Skip to main content

Advertisement

Log in

Enhancement of Photo-Fermentative Hydrogen Production with Co-culture of Rhodobacter capsulatus and Rhodospirillum rubrum by Using Medium Renewal Strategy

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

In recent years, there has been a significant deal of interest in the photo-fermentation-based synthesis of biological hydrogen due to its unique advantages, such as high hydrogen yield and the use of renewable raw materials as substrates. This paper assesses biological hydrogen production by photo-fermentation using the purple non-sulfur bacteria Rhodobacter capsulatus and Rhodospirillum rubrum cultivated in Rhodobacter capsulatus V minimal (RCV) medium. Lactose was used as a carbon source at a starting concentration of 10 g/L. An investigation of the use Rhodobacter capsulatus and Rhodospirillum rubrum strains in mixed culture confirmed the viability of the use of a co-culture system in detriment of mono-culture systems. On average, co-cultured hydrogen responses resulted in 1.43- and 1.50-fold increases in hydrogen productivity and yield, respectively, between the two species. The experiments were also conducted in a 1.5-L stirred tank reactor using repeated batch cycles, with or without medium renewal. The medium renewal allowed for the removal of organic acids produced by cellular metabolism and ensured stable and long-term hydrogen production, reaching peak productivity 278.05 mmol H2/L/day and maximum yield 19.67 mol H2/mol lactose (82% of the theoretical yield). For comparative purposes, a subsequent assay was carried out in the same initial conditions without medium renewal. An accumulation of organic acids resulted in lower peak productivity of 104.47 mmol H2/L/day and lower peak hydrogen yield of 11.71 mol H2/mol lactose confirming viability of medium renewal strategy to improve hydrogen production in photo-fermentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Johnston B, Mayo MC, Khare A (2005) Hydrogen: the energy source for the 21st century. Technovation 25:569–585. https://doi.org/10.1016/j.technovation.2003.11.005

    Article  Google Scholar 

  2. Wijayanta AT, Oda T, Purnomo CW et al (2019) Liquid hydrogen, methylcyclohexane, and ammonia as potential hydrogen storage: comparison review. Int J Hydrogen Energy 44:15026–15044. https://doi.org/10.1016/J.IJHYDENE.2019.04.112

    Article  CAS  Google Scholar 

  3. Momirlan M, Veziroglu TN (2002) Current status of hydrogen energy. Renew Sustain Energy Rev 6:141–179. https://doi.org/10.1016/S1364-0321(02)00004-7

    Article  CAS  Google Scholar 

  4. Sivaramakrishnan R, Shanmugam S, Sekar M et al (2021) Insights on biological hydrogen production routes and potential microorganisms for high hydrogen yield. Fuel 291. https://doi.org/10.1016/J.FUEL.2021.120136

  5. Lo YC, Chen CY, Lee CM, Chang JS (2011) Photo fermentative hydrogen production using dominant components (acetate, lactate, and butyrate) in dark fermentation effluents. Int J Hydrogen Energy 36:14059–14068. https://doi.org/10.1016/J.IJHYDENE.2011.04.148

    Article  CAS  Google Scholar 

  6. Srikanth S, Venkata Mohan S, Prathima Devi M et al (2009) Acetate and butyrate as substrates for hydrogen production through photo-fermentation: process optimization and combined performance evaluation. Int J Hydrogen Energy 34:7513–7522. https://doi.org/10.1016/J.IJHYDENE.2009.05.095

    Article  CAS  Google Scholar 

  7. Keskin T, Hallenbeck PC (2012) Hydrogen production from sugar industry wastes using single-stage photofermentation. Bioresour Technol 112:131–136. https://doi.org/10.1016/J.BIORTECH.2012.02.077

    Article  CAS  PubMed  Google Scholar 

  8. Lu C, Zhang Z, Zhou X et al (2018) Effect of substrate concentration on hydrogen production by photo-fermentation in the pilot-scale baffled bioreactor. Bioresour Technol 247:1173–1176. https://doi.org/10.1016/J.BIORTECH.2017.07.122

    Article  CAS  PubMed  Google Scholar 

  9. Girelli AM, Astolfi ML, Scuto FR (2020) Agro-industrial wastes as potential carriers for enzyme immobilization: a review. Chemosphere 244:125368. https://doi.org/10.1016/J.CHEMOSPHERE.2019.125368

    Article  CAS  PubMed  Google Scholar 

  10. Kuang Y, Zhao J, Gao Y, Zhang D (2020) Enhanced hydrogen production from food waste dark fermentation by potassium ferrate pretreatment. Environ Sci Pollut Res 27:18145–18156. https://doi.org/10.1007/s11356-020-08207-3

    Article  CAS  Google Scholar 

  11. Rezaeitavabe F, Saadat S, Talebbeydokhti N et al (2020) Enhancing bio-hydrogen production from food waste in single-stage hybrid dark-photo fermentation by addition of two waste materials (exhausted resin and biochar). Biomass Bioenergy 143:105846. https://doi.org/10.1016/J.BIOMBIOE.2020.105846

    Article  CAS  Google Scholar 

  12. Basak N, Das D (2006) The prospect of purple non-sulfur (PNS) photosynthetic bacteria for hydrogen production: the present state of the art. World J Microbiol Biotechnol 23:31–42. https://doi.org/10.1007/S11274-006-9190-9

    Article  Google Scholar 

  13. Wu TY, Hay JXW, Kong LB et al (2012) Recent advances in reuse of waste material as substrate to produce biohydrogen by purple non-sulfur (PNS) bacteria. Renew Sustain Energy Rev 16:3117–3122. https://doi.org/10.1016/J.RSER.2012.02.002

    Article  CAS  Google Scholar 

  14. Zagrodnik R, Laniecki M (2015) The role of pH control on biohydrogen production by single stage hybrid dark- and photo-fermentation. Bioresour Technol 194:187–195. https://doi.org/10.1016/J.BIORTECH.2015.07.028

    Article  CAS  PubMed  Google Scholar 

  15. Moreira FS, Rodrigues MS, Sousa LM et al (2022) Single-stage repeated batch cycles using co-culture of Enterobacter cloacae and purple non-sulfur bacteria for hydrogen production. Energy 239:122465. https://doi.org/10.1016/J.ENERGY.2021.122465

    Article  CAS  Google Scholar 

  16. Machado RG, Moreira FS, Batista FRX et al (2018) Repeated batch cycles as an alternative for hydrogen production by co-culture photofermentation. Energy 153:861–869. https://doi.org/10.1016/J.ENERGY.2018.04.101

    Article  CAS  Google Scholar 

  17. Xiao J, Hay W, Wu TY et al (2013) Biohydrogen production through photo fermentation or dark fermentation using waste as a substrate: overview, economics, and future prospects of hydrogen usage. Biofuels, Bioprod Bioref 7:334–352. https://doi.org/10.1002/bbb.1403

    Article  CAS  Google Scholar 

  18. Das D, Veziroglu TN (2008) Advances in biological hydrogen production processes. Int J Hydrogen Energy 33:6046–6057. https://doi.org/10.1016/J.IJHYDENE.2008.07.098

    Article  CAS  Google Scholar 

  19. Chen Y, Yin Y, Wang J (2021) Influence of butyrate on fermentative hydrogen production and microbial community analysis. Int J Hydrogen Energy 46:26825–26833. https://doi.org/10.1016/J.IJHYDENE.2021.05.185

    Article  CAS  Google Scholar 

  20. Noblecourt A, Christophe G, Larroche C et al (2017) High hydrogen production rate in a submerged membrane anaerobic bioreactor. Int J Hydrogen Energy 42:24656–24666. https://doi.org/10.1016/J.IJHYDENE.2017.08.037

    Article  CAS  Google Scholar 

  21. Lopez-Hidalgo AM, Smoliński A, Sanchez A (2022) A meta-analysis of research trends on hydrogen production via dark fermentation. Int J Hydrogen Energy 47:13300–13339. https://doi.org/10.1016/J.IJHYDENE.2022.02.106

    Article  CAS  Google Scholar 

  22. Roe AJ, O’Byrne C, McLaggan D, Booth IR (2002) Inhibition of Escherichia coli growth by acetic acid: a problem with methionine biosynthesis and homocysteine toxicity. Microbiology (N Y) 148:2215–2222. https://doi.org/10.1099/00221287-148-7-2215/CITE/REFWORKS

    Article  CAS  Google Scholar 

  23. Noguer MC, Escudié R, Bernet N, Eric T (2022) Populational and metabolic shifts induced by acetate, butyrate and lactate in dark fermentation. Int J Hydrogen Energy 47:28385–28398. https://doi.org/10.1016/J.IJHYDENE.2022.06.163

    Article  CAS  Google Scholar 

  24. Bundhoo MAZ, Mohee R (2016) Inhibition of dark fermentative bio-hydrogen production: a review. Int J Hydrogen Energy 41:6713–6733. https://doi.org/10.1016/J.IJHYDENE.2016.03.057

    Article  CAS  Google Scholar 

  25. Mıynat ME, Argun H (2020) Prevention of substrate and product inhibitions by using a dilution strategy during dark fermentative hydrogen production from molasses. Int J Hydrogen Energy 45:34695–34706. https://doi.org/10.1016/J.IJHYDENE.2020.03.118

    Article  Google Scholar 

  26. Chen Y, Yin Y, Wang J (2021) Recent advance in inhibition of dark fermentative hydrogen production. Int J Hydrogen Energy 46:5053–5073. https://doi.org/10.1016/J.IJHYDENE.2020.11.096

    Article  CAS  Google Scholar 

  27. Weaver PF, Wall JD, Gest H (1975) Characterization of Rhodopseudomonas capsulata. Springer-Verlag

    Book  Google Scholar 

  28. Moreira FS, Machado RG, Romão BB et al (2017) Improvement of hydrogen production by biological route using repeated batch cycles. Process Biochem 58:60–68. https://doi.org/10.1016/J.PROCBIO.2017.04.013

    Article  CAS  Google Scholar 

  29. Silva FTM, Bessa LP, Vieira LM et al (2019) Dark fermentation effluent as substrate for hydrogen production from Rhodobacter capsulatus highlighting the performance of different fermentation systems. 3 Biotech 9(4):1–9. https://doi.org/10.1007/S13205-019-1676-X

    Article  Google Scholar 

  30. Matsumoto M, Nishimura Y (2007) Hydrogen production by fermentation using acetic acid and lactic acid. J Biosci Bioeng 103:236–241. https://doi.org/10.1263/JBB.103.236

    Article  CAS  PubMed  Google Scholar 

  31. Akroum-Amrouche D, Abdi N, Lounici H, Mameri N (2011) Effect of physico-chemical parameters on biohydrogen production and growth characteristics by batch culture of Rhodobacter sphaeroides CIP 60.6. Appl Energy 88:2130–2135. https://doi.org/10.1016/J.APENERGY.2010.12.044

    Article  CAS  Google Scholar 

  32. Levin DB, Pitt L, Love M (2004) Biohydrogen production: prospects and limitations to practical application. Int J Hydrogen Energy 29:173–185. https://doi.org/10.1016/S0360-3199(03)00094-6

    Article  CAS  Google Scholar 

  33. Silva FTM, Moreira LR, de Souza FJ et al (2016) Replacement of sugars to hydrogen production by Rhodobacter capsulatus using dark fermentation effluent as substrate. Bioresour Technol 200:72–80. https://doi.org/10.1016/J.BIORTECH.2015.10.002

    Article  CAS  PubMed  Google Scholar 

  34. Deseure J, Obeid J, Willison JC, Magnin JP (2021) Reliable determination of the growth and hydrogen production parameters of the photosynthetic bacterium Rhodobacter capsulatus in fed batch culture using a combination of the Gompertz function and the Luedeking-Piret model. Heliyon 7. https://doi.org/10.1016/J.HELIYON.2021.E07394

  35. Elkahlout K, Sagir E, Alipour S et al (2019) Long-term stable hydrogen production from acetate using immobilized Rhodobacter capsulatus in a panel photobioreactor. Int J Hydrogen Energy 44:18801–18810. https://doi.org/10.1016/J.IJHYDENE.2018.10.133

    Article  CAS  Google Scholar 

  36. Uyar B, Muazzez, Rgan G, et al. Hydrogen production by hup 2 mutant and wild-type strains of Rhodobacter capsulatus from dark fermentation effluent of sugar beet thick juice in batch and continuous photobioreactors. https://doi.org/10.1007/s00449-015-1435-2

  37. Dadak A, Aghbashlo M, Tabatabaei M et al (2016) Exergy-based sustainability assessment of continuous photobiological hydrogen production using anaerobic bacterium Rhodospirillum rubrum. J Clean Prod 139:157–166. https://doi.org/10.1016/J.JCLEPRO.2016.08.020

    Article  CAS  Google Scholar 

  38. Akhlaghi N, Najafpour-Darzi G (2020) A comprehensive review on biological hydrogen production. Int J Hydrogen Energy 45:22492–22512. https://doi.org/10.1016/J.IJHYDENE.2020.06.182

    Article  CAS  Google Scholar 

  39. Uyar B, Gürgan M, Özgür E, Gündüz U, Yücel M, Eroglu I (2015) Hydrogen production by hup 2 mutant and wild-type strains of Rhodobacter capsulatus from dark fermentation effluent of sugar beet thick juice in batch and continuous photobioreactors. Bioprocess Biosyst Eng 38:1935–1942. https://doi.org/10.1007/s00449-015-1435-2

    Article  CAS  PubMed  Google Scholar 

  40. Hu C, Choy Y, Giannis A (2010) Evaluation of lighting systems, carbon sources, and bacteria cultures on photofermentative hydrogen production. Appl Biochem Biotechnol 185:257–269. https://doi.org/10.1007/s12010-017-2655-5

    Article  CAS  Google Scholar 

  41. Ruknongsaeng P, Reungsang A, Moonamart S, Danvirutai P (2005) Influence of nitrogen, acetate and propionate on hydrogen production from pineapple waste extract by Rhodospirillum rubrum. J Water Environ Technol 3:93–117. https://doi.org/10.2965/JWET.2005.93

    Article  Google Scholar 

  42. Kondo T, Arakawa M, Wakayama T, Miyake J (2002) Hydrogen production by combining two types of photosynthetic bacteria with different characteristics. Int J Hydrogen Energy 27:1303–1308. https://doi.org/10.1016/S0360-3199(02)00122-2

    Article  CAS  Google Scholar 

  43. Argun H, Kargi F, Kapdan IK (2008) Light fermentation of dark fermentation effluent for bio-hydrogen production by different Rhodobacter species at different initial volatile fatty acid (VFA) concentrations. Int J Hydrogen Energy 33:7405–7412. https://doi.org/10.1016/J.IJHYDENE.2008.09.059

    Article  CAS  Google Scholar 

  44. Myung S, Rollin J, You C et al (2014) In vitro metabolic engineering of hydrogen production at theoretical yield from sucrose. Metab Eng 24:70–77. https://doi.org/10.1016/J.YMBEN.2014.05.006

    Article  CAS  PubMed  Google Scholar 

  45. Rai PK, Singh SP (2016) Integrated dark- and photo-fermentation: recent advances and provisions for improvement. Int J Hydrogen Energy 41:19957–19971. https://doi.org/10.1016/J.IJHYDENE.2016.08.084

    Article  CAS  Google Scholar 

  46. Wang X, Fang Y, Wang Y et al (2018) Single-stage photo-fermentative hydrogen production from hydrolyzed straw biomass using Rhodobacter sphaeroides. Int J Hydrogen Energy 43:13810–13820. https://doi.org/10.1016/J.IJHYDENE.2018.01.057

    Article  CAS  Google Scholar 

  47. Abo-Hashesh M, Desaunay N, Hallenbeck PC (2013) High yield single stage conversion of glucose to hydrogen by photofermentation with continuous cultures of Rhodobacter capsulatus JP91. Bioresour Technol 128:513–517. https://doi.org/10.1016/J.BIORTECH.2012.10.091

    Article  CAS  PubMed  Google Scholar 

  48. Eroglu E, Melis A (2011) Photobiological hydrogen production: recent advances and state of the art. Bioresour Technol 102:8403–8413. https://doi.org/10.1016/J.BIORTECH.2011.03.026

    Article  CAS  PubMed  Google Scholar 

  49. Boran E, Özgür E, van der Burg J et al (2010) Biological hydrogen production by Rhodobacter capsulatus in solar tubular photo bioreactor. J Clean Prod 18:S29–S35. https://doi.org/10.1016/J.JCLEPRO.2010.03.018

    Article  CAS  Google Scholar 

  50. Kapdan IK, Kargi F, Oztekin R, Argun H (2009) Bio-hydrogen production from acid hydrolyzed wheat starch by photo-fermentation using different Rhodobacter sp. Int J Hydrogen Energy 34:2201–2207. https://doi.org/10.1016/J.IJHYDENE.2009.01.017

    Article  CAS  Google Scholar 

  51. Keskin T, Abo-Hashesh M, Hallenbeck PC (2011) Photofermentative hydrogen production from wastes. Bioresour Technol 102:8557–8568. https://doi.org/10.1016/J.BIORTECH.2011.04.004

    Article  CAS  PubMed  Google Scholar 

  52. Davila-Vazquez G, de León-Rodríguez A, Alatriste-Mondragón F, Razo-Flores E (2011) The buffer composition impacts the hydrogen production and the microbial community composition in non-axenic cultures. Biomass Bioenergy 35:3174–3181. https://doi.org/10.1016/J.BIOMBIOE.2011.04.046

    Article  CAS  Google Scholar 

  53. Castelló E, Nunes Ferraz-Junior AD, Andreani C et al (2020) Stability problems in the hydrogen production by dark fermentation: possible causes and solutions. Renew Sustain Energy Rev 119:109602. https://doi.org/10.1016/J.RSER.2019.109602

    Article  Google Scholar 

  54. Vavilin VA, Rytow SV, Lokshina LY (1995) Modelling hydrogen partial pressure change as a result of competition between the butyric and propionic groups of acidogenic bacteria. Bioresour Technol 54:171–177. https://doi.org/10.1016/0960-8524(95)00127-1

    Article  CAS  Google Scholar 

  55. van Ginkel S, Logan BE (2005) Inhibition of biohydrogen production by undissociated acetic and butyric acids. Environ Sci Technol 39:9351–9356. https://doi.org/10.1021/ES0510515

    Article  PubMed  Google Scholar 

  56. Srikanth S, Venkata Mohan S (2014) Regulating feedback inhibition caused by the accumulated acid intermediates during acidogenic hydrogen production through feed replacement. Int J Hydrogen Energy 39:10028–10040. https://doi.org/10.1016/J.IJHYDENE.2014.04.152

    Article  CAS  Google Scholar 

  57. Romão BB, Silva FTM, Costa HC de B et al (2019) Alternative techniques to improve hydrogen production by dark fermentation. 3 Biotech 9:1–8. https://doi.org/10.1007/S13205-018-1538-Y/FIGURES/4

    Article  Google Scholar 

  58. Sekoai PT, Ghimire A, Ezeokoli OT et al (2021) Valorization of volatile fatty acids from the dark fermentation waste streams-a promising pathway for a biorefinery concept. Renew Sustain Energy Rev 143:110971. https://doi.org/10.1016/J.RSER.2021.110971

    Article  CAS  Google Scholar 

  59. Chalima A, Hatzidaki A, Karnaouri A, Topakas E (2019) Integration of a dark fermentation effluent in a microalgal-based biorefinery for the production of high-added value omega-3 fatty acids. Appl Energy 241:130–138. https://doi.org/10.1016/J.APENERGY.2019.03.058

    Article  CAS  Google Scholar 

Download references

Funding

The authors gratefully acknowledge Brazilian Agencies National Council for Scientific and Technological Development (CNPq), Coordination for the Improvement of Higher Education Personnel (CAPES), Research Supporting Foundation of Minas Gerais (FAPEMIG) and Vale S. A. for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabiana Regina Xavier Batista.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira, G.M.T., Moreira, F.S., Cardoso, V.L. et al. Enhancement of Photo-Fermentative Hydrogen Production with Co-culture of Rhodobacter capsulatus and Rhodospirillum rubrum by Using Medium Renewal Strategy. Bioenerg. Res. 16, 1816–1828 (2023). https://doi.org/10.1007/s12155-022-10550-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-022-10550-x

Keywords

Navigation