Skip to main content
Log in

Effects of Temperature and Substrate Concentration on Lipid Production by Chlorella vulgaris from Enzymatic Hydrolysates of Lipid-Extracted Microalgal Biomass Residues (LMBRs)

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The enzymatic hydrolysates of the lipid-extracted microalgal biomass residues (LMBRs) from biodiesel production were evaluated as nutritional sources for the mixotrophic growth of Chlorella vulgaris and lipid production at different temperature levels and substrate concentrations. Both parameters had a significant effect on cell growth and lipid production. It was observed that C. vulgaris could grow mixotrophically in a wide range of temperatures (20∼35 °C). The optimal temperature for cell growth and lipid accumulation of the mixotrophic growth of C. vulgaris was between 25 and 30 °C. The neutral lipids of the culture at 25 °C accounted for as much as 82 % of the total lipid content in the microalga at culture day 8. Fatty acid composition analysis showed that the increase of saturated fatty acids was proportional to the increase in temperature. The maximum biomass concentration of 4.83 g/L and the maximum lipid productivity of 164 mg/L/day were obtained at an initial total sugar concentration of 10 g/L and an initial total concentration of amino acids of 1.0 g/L but decreased at lower and higher substrate concentrations. The present results show that LMBRS could be utilized by the mixotrophic growth of C. vulgaris for microalgal lipid production under the optimum temperature and substrate concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rawat, I., Kumar, R. R., Mutanda, T., & Bux, F. (2013). Biodiesel from microalgae: a critical evaluation from laboratory to large scale production. Applied Energy, 103, 444–467.

    Article  CAS  Google Scholar 

  2. Wang, Z., Ma, X. C., Zhou, W. G., Min, M., Cheng, Y. L., Chen, P., Shi, J., Wang, Q., Liu, Y. H., & Ruan, R. (2013). Oil crop biomass residue-based media for enhanced algal lipid production. Applied Biochemistry and Biotechnology, 171, 689–703.

    Article  CAS  Google Scholar 

  3. Zhou, W. G., Li, Y. C., Min, M., Hu, B., Chen, P., & Ruan, R. (2011). Local bioprospecting for high-lipid producing microalgal strains to be grown on concentrated municipal wastewater for biofuel production. Bioresource Technology, 102, 6909–6919.

    Article  CAS  Google Scholar 

  4. Nobre, B. P., Villalobos, F., Barragán, B. E., Oliveira, A. C., Batista, A. P., Marques, P. A. S. S., Mendes, R. L., Sovová, H., Palavra, A. F., & Gouvei, L. (2013). A biorefinery from Nannochloropsis sp. microalga—extraction of oils and pigments. Production of biohydrogen from the leftover biomass. Bioresource Technology, 135, 128–136.

    Article  CAS  Google Scholar 

  5. Zheng, H. L., Gao, Z., Yin, F. W., Ji, X. J., & Huang, H. (2012). Lipid production of Chlorella vulgaris from lipid-extracted microalgal biomass residues through two-step enzymatic hydrolysis. Bioresource Technology, 117, 1–6.

    Article  CAS  Google Scholar 

  6. Zheng, H. L., Gao, Z., Yin, F. W., Ji, X. J., & Huang, H. (2012). Effect of CO2 supply conditions on lipid production of Chlorella vulgaris from enzymatic hydrolysates of lipid-extracted microalgal biomass residues. Bioresource Technology, 126, 24–30.

    Article  CAS  Google Scholar 

  7. Stephens, E., Ross, I. L., Mussgnug, J. H., Wagner, L. D., Borowitzka, M. A., Posten, C. O., Kruse, O., & Hankamer, B. (2010). Future prospects of microalgal biofuel production systems. Trends in Plant Science, 15(10), 554–564.

    Article  CAS  Google Scholar 

  8. Ehimen, E. A., Sun, Z. F., Carrington, C. G., Birch, E. J., & Eaton-Rye, J. J. (2011). Anaerobic digestion of microalgae residues resulting from the biodiesel production process. Applied Energy, 88, 3454–3463.

    Article  CAS  Google Scholar 

  9. Sheng, J., Kim, H. W., Badalamenti, J. P., Zhou, C., Sridharakrishnan, S., Krajmalnik-Brown, R., Rittmann, B. E., & Vannela, R. (2011). Effects of temperature shifts on growth rate and lipid characteristics of Synechocystis sp. PCC6803 in a bench-top photobioreactor. Bioresource Technology, 102, 11218–11225.

    Article  CAS  Google Scholar 

  10. Jiang, Y., & Chen, F. (2000). Effects of temperature and temperature shift on docosahexaenoic acid production by the marine microalga Crypthecodinium cohnii. Journal of American Oil Chemistry Society, 77, 613–617.

    Article  CAS  Google Scholar 

  11. Converti, A., Casazza, A. A., Ortiz, E. Y., Perego, P., & Borghi, M. D. (2009). Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chemical Engineering Process, 48, 1146–1151.

    Article  CAS  Google Scholar 

  12. Li, Y. Q., Horsman, M., Wang, B., Wu, N., & Lan, C. Q. (2008). Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Applied Microbiology Biotechnology, 81, 629–636.

    Article  CAS  Google Scholar 

  13. Muge, I. H., Idil, G., & Murat, E. (2012). Optimization of carbon and nitrogen sources for biomass and lipid production by Chlorella saccharophila under heterotrophic conditions and development of Nile red fluorescence based method for quantification of its neutral lipid content. Biochemical Engineering Journal, 61, 11–19.

    Article  Google Scholar 

  14. Zheng, H. L., Yin, J. L., Gao, Z., Huang, H., Ji, X. J., & Dou, C. (2011). Disruption of Chlorella vulgaris cells for the release of biodiesel-producing lipids: a comparison of grinding, ultrasonication, bead milling, enzymatic lysis, and microwaves. Applied Biochemistry and Biotechnology, 164, 1215–1224.

    Article  CAS  Google Scholar 

  15. Yan, L. S., Zhang, H. M., Chen, J. W., Lin, Z. X., Jin, Q., Jia, H. H., & Huang, H. (2009). Dilute sulfuric acid cycle spray flow-through pretreatment of corn stover for enhancement of sugar recovery. Bioresource Technology, 100(5), 1803–1808.

    Article  CAS  Google Scholar 

  16. Heinrikson, R. L., & Meredith, S. C. (1984). Amino acid analysis by reverse-phase high-performance liquid chromatography: precolumn derivatization with phenylisothiocyanate. Analysis Biochemistry, 136, 65–74.

    Article  CAS  Google Scholar 

  17. Wellburn, A. L. (1994). The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology, 144, 307–313.

    Article  CAS  Google Scholar 

  18. Chen, W., Zhang, C., Song, L., Sommerfeld, M., & Hu, Q. (2009). A high throughput Nile red method for quantitative measurement of neutral lipids in microalgae. Journal of Microbiology Methods, 77, 41–47.

    Article  CAS  Google Scholar 

  19. Bligh, E. G., & Dyer, W. M. (1959). A rapid method of lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37, 911–917.

    Article  CAS  Google Scholar 

  20. Metchalfe, L. D., & Schmitz, A. A. (1961). The rapid preparation of fatty acid esters for gas chromatographic analysis. Analysis Biochemistry, 33, 363–372.

    Google Scholar 

  21. Ren, L. J., Ji, X. J., Huang, H., Qu, L., Feng, Y., Tong, Q. Q., & Ouyang, P. K. (2010). Development of a stepwise aeration control strategy for efficient docosahexaenoic acid production by Schizochytrium sp. Applied Microbiology and Biotechnology, 87, 1649–1656.

    Article  CAS  Google Scholar 

  22. Duncan, D. B. (1955). Multiple range and multiple F tests. Biometrics, 11, 1–42.

    Article  Google Scholar 

  23. Abreu, A. P., Fernandes, B., Vicente, A. A., Teixeira, J., & Dragone, G. (2012). Mixotrophic cultivation of Chlorella vulgaris using industrial dairy waste as organic carbon source. Bioresource Technology, 118, 61–66.

    Article  CAS  Google Scholar 

  24. Borowitzka, M. A. (1998). Limits to growth. In Y. S. Wong & N. F. Y. Tam (Eds.), Wastewater treatment with algae (pp. 203–226). Berlin: Springer-Verlag.

    Chapter  Google Scholar 

  25. Li, T.T., Zheng, Y.B., Yu, L., Chen, S.L. (2014). Mixotrophic cultivation of a Chlorella sorokiniana strain for enhanced biomass and lipid production. Biomass and Bioenergy. http://dx.doi.org/10.1016/j.biombioe.2014.04.010.

  26. Ji, Y., Hu, W. R., Li, X. Q., Ma, G. X., Song, M. M., & Pei, H. Y. (2014). Mixotrophic growth and biochemical analysis of Chlorella vulgaris cultivated with diluted monosodium glutamate wastewater. Bioresource Technology, 152, 471–476.

    Article  CAS  Google Scholar 

  27. Guan, Y. X., Wang, J., & Sun, J. X. (2011). A method for determination of hexokinase activity by RP-HPLC. Wuhan University Journal of Nature Science, 16(6), 535–540.

    Article  CAS  Google Scholar 

  28. Liu, M. S., & Hellebust, J. A. (1974). Uptake of amino acids by the marine centric diatom Cyclotella cryptica. Canadian Journal of Microbiology, 20, 1109–1118.

    Article  CAS  Google Scholar 

  29. Perez-Garcia, O., Escalante, F. M. E., De-Bashan, L. E., & Bashan, Y. (2011). Heterotrophic cultures of microalgae: metabolism and potential products. Water Research, 45, 11–36.

    Article  CAS  Google Scholar 

  30. Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M., & Darzins, A. (2008). Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant Journal, 54, 621–639.

    Article  CAS  Google Scholar 

  31. Thi, T. Y. D., Balasubramanian, S., & Jeffrey, P. O. (2011). Screening of marine microalgae for biodiesel feedstock. Biomass & Bioenergy, 35, 2534–2544.

    Article  Google Scholar 

  32. Chiu, S. Y., Kao, C. Y., Tsai, M. T., Ong, S. C., Chen, C. H., & Lin, C. S. (2009). Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration. Bioresource Technology, 100, 833–838.

    Article  CAS  Google Scholar 

  33. Biel, K. Y., Gates, R. D., & Muscatine, L. (2007). Effects of free amino acids on the photosynthetic carbon metabolism of symbiotic dinoflagellates. Russian Journal of Plant Physiology, 54(2), 171–183.

    Article  CAS  Google Scholar 

  34. Molina Grima, E., Sanchez Perez, J. A., Garcia Camacho, F., Fernandez Sevilla, J. M., & Acién Fernández, F. G. (1996). Productivity analysis of outdoor chemostat cultures in tubular air-lift photobioreactors. Journal of Applied Phycology, 8, 369–380.

    Article  Google Scholar 

  35. Masojı’dek, J., Koblı’zˇek, M., & Torzillo, G. (2004). Photosynthesis in microalgae. In A. Richmond (Ed.), Handbook of microalgal culture: biotechnology and applied phycology (pp. 20–40). London: Blackwell Science Ltd.

    Google Scholar 

  36. Li, X., Hu, H. Y., & Zhang, Y. P. (2011). Growth and lipid accumulation properties of a freshwater microalga Scenedesmus sp. under different cultivation temperature. Bioresource Technology, 102, 3098–3102.

    Article  CAS  Google Scholar 

  37. Fallen, B. D., Pantalone, V. R., Sams, C. E., Kopsell, D. A., Vaughn, S. F., & Moser, B. R. (2011). Effect of soybean oil fatty acid composition and selenium application on biodiesel properties. Journal of American Oil Chemistry Society, 88, 1019–1028.

    Article  CAS  Google Scholar 

  38. Bello, E. I., Out, F., & Osasona, A. (2012). Cetane number of three vegetable oils, their biodiesels and blends with diesel fuel. Journal of Petroleum Technology and Alternative Fuels, 3(5), 52–57.

    CAS  Google Scholar 

  39. Miao, X. L., & Wu, Q. Y. (2006). Biodiesel production from heterotrophic microalgal oil. Bioresource Technology, 97, 841–846.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Minnesota Legislative-Citizen Commission on Minnesota Resources (LCCMR), the National High-tech R&D Program of China (863 Program) (Grant Nos. 2012AA021205, 2012AA101800–03, 2012AA021704, 2012AA101809, and 2014AA022004), China International Cooperation Projects (Grant No. 2014DFA61040), and the Science and Technology Project of Jiangxi Provincial Department of Science and Technology (Grant No. 20142BBF60007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger Ruan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Zheng, H., Huang, H. et al. Effects of Temperature and Substrate Concentration on Lipid Production by Chlorella vulgaris from Enzymatic Hydrolysates of Lipid-Extracted Microalgal Biomass Residues (LMBRs). Appl Biochem Biotechnol 174, 1631–1650 (2014). https://doi.org/10.1007/s12010-014-1134-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1134-5

Keywords

Navigation