Skip to main content
Log in

Shift of Propionate-Oxidizing Bacteria with HRT Decrease in an UASB Reactor Containing Propionate as a Sole Carbon Source

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Propionate is a main intermediate product, and its degradation is crucial for maintaining the efficiency and stability of an anaerobic reactor. However, there was little information about the effects of ecological factor on propionate-oxidizing bacteria. In current research, microbial community composition and quantitative analysis of some identified propionate-oxidizing bacteria with hydraulic retention time (HRT) decrease in an upflow anaerobic sludge blanket (UASB) reactor containing propionate as sole carbon source was investigated. The results showed that propionate-oxidizing bacteria from Syntrophobacter, Pelotomaculum, and Smithella were major functional bacteria in this UASB system. Most propionate-oxidizing bacteria in composition have not changed with HRT decrease. However, the number of previously identified propionate-oxidizing bacteria from these three genera exhibited significant shift. Under HRT 10 h condition, Pelotomaculum schinkii was dominant and its quantity was 1.2 × 104 16S ribosomal RNA (rRNA) gene copies/ng DNA, occupying 56.2 % in total detectable propionate-oxidizing bacteria. HRT decrease from 10 h to 8 and 6 h stepwise resulted in P. schinkii, Syntrophobacter sulfatireducens and Smithella propionica becoming the main population. HRT decrease from 6 to 4 h did not markedly change the amount of propionate-oxidizing bacteria, but S. propionica dominated in the reactor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

UASB:

Upflow anaerobic sludge blanket

CSTR:

Completely stirred tank reactor

ABR:

Anaerobic baffled reactor

COD:

Chemical oxygen demand

VFAs:

Volatile fatty acids

PCR-DGGE:

Polymerase chain reaction-denaturing gradient gel electrophoresis

QPCR:

Quantitative polymerase chain reaction

HRT:

Hydraulic retention time

OLR:

Organic loading rate

MLVSS:

Mixed liquid volatile suspended solid

SCRR:

Specific COD removal rate

SMPR:

Specific methane production rate

References

  1. Macias-Corral, M., Samani, Z., Hanson, A., Smith, G., Funk, P., Yu, H., & Longworth, J. (2008). Bioresource Technology, 99, 8288–8293.

    Article  CAS  Google Scholar 

  2. Astals, S., Nolla-Ardèvol, V., & Mata-Alvarez, J. (2012). Bioresource Technology, 110, 63–70.

    Article  CAS  Google Scholar 

  3. Ban, Q., Li, J., Zhang, L., & Jha, A. K. (2013). Journal of Microbiology and Biotechnology, 23, 382–389.

    Article  CAS  Google Scholar 

  4. Chen, S., Zamudio Canas, E. M., Zhang, Y., Zhu, Z., & He, Q. (2012). Journal of Applied Microbiology, 113, 1371–1379.

    Article  CAS  Google Scholar 

  5. Okabe, S., Oshiki, M., Kamagata, Y., Yamaguchi, N., Toyofuku, M., Yawata, Y., Tashiro, Y., Nomura, N., Ohta, H., Ohkuma, M., Hiraishi, A., & Minamisawa, K. (2010). Microbes and Environments, 25, 230–240.

    Article  Google Scholar 

  6. Ma, J., Mungoni, L. J., Verstraete, W., & Carballa, M. (2009). Bioresource Technology, 100, 3477–3482.

    Article  CAS  Google Scholar 

  7. Narihiro, T., Terada, T., Ohashi, A., Kamagata, Y., Nakamura, K., & Sekiguchi, Y. (2012). Water Research, 46, 2167–2175.

    Article  CAS  Google Scholar 

  8. Li, J., Ban, Q., Zhang, L., & Jha, A. K. (2012). International Journal of Agriculture and Biology, 14, 843–850.

    CAS  Google Scholar 

  9. Zhang, L., Li, J., Ban, Q., He, J., & Jha, A. K. (2012). Journal of Microbiology and Biotechnology, 22, 668–673.

    Article  CAS  Google Scholar 

  10. Dhaked, R. K., Waghmare, C. K., Alam, S. I., Kamboj, D. V., & Singh, L. (2003). Bioresource Technology, 87, 299–303.

    Article  CAS  Google Scholar 

  11. Barredo, M. S., & Evison, L. M. (1991). Applied and Environmental Microbiology, 57, 1764–1769.

    CAS  Google Scholar 

  12. Ban, Q., Li, J., Zhang, L., Zhang, Y., Jha, A. K., & Ai, B. (2013). Journal of Harbin Institute of Technology, 45(12), 43–47.

    CAS  Google Scholar 

  13. Boone, D. R., & Bryant, M. P. (1980). Applied and Environmental Microbiology, 40, 626–632.

    CAS  Google Scholar 

  14. Nilsen, R. K., Torsvik, T., & Lien, T. (1996). International Journal of Systematic Bacteriology, 46, 397–402.

    Article  Google Scholar 

  15. Imachi, H., Sekiguchi, Y., Kamagata, Y., Harada, H., Ohashi, A., & Harada, H. (2002). International Journal of Systematic and Evolutionary Microbiology, 52, 1729–1735.

    Article  CAS  Google Scholar 

  16. Wallrabenstein, C., Hauschild, E., & Schink, B. (1995). Archives of Microbiology, 164, 346–352.

    Article  CAS  Google Scholar 

  17. Kosaka, T., Kato, S., Shimoyama, T., Ishii, S., Abe, T., & Watanabe, K. (2008). Genome Research, 18, 442–448.

    Article  CAS  Google Scholar 

  18. Siegert, I., & Banks, C. (2005). Process Biochemistry, 40, 3412–3418.

    Article  CAS  Google Scholar 

  19. Amani, T., Nosrati, M., Mousavi, S. M., & Kermanshahi, R. K. (2011). International Journal of Environmental Science and Technology, 8, 83–96.

    Article  CAS  Google Scholar 

  20. Hegde, G., & Pullammanappallil, P. (2007). Environmental Technology, 28, 361–369.

    Article  CAS  Google Scholar 

  21. Ban, Q., Li, J., Zhang, L., Jha, A. K., & Nies, L. (2013). Applied Biochemistry and Biotechnology, 169, 1822–1836.

    Article  CAS  Google Scholar 

  22. APHA. (1995). Standard methods for the examination of water and wastewater. Washington: American Public Health Association.

    Google Scholar 

  23. Bassam, B. J., Caetano-Anollés, G., & Gresshoff, P. M. (1991). Analytical Biochemistry, 196, 80–83.

    Article  CAS  Google Scholar 

  24. Yamada, T., Imachi, H., Ohashi, A., Harada, H., Hanada, S., Kamagata, Y., & Sekiguchi, Y. (2007). International Journal of Systematic and Evolutionary Microbiology, 57, 2299–2306.

    Article  CAS  Google Scholar 

  25. Demirel, B., & Scherer, P. (2008). Reviews in Environmental Science and Biotechnology, 7, 173–190.

    Article  CAS  Google Scholar 

  26. Harmsen, H. J. M., van Kuijk, B. L. M., Plugge, C. M., Akkermans, A. D. L., de Vos, W. M., & Stams, A. J. M. (1998). International Journal of Systematic and Bacteriology, 48, 1383–1387.

    Article  CAS  Google Scholar 

  27. Chen, S., Liu, X., & Dong, X. (2005). International Journal of Systematic and Evolutionary Microbiology, 55, 1319–1324.

    Article  CAS  Google Scholar 

  28. Imachi, H., Sakai, S., Ohashi, A., Harada, H., Hanada, S., Kamagata, Y., & Sekiguchi, Y. (2007). International Journal of Systematic and Evolutionary Microbiology, 57, 1487–1492.

    Article  Google Scholar 

  29. de Bok, F. A. M., Harmsen, H. J. M., Plugge, C. M., de Vries, M. C., Akkermans, A. D. L., de Vos, W. M., & Stams, A. J. M. (2005). International Journal of Systematic and Evolutionary Microbiology, 55, 1697–1703.

    Article  Google Scholar 

  30. Liu, Y., Balkwill, D. L., Aldrich, H. C., Drake, G. R., & Boone, D. R. (1999). International Journal of Systematic Bacteriology, 49, 545–556.

    Article  CAS  Google Scholar 

  31. de Bok, F. A. M., Stams, A. J. M., Dijkema, C., & Boone, D. R. (2001). Applied Biochemistry and Biotechnology, 67, 1800–1804.

    Google Scholar 

  32. Ariesyady, H. D., Ito, T., Yoshiguchi, K., & Okabe, S. (2007). Applied Microbiology and Biotechnology, 75, 673–683.

    Article  CAS  Google Scholar 

  33. Shigematsu, T., Era, S., Mizuno, Y., Ninomiya, K., Kamegawa, Y., Morimura, S., & Kida, K. (2006). Applied Microbiology and Biotechnology, 72, 401–415.

    Article  CAS  Google Scholar 

  34. Chen, S., & Dong, X. (2005). International Journal of Systematic and Evolutionary Microbiology, 55, 2257–2261.

    Article  CAS  Google Scholar 

  35. Baena, S., Fardeau, M. L., Ollivier, B., Labat, M., Thomas, P., Garcia, J. L., & Patel, B. K. (1999). International Journal Systematic and Bacteriology, 49, 975–982.

    Article  CAS  Google Scholar 

  36. Grabowski, A., Tindall, B. J., Bardin, V., Blanchet, D., & Jeanthon, C. (2005). International Journal of Systematic and Evolutionary Microbiology, 55, 1113–1121.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the National Natural Science Foundation of China (Grant No. 51178136), the Science and Technology Department of Heilongjiang Province (Grant No. GC13C303), and the State Key Laboratory of Urban Water Resource and Environment (HIT) (Grant No. 2013DX11) for valuable financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianzheng Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ban, Q., Zhang, L. & Li, J. Shift of Propionate-Oxidizing Bacteria with HRT Decrease in an UASB Reactor Containing Propionate as a Sole Carbon Source. Appl Biochem Biotechnol 175, 274–286 (2015). https://doi.org/10.1007/s12010-014-1265-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1265-8

Keywords

Navigation