phy) extracellularly, which is acidstable, thermostable, and protease insensitive with broad substrate specificity, and therefore, the gene encoding phytase (St-Phy) has been cloned and expressed in E. coli. The purified recombinant phytase (rSt-Phy) has the molecular mass of 55 kDa with Km and Vmax (calcium phytate), kcat and kcat/Km of 0.143 mM, 185.05 nmoles mg1 s−1, 5.1 × 103 s−1, and 3.5 × 107 M−1 s−1, respectively. Mg2+ and Ba2+ display slight stimulatory effect on the enzyme, while it is inhibited by other ions to a varied extent. The enzyme is also inhibited by chaotropic agents (guanidinium hydrochloride, potassium iodide, and urea), Woodward’s reagent K, and 2,3-butanedione but resistant to both pepsin and trypsin. The rSt-Phy is useful in dephytinization of tandoori and naan (unleavened flat Indian breads), and bread, liberating soluble inorganic phosphate that mitigates anti-nutrient effects of phytic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Harland, B. F., & Morris, E. R. (1995). Phytate: a good or bad food component? Nutrition Research. doi:10.1016/0271-5317(95)00040-P.

    Google Scholar 

  2. Selle, P. H., Ravindran, V., Caldwell, R. A., & Bryden, W. L. (2000). Phytate and phytase: consequences for protein utilization. Nutrition Research Reviews, 13, 255–278.

    Article  CAS  Google Scholar 

  3. Vohra, A., & Satyanarayana, T. (2003). Phytases: microbial sources, production, purification, and potential biotechnological applications. Critical Reviews in Biotechnology, 23, 29–60.

    Article  CAS  Google Scholar 

  4. Bohn, L., Meyer, A. S., & Rasmussen, S. K. (2008). Phytate: impact on environment and human nutrition a challenge for molecular breeding. Journal of Zheijang University Science B, 9, 165–191.

    Article  CAS  Google Scholar 

  5. Wodzinski, R. J., & Ullah, A. H. J. (1996). Phytase. In S. L. Neidleman, & A. I. Laskin (Eds.), Advances in applied microbiology (pp. 263–302). NY: Academic Press.

    Google Scholar 

  6. Haefner, S., Knietsch, A., Scholten, E., Braun, J., Lohscheidt, M., & Zelder, O. (2005). Biotechnological production and application of phytases. Applied Microbiology and Biotechnology, 68, 588–597.

    Article  CAS  Google Scholar 

  7. Mullaney, E. J., & Ullah, A. H. J. (2003). The term phytases comprises several different classes of enzymes. Biochemical and Biophysical Research Communications, 312, 179–184.

    Article  CAS  Google Scholar 

  8. Wyss, M., Brugger, R., Kronenberger, A., Remy, R., Fimbel, R., Oesterhelt, G., Lehmann, M., & van Loon, A. P. G. M. (1999). Biochemical characterization of fungal phytases (myo-inositol hexakisphosphate phosphohydrolase): catalytic properties. Applied and Environmental Microbiology, 65, 367–373.

    CAS  Google Scholar 

  9. Punt, P. J., van Biezen, N., Conesa, A., Albers, A., Mangnus, J., & van den Hondel, C. (2002). Filamentous fungi as cell factories for heterologous protein production. Trends in Biotechnology, 20, 200–206.

    Article  CAS  Google Scholar 

  10. Joshi, S., & Satyanarayana, T. (2015). In vitro engineering of microbial enzymes with multifarious applications: prospects and perspectives. Bioresource Technology, 176, 273–283.

    Article  CAS  Google Scholar 

  11. Bindu, S., & Varadaraj M. C. (2005). Process for the preparation of chapathi dough with reduced phytic acid level. United States Patent Application, #20050048165 dated 3/3/05.

  12. Bilgicli, N., Elgun, A., Herken, E. N., Turker, S., Ertas, N., & Ibanoglu, S. (2006). Effect of wheat germ/bran addition on the chemical, nutritional and sensory quality of tarhana, a fermented wheat flour-yoghurt product. Journal of Food Engineering, 77, 680–686.

    Article  CAS  Google Scholar 

  13. Anno, T., Nakanishi, K., Matsuno, R., & Kamikubo, T. (1985). Enzymatic elimination of phytate in soybean milk. Journal of the Japanese Society For Food Science and Technology, 32, 174–180.

    Article  CAS  Google Scholar 

  14. Khare, S. K., Jha, K., & Gupta, M. N. (1994). Entrapment of wheat phytase in polyacrylamide gel and its application in soy milk phytate hydrolysis. Biotechnology and Applied Biochemistry, 19, 193–198.

    CAS  Google Scholar 

  15. Singh, B., & Satyanarayana, T. (2006). A marked enhancement in phytase production by a thermophilic mold Sporotrichum thermophile using statistical designs in a cost-effective cane molasses medium. Journal of Applied Microbiology, 101, 344–352.

    Article  CAS  Google Scholar 

  16. Singh, B., & Satyanarayana, T. (2006). Phytase production by a thermophilic mold Sporotrichum thermophile in solid-state fermentation and its application in dephytinization of sesame oil cake. Applied Biochemistry and Biotechnology, 133, 239–250.

    Article  CAS  Google Scholar 

  17. Singh, B., & Satyanarayana, T. (2008). Improved phytase production by a thermophilic mold Sporotrichum thermophile in submerged fermentation due to statistical designs. Bioresource Technology, 99, 824–830.

    Article  CAS  Google Scholar 

  18. Singh, B., & Satyanarayana, T. (2008). Phytase production by a thermophilic mold Sporotrichum thermophile in solid state fermentation and its potential applications. Bioresource Technology, 99, 2824–2830.

    Article  CAS  Google Scholar 

  19. Singh, B., & Satyanarayana, T. (2008). Phytase production by a thermophilic mold Sporotrichum thermophile in cost-effective cane molasses medium and its application in bread. Journal of Applied Microbiology, 105, 1858–1865.

    Article  CAS  Google Scholar 

  20. Singh, B., & Satyanarayana, T. (2009). Characterization of a HAP-phytase from a thermophilic mold Sporotrichum thermophile. Bioresource Technology, 100, 2046–2051.

    Article  CAS  Google Scholar 

  21. Sivashanmugam, A., Murray, V., Cui, C., Zhang, Y., Wang, J., & Li, Q. (2009). Practical protocols for production of very high yields of recombinant proteins using Escherichia coli. Protein Science, 18, 936–948.

    Article  CAS  Google Scholar 

  22. Singh, J., Joshi, M. C., & Bhatnagar, R. (2004). Cloning and expression of mycobacterial glutamine synthetase gene in Escherichia coli. Biochemical and Biophysical Research Communications, 317, 634–638.

    Article  CAS  Google Scholar 

  23. Heinonen, J. K., & Lahti, R. J. (1981). A new and convenient colorimetric determination of inorganic orthophosphate and its application to the assay of inorganic pyrophosphatase. Analytical Biochemistry, 113, 313–317.

    Article  CAS  Google Scholar 

  24. Kumar, V., & Satyanarayana, T. (2013). Biochemical and thermodynamic characteristics of thermo-alkali-stable xylanase from a novel polyextremophilic Bacillus halodurans TSEV1. Extremophiles, 17, 797–808.

    Article  CAS  Google Scholar 

  25. Dixon, M., & Webb, E. C. (1979). Enzyme kinetics. In Dixon M, Webb EC (eds) enzymes (pp. 47–206). New York: Academic Press.

    Google Scholar 

  26. Rati, E. R., Vijayendra, S. V. N., & Varadaraj, M. C. (2006). Fermentation biotechnology of traditional foods of Indian sub-continent. In: Shetty, K., Paliyath, G., Pometto, A., Levin, R.E., eds. Food Biotechnology, 2nd edn.(pp. 1759–1794) Boca Raton, FL: Taylor & Francis.

  27. Lei, X. G., & Weaver, J. D. (2013). Mullaney E, Ullah AH, Azain MJ. Phytase, a new life for an “old” enzyme. Annual Review of Animal Biosciences, 1, 283–209.

  28. Kaur, P., Kunze, G., & Satyanarayana, T. (2007). Yeast phytases: present scenario and future perspectives. Critical Reviews in Biotechnology, 27, 93–109.

    Article  CAS  Google Scholar 

  29. Yu, P., Wang, X. T., & Liu, J. W. (2015). Purification and characterization of a novel cold-adapted phytase from Rhodotorula mucilaginosa strain JMUY14 isolated from Antarctic. Journal of Basic Microbiology. doi:10.1002/jobm.201400865.

    Google Scholar 

  30. Ostanin, K., & Van Etten, R. L. (1993). Asp304 of Escherichia coli acid phosphatase is involved in leaving group protonation. Journal of Biological Chemistry, 268, 20778–20784.

    CAS  Google Scholar 

  31. Lei, X. G., & Porres, J. M. (2003). Phytase enzymology, applications and biotechnology. Biotechnology Letters, 25, 1787–1794.

    Article  CAS  Google Scholar 

  32. Nampoothiri, K. M., Tomes, G. J., Roopesh, K., Szakacs, G., Nagy, V., Soccol, C. R., & Pandey, A. (2004). Thermostable phytase production by Thermoascus aurantiacus in submerged fermentation. Applied Biochemistry and Biotechnology, 118, 205–214.

    Article  CAS  Google Scholar 

  33. Konietzny, U., & Greiner, R. (2002). Molecular and catalytic properties of phytate degrading enzymes (phytases). International Journal of Food Science and Technology, 37, 791–812.

    Article  CAS  Google Scholar 

  34. Sariyska, M. V., Gargova, S. A., Koleva, L. A., & Angelov, A. I. (2005). Aspergillus niger phytase: purification and characterization. Biotechnology and Biotechnological Equipment, 19, 98–105.

    Article  CAS  Google Scholar 

  35. Casey, A., & Walsh, G. (2004). Identification and characterization of a phytase of potential commercial interest. Journal of Biotechnology, 110, 313–322.

    Article  CAS  Google Scholar 

  36. Vats, P., & Banerjee, U. C. (2005). Biochemical characterisation of extracellular phytase (myo inositol hexakisphosphate phosphohydrolase) from a hyper-producing strain of Aspergillus niger van Teighem. Journal of Industrial Microbiology and Biotechnology, 32, 141–147.

    Article  CAS  Google Scholar 

  37. Chauthaiwale, J., & Rao, M. (1994). Chemical modification of xylanase from alkalothermophilic Bacillus species: evidence for essential carboxyl group. Biochimica et Biophysica Acta, 1204, 164–168.

    Article  CAS  Google Scholar 

  38. Komissarov, A. A., Romanova, D. V., & Debabov, V. G. (1995). Complete inactivation of Escherichia coli uridine phosphorylase by modification of asp with Woodward’s reagent K. Journal of Biological Chemistry, 270, 10050–10055.

    Article  CAS  Google Scholar 

  39. Paoli, P., Fiaschi, T., Cirri, P., Camici, G., Manao, G., Cappugi, G., Raugei, G., Moneti, G., & Ramponi, G. (1997). Mechanism of acylphosphatase inactivation by Woodward’s reagent k. Journal of Biochemistry, 328, 855–861.

    Article  CAS  Google Scholar 

  40. Wyss, M., Pasamontes, L., Remy, R., Kohler, J., Kusznir, E., Gradient, M., Muller, F., & van Loon, A. P. G. M. (1998). Comparison of the thermostability properties of three acid phosphatases from molds: Aspergillus fumigatus phytase, A. niger phytase, and A. niger pH 2.5 acid phosphatase. Applied and Environmental Microbiology, 64, 4446–4451.

    CAS  Google Scholar 

  41. Gulati, H. K., Chadha, B. S., & Saini, H. S. (2007). Production, purification and characterization of thermostable phytase from thermophilic fungus Thermomyces lanuginosus TL-7. Acta Microbiologica et Immunologica Hungarica, 54, 121–138.

    Article  CAS  Google Scholar 

  42. Kaur, P., Singh, B., Böer, E., Straube, N., Piontek, M., Satyanarayana, T., & Kunze, G. (2010). Pphy—a cell-bound phytase from the yeast Pichia anomala: molecular cloning of the gene PPHY and characterization of the recombinant enzyme. Journal of Biotechnology, 149, 8–15.

    Article  CAS  Google Scholar 

  43. Joshi, S., & Satyanarayana, T. (2015). Characteristics and applicability of phytase of the yeast Pichia anomala in synthesizing haloperoxidase. Applied Biochemistry & Biotechnology, 176, 1351–1369.

    Article  CAS  Google Scholar 

  44. Garcia-Estepa, R. M., Guerra-Hernandez, E., & Garcia-Villanova, B. (1999). Phytic acid content in milled cereal products and breads. Food Research International, 32, 217–221.

    Article  CAS  Google Scholar 

  45. Sandberg, A. S., & Andlid, T. (2002). Phytogenic and microbial phytases in human nutrition. International Journal of Food Science and Technology, 37, 823–833.

    Article  CAS  Google Scholar 

  46. Arekal, N., Roopashri., Mandyam., & Varadaraj C. (2015). Functionality of phytase of Saccharomyces cerevisiae MTCC 5421 to lower inherent phytate in selected cereal flours and wheat/pearl millet-based fermented foods with selected probiotic attribute. Food Biotechnology, 29, 131–155.

  47. Chen, W., Ye, L., Guo, F., Lv, Y., & Yu, H. (2015). Enhanced activity of an alkaline phytase from Bacillus subtilis 168 in acidic and neutral environments by directed evolution. Biochemical Engineering Journal, 98, 137–143.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Department of Biotechnology and University Grant Commission, Govt. of India, New Delhi for financial assistance and fellowship during the course of this investigation and to M/S Tushar Nutritive Foods Pvt. Ltd., New Delhi for assessing the utility of phytase in bread making.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Satyanarayana.

Electronic Supplementary Material

Table S1

(DOCX 14 kb)

Table S2

(DOCX 13.4 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranjan, B., Singh, B. & Satyanarayana, T. Characteristics of Recombinant Phytase (rSt-Phy) of the Thermophilic mold Sporotrichum thermophile and its applicability in dephytinizing foods. Appl Biochem Biotechnol 177, 1753–1766 (2015). https://doi.org/10.1007/s12010-015-1851-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1851-4

Keywords

Navigation