Skip to main content
Log in

Enhanced Dibenzothiophene Biodesulfurization by Immobilized Cells of Brevibacterium lutescens in n-Octane–Water Biphasic System

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this study, it was the first report that the Brevibacterium lutescens CCZU12-1 was employed as a sulfur removing bacteria. Using dibenzothiophene (DBT) as the sole sulfur source, B. lutescens could selectively degrade DBT into 2-hydroxybiphenyl (2-HBP) via the “4S” pathway. In the basal salt medium (BSM) supplemented with 0.25 mM DBT and 0.5 g/L Tween-80, high desulfurization rate (100 %) was obtained by growth cells after 60 h. Furthermore, the n-octane–water (10:90, v/v) biphasic system was built for the biodesulfurization by resting cells. Moreover, a combination of magnetic nano Fe3O4 particles with calcium alginate immobilization was used for enhancing biodesulfurization. In this n-octane–water biphasic system, immobilized B. lutescens cells could be reused for not less than four times. Therefore, B. lutescens CCZU12-1 shows high potential in the biodesulfurization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure. 1
Figure. 2
Figure. 3
Figure. 4
Figure. 5

Similar content being viewed by others

References

  1. Wang, Z., & Stout, S. (2007) Elsevier/Academic Press, Amsterdam; Boston, MA.

  2. Zhang, T., Li, W. L., Chen, X. X., Tang, H., Li, Q., Xing, J. M., & Liu, H. Z. (2011). World Journal of Microbiology and Biotechnology, 27, 299–305.

    Article  CAS  Google Scholar 

  3. Teixeira, A. V., Paixão, S. M., da Silva, T. L., & Alves, L. (2014). Applied Biochemistry and Biotechnology. doi:10.1007/s12010-014-0902-6.

    Google Scholar 

  4. Alves, L., Salgueiro, R., Rodrigues, C., Mesquita, E., Matos, J., & Gärio, F. M. (2005). Applied Biochemistry and Biotechnology, 120, 199–208.

    Article  CAS  Google Scholar 

  5. Li, Y. G., Xing, J. M., Xiong, X. C., Li, W. L., Gao, H. S., & Liu, H. Z. (2008). Journal of Industrial Microbiology and Biotechnology, 35, 145–150.

    Article  Google Scholar 

  6. Yu, B., Xu, P., Shi, Q., & Ma, C. (2006). Applied and Environmental Microbiology, 72, 54–58.

    Article  CAS  Google Scholar 

  7. Alves, L., & Paixão, S. M. (2014). Applied Biochemistry and Biotechnology, 172, 3297–3305.

    Article  CAS  Google Scholar 

  8. Jiang, X., Yang, S. L., & Li, W. L. (2014). Applied Biochemistry and Biotechnology, 172, 62–72.

    Article  CAS  Google Scholar 

  9. Bardania, H., Raheb, J., Mohammad-Beigi, H., Rasekh, B., & Arpanaei, A. (2013). Biotechnology and Applied Biochemistry, 60(3), 323–329.

    Article  CAS  Google Scholar 

  10. Constanti, M., Giralt, J., & Bordons, A. (1996). Enzyme and Microbial Technology, 19, 214–219.

    Article  CAS  Google Scholar 

  11. Gilbert, S. C., Morton, J., Buchanan, S., Oldfield, C., & McRoberts, A. (1998). Microbiology, 144, 2545–2553.

    Article  CAS  Google Scholar 

  12. Konishi, J., Onaka, T., Ishii, Y., & Suzuki, M. (2000). FEMS Microbiology Letters, 187, 151–154.

    Article  CAS  Google Scholar 

  13. Tanaka, Y., Onaka, T., Matsui, T., Maruhashi, K., & Kurane, R. (2001). Current Microbiology, 43, 187–191.

    Article  CAS  Google Scholar 

  14. Izumi, Y., Ohshiro, T., Ogino, H., Hine, Y., & Shimao, M. (1994). Applied and Environmental Microbiology, 60, 223–226.

    CAS  Google Scholar 

  15. He, Y. C., Ma, C. L., Yang, Z. X., Zhou, M., Xing, Z., Ma, J. T., & Yu, H. L. (2013). Applied Microbiology and Biotechnology, 97, 10329–10337.

    Article  CAS  Google Scholar 

  16. He, Y. C., Zhou, Q., Ma, C. L., Cai, Z. Q., Wang, L. Q., Zhao, X. Y., Chen, Q., Gao, D. Z., Zheng, M., Wang, X. D., & Sun, Q. (2012). Bioresource Technology, 115, 88–95.

    Article  CAS  Google Scholar 

  17. Dinamarca, M. A., Rojas, A., Baeza, P., Espinoza, G., Ibacache-Quiroga, C., & Ojeda, J. (2014). Fuel, 16, 237–241.

    Article  Google Scholar 

  18. Gunam, I. B., Yamamura, K., Sujaya, I. N., Antara, N. S., Aryanta, W. R., Tanaka, M., Tomita, F., Sone, T., & Asano, K. (2013). Journal of Microbiology and Biotechnology, 23(4), 473–482.

    Article  CAS  Google Scholar 

  19. Bardania, H., Raheb, J., Mohammad-Beigi, H., Rasekh, B., & Arpanaei, A. (2013). Biotechnology and Applied Biochemistry, 60(3), 323–329.

    Article  CAS  Google Scholar 

  20. Gunam, I. B., Yamamura, K., Sujaya, I. N., Antara, N. S., Aryanta, W. R., Tanaka, M., Tomita, F., Sone, T., & Asano, K. (2013). Journal of Microbiology and Biotechnology, 23(4), 473–482.

    Article  CAS  Google Scholar 

  21. Li, Y. G., Gao, H. S., Li, W. L., Xing, J. M., & Liu, H. Z. (2009). Bioresource Technology, 100(21), 5092–5096.

    Article  CAS  Google Scholar 

  22. Li, F., Xu, P., Feng, J., Meng, L., Zheng, Y., Luo, L., & Ma, C. (2005). Applied and Environmental Microbiology, 71(1), 276–281.

    Article  CAS  Google Scholar 

  23. Wu, S., Lin, J., & Chan, S. I. (1994). Applied Biochemistry and Biotechnology, 47(1), 11–20.

    Article  CAS  Google Scholar 

  24. He, Y. C., Ma, C. L., Zhang, X., Li, L., Xu, J. H., & Wu, M. X. (2013). Applied Microbiology and Biotechnology, 97, 7185–7194.

    Article  CAS  Google Scholar 

  25. Ohshiro, T., Hirata, T., & Izumi, Y. (1996). FEMS Microbiology Letters, 142, 65–70.

    Article  CAS  Google Scholar 

  26. Tao, F., Yu, B., & Xu, P. (2006). Applied and Environmental Microbiology, 72, 4604–4609.

    Article  CAS  Google Scholar 

  27. He, Y. C., Xu, J. H., Su, J. H., & Zhou, L. (2010). Applied Biochemistry and Biotechnology, 160, 1428–1440.

    Article  CAS  Google Scholar 

  28. Ngo-Thi, M. T., Yin, J. G., Pan, J., Zheng, G. W., & Xu, J. H. (2013). Applied Biochemistry and Biotechnology, 170, 1974–1981.

    Article  CAS  Google Scholar 

  29. He, Y. C., Pan, X. H., Xu, X. F., & Wang, L. Q. (2014). Applied Biochemistry and Biotechnology, 172, 3223–3233.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (21102011), the Natural Science Fund for Colleges and Universities in Jiangsu Province (13KJB430025), the Environmental Protection Scientific Research in Jiangsu Province (2013004), the Fund of Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province (AE201118), and the Industrial Technology Support Project in Yancheng City (2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Dai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, Y., Shao, R., Qi, G. et al. Enhanced Dibenzothiophene Biodesulfurization by Immobilized Cells of Brevibacterium lutescens in n-Octane–Water Biphasic System. Appl Biochem Biotechnol 174, 2236–2244 (2014). https://doi.org/10.1007/s12010-014-1184-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1184-8

Keywords

Navigation