Skip to main content

Advertisement

Log in

A New Hydrogen-Producing Strain and Its Characterization of Hydrogen Production

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A newly isolated photo non-sulfur (PNS) bacterium was identified as Rhodopseudomonas palustris PB-Z by sequencing of 16S ribosomal DNA (rDNA) genes and phylogenetic analysis. Under vigorous stirring (240 rpm), the hydrogen production performances were greatly improved: The maximum hydrogen production rate and cumulative hydrogen production increased by 188.9 ± 0.07 % and 83.0 ± 0.06 %, respectively, due to the hydrogen bubbles were immediately removed from the culture medium. The effects of different wavelength of light on hydrogen production with stirring were much different from that without stirring. The ranking on the photo-hydrogen production performance was white > yellow > green > blue > red without stirring and white > yellow > blue > red > green under stirring. The best light source for hydrogen production was tungsten filament lamp. The optimum temperature was 35 °C. The maximal hydrogen production rate and cumulative hydrogen production reached 78.7 ± 2.3 ml/l/h and 1728.1 ± 92.7 mol H2/l culture, respectively, under 35 °C, 240 rpm, and illumination of 4000 lux. Pyruvate was one of the main sources of CO2 and has a great impact on the gas composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Das, D. (2009). Advances in biohydrogen production processes: an approach towards commercialization. International Journal of Hydrogen Energy, 34, 7349–7357.

    Article  CAS  Google Scholar 

  2. Keskin, T., & Hallenbeck, P. C. (2012). Hydrogen production from sugar industry wastes using single-stage photofermentation. Bioresource Technology, 112, 131–136.

    Article  CAS  Google Scholar 

  3. Pott, R. W., Howe, C. J., & Dennis, J. S. (2013). Photofermentation of crude glycerol from biodiesel using Rhodopseudomonas palustris: comparison with organic acids and the identification of inhibitorycompounds. Bioresource Technology, 130, 725–730.

    Article  CAS  Google Scholar 

  4. Das, D., & Veziroğlu, T. N. (2001). Hydrogen production by biological processes: a survey of literature. International Journal of Hydrogen Energy, 26, 13–28.

    Article  CAS  Google Scholar 

  5. Adessi, A., & De Philippis, R. (2014). Photobioreactor design and illumination systems for H2 production with anoxygenic photosynthetic bacteria: a review. International Journal of Hydrogen Energy, 39, 3127–3141.

    Article  CAS  Google Scholar 

  6. Özkan, E., Uyar, B., Özgür, E., Yücel, M., Eroglu, I., & Gündüz, U. (2012). Photofermentative hydrogen production using dark fermentation effluent of sugar beet thick juice in outdoor conditions. International Journal of Hydrogen Energy, 37, 2044–2049.

    Article  Google Scholar 

  7. Chen, C. Y., Yeh, K. L., Lo, Y. C., Wang, H. M., & Chang, J. S. (2010). Engineering strategies for the enhanced photo-H2 production using effluents of dark fermentation processes as substrate. International Journal of Hydrogen Energy, 35, 13356–13364.

    Article  CAS  Google Scholar 

  8. Bianchi, L., Mannelli, F., Viti, C., Adessi, A., & De Philippis, R. (2010). Hydrogen-producing purple non-sulfur bacteria isolated from the trophic lake Averno (Naples, Italy). International Journal of Hydrogen Energy, 35, 12216–12223.

    Article  CAS  Google Scholar 

  9. Wu, T. Y., Hay, J. X. W., Kong, L. B., Juan, J. C., & Jahim, J. M. (2012). Recent advances in reuse of waste material as substrate to produce biohydrogen by purple non-sulfur (PNS) bacteria. Renewable and Sustainable Energy Reviews, 16, 3117–3122.

    Article  CAS  Google Scholar 

  10. Basak, N., & Das, D. (2006). The prospect of purple non-sulfur (PNS) photosynthetic bacteria for hydrogen production: the present state of the art. World Journal of Microbiology and Biotechnology, 23, 31–42.

    Article  Google Scholar 

  11. Ren, H. Y., Liu, B. F., Ding, J., Nan, J., Xie, G. J., Zhao, L., Chen, M. G., & Ren, N. Q. (2012). Enhanced photo-hydrogen production of Rhodopseudomonas faecalis RLD-53 by EDTA addition. International Journal of Hydrogen Energy, 37, 8277–8281.

    Article  CAS  Google Scholar 

  12. Laocharoen, S., & Reungsang, A. (2014). Isolation, characterization and optimization of photo-hydrogen production conditions by newly isolated Rhodobacter sphaeroides KKU-PS5. International Journal of Hydrogen Energy, 39, 10870–10882.

    Article  CAS  Google Scholar 

  13. Chen, C. Y., & Chang, J. S. (2014). Enhancing phototropic hydrogen production by solid-carrier assisted fermentation and internal optical-fiber illumination. Process Biochemistry, 41, 2041–2049.

    Article  Google Scholar 

  14. Xie, G. J., Liu, B. F., Ding, J., Xing, D. F., Ren, H. Y., Guo, W. Q., & Ren, N. Q. (2012). Enhanced photo-H2 production by Rhodopseudomonas faecalis RLD-53 immobilization on activated carbon fibers. Biomass and Bioenergy, 44, 122–129.

    Article  CAS  Google Scholar 

  15. Akroum-Amrouche, D., Abdi, N., Lounici, H., & Mameri, N. (2011). Effect of physico-chemical parameters on biohydrogen production and growth characteristics by batch culture of Rhodobacter sphaeroides CIP 60.6. Applied Energy, 88, 2130–2135.

    Article  CAS  Google Scholar 

  16. Dar, M. A., Pawar, K. D., Jadhav, J. P., & Pandit, R. S. (2015). Isolation of cellulolytic bacteria from the gastro-intestinal tract of Achatina fulica (Gastropoda: Pulmonata) and their evaluation for cellulose biodegradation. International Biodeterioration & Biodegradation, 98, 73–80.

    Article  CAS  Google Scholar 

  17. Ziane, M., Desriac, N., Le Chevalier, P., Couvert, O., Moussa-Boudjemaa, B., & Leguerinel, I. (2014). Identification, heat resistance and growth potential of mesophilic spore-forming bacteria isolated from Algerian retail packaged couscous. Food Control, 45, 16–21.

    Article  CAS  Google Scholar 

  18. Nakada, E., Asada, Y., Arai, T., & Miyake, J. (1995). Light penetration into cell suspensions of photosynthetic bacteria and relation to hydrogen production. Journal of Fermentation and Bioengineering, 80, 53–57.

    Article  CAS  Google Scholar 

  19. Guo, C. L., Zhu, X., Liao, Q., Wang, Y. Z., Chen, R., & Lee, D. J. (2011). Enhancement of photo-hydrogen production in a biofilm photobioreactor using optical fiber with additional rough surface. Bioresource Technology, 102, 8507–8513.

    Article  CAS  Google Scholar 

  20. Li, H. Z. (1999). Bubbles in non-Newtonian fluids: formation, interactions and coalescence. Chemical Engineering Science, 54, 2247–2254.

    Article  CAS  Google Scholar 

  21. Li, H. Z., Mouline, Y., Choplin, L., & Midoux, N. (1997). Chaotic bubble coalescence in non-Newtonian fluids. International Journal of Multiphase Flow, 23, 713–723.

    Article  CAS  Google Scholar 

  22. Kulkarni, A. A., & Joshi, J. B. (2005). Bubble formation and bubble rise velocity in gas-liquid systems: a review. Industrial and Engineering Chemistry Research, 44, 5873–5931.

    Article  CAS  Google Scholar 

  23. Clark, I. C., Zhang, R. H., & Upadhyaya, S. K. (2012). The effect of low pressure and mixing on biological hydrogen production via anaerobic fermentation. International Journal of Hydrogen Energy, 37, 11504–11513.

    Article  CAS  Google Scholar 

  24. Ma, C., Wang, X., Guo, L., Wu, X., & Yang, H. (2012). Enhanced photo-fermentative hydrogen production by Rhodobacter capsulatus with pigment content manipulation. Bioresource Technology, 118, 490–495.

    Article  CAS  Google Scholar 

  25. Eltsova, Z., Vasilieva, L., & Tsygankov, A. (2010). Hydrogen production by recombinant strains of Rhodobacter sphaeroides using a modified photosynthetic apparatus. Applied Biochemistry and Microbiology, 46, 487–491.

    Article  CAS  Google Scholar 

  26. Tian, X., Liao, Q., Liu, W., Wang, Y. Z., Zhu, X., Li, J., & Wang, H. (2009). Photo-hydrogen production rate of a PVA-boric acid gel granule containing immobilized photosynthetic bacteria cells. International Journal of Hydrogen Energy, 34, 4708–4717.

    Article  CAS  Google Scholar 

  27. Sevinç, P., Gündüz, U., Eroglu, I., & Yücel, M. (2012). Kinetic analysis of photosynthetic growth, hydrogen production and dual substrate utilization by Rhodobacter capsulatus. International Journal of Hydrogen Energy, 37, 16430–16436.

    Article  Google Scholar 

  28. Androga, D. D., Sevinç, P., Koku, H., Yücel, M., Gündüz, U., & Eroglu, I. (2012). Optimization of temperature and light intensity for improved photofermentative hydrogen production using Rhodobacter capsulatus DSM 1710. International Journal of Hydrogen Energy, 39, 2472–2480.

    Article  Google Scholar 

  29. Basak, N., Jana, A. K., & Das, D. (2012). Optimization of molecular hydrogen production by Rhodobacter sphaeroides O.U.001 in the annular photobioreactor using response surface methodology. International Journal of Hydrogen Energy, 39, 11889–11901.

    Article  Google Scholar 

  30. Cai, J., & Wang, G. (2012). Hydrogen production by a marine photosynthetic bacterium, Rhodovulum sulfidophilum P5, isolated from a shrimp pond. International Journal of Hydrogen Energy, 37, 15070–15080.

    Article  CAS  Google Scholar 

  31. He, D., Bultel, Y., Magnin, J. P., & Willison, J. C. (2006). Kinetic analysis of photosynthetic growth and photohydrogen production of two strains of Rhodobacter Capsulatus. Enzyme and Microbial Technology, 38, 253–259.

    Article  CAS  Google Scholar 

  32. Wang, Y. Z., Liao, Q., Zhu, X., Tian, X., & Zhang, C. (2010). Characteristics of hydrogen production and substrate consumption of Rhodopseudomonas palustris CQK 01 in an immobilized-cell photobioreactor. Bioresource Technology, 101, 4034–4041.

    Article  CAS  Google Scholar 

  33. Wang, Y. Z., Liao, Q., Zhu, X., Li, J., & Lee, D. J. (2011). Effect of culture conditions on the kinetics of hydrogen production by photosynthetic bacteria in batch culture. International Journal of Hydrogen Energy, 36, 14004–14013.

    Article  CAS  Google Scholar 

  34. Koku, H., Gündüz, U., Eroğlu, Yücel, M., & Türker, L. (2002). Aspects of the metabolism of hydrogen production by Rhodobacter sphaeroides. International Journal of Hydrogen Energy, 27, 1315–1329.

    Article  CAS  Google Scholar 

  35. Yang, H., Zhang, J., Wang, X., Feng, J., Yan, W., & Guo, L. (2015). Coexpression of Mo- and Fe-nitrogenase in Rhodobacter capsulatus enhanced its photosynthetic hydrogen production. International Journal of Hydrogen Energy, 40, 927–934.

    Article  CAS  Google Scholar 

  36. Tian, X., Liao, Q., Zhu, X., Wang, Y., Zhang, P., Li, J., & Wang, H. (2010). Characteristics of a biofilm photobioreactor as applied to photo-hydrogen production. Bioresource Technology, 101, 977–983.

    Article  CAS  Google Scholar 

  37. Patel, S. K. S., Kumar, P., & Kalia, V. C. (2012). Enhancing biological hydrogen production through complementary microbial metabolisms. International Journal of Hydrogen Energy, 37, 10590–10603.

    Article  CAS  Google Scholar 

  38. Kim, M. S., Baek, J. S., & Lee, J. K. (2006). Comparison of H2 accumulation by Rhodobacter sphaeroides KD131 and its uptake hydrogenase and PHB synthetase deficient mutant. International Journal of Hydrogen Energy, 31, 121–127.

    Article  CAS  Google Scholar 

  39. Patel, S. K. S., & Kalia, V. C. (2013). Integrative biological hydrogen production: an overview. Indian Journal of Microbiology, 53, 3–10.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the International Cooperation Projects of Shanxi Province (No. 2013081020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongkang Lv.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, M., Lv, Y. & Liu, Y. A New Hydrogen-Producing Strain and Its Characterization of Hydrogen Production. Appl Biochem Biotechnol 177, 1676–1689 (2015). https://doi.org/10.1007/s12010-015-1845-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1845-2

Keywords

Navigation