Skip to main content
Log in

Application of additive manufacturing in biomedical domain: a bibliometric review, thematic evolution and content analysis

  • Review
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

This paper aims to broadly analysis 928 documents available in the Scopus record related to additive manufacturing in biomedical (AMiBM) applications. The primary objective is to gain insights into this subject area’s historical growth, current status, and potential future trends. The data collection spanned from 2002 to 2020, and a systematic approach was employed to identify relevant AMiBM documents across various disciplines within the Scopus database. After a rigorous screening and assessment, 928 papers from 2002 to 2020 were deemed suitable for scrutiny and analysis. This review provides an overview of these AMiBM documents, encompassing their types, publication details, citation counts, and predictions for future developments. To visually represent the research landscape, the study utilized tools such as VOSviewer 1.16.6 and Biblioshiny 2.0 to present the status of AMiBM publications. In addition to cataloguing the existing literature, the study seeks to pinpoint the current hotspots and emerging trends within the field of AMiBM. This is accomplished through a thorough analysis of author-keywords, index-keywords, and the textual content of the documents. Overall, this assessment and bibliometric analysis of AMiBM provide a comprehensive and panoramic view of this research domain. The intention is to equip scholars and researchers with a broad understanding of the key areas of interest and ongoing developments within AMiBM. This knowledge will prove valuable to newcomers in the field, enabling them to quickly grasp the current state and trajectory of research in this dynamic and evolving area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Data availability

All data used to support the findings of this study are included in the article.

References

  1. Salaha, Z.F.M., Ammarullah, M.I., Abdullah, N.N.A.A., Aziz, A.U.A., Gan, H.S., Abdullah, A.H., et al.: Biomechanical effects of the porous structure of Gyroid and Voronoi Hip implants: A finite element analysis using an experimentally validated Model. Materials. 16(9) (2023). https://doi.org/10.3390/ma16093298

  2. Prakoso, A.T., Basri, H., Adanta, D., Yani, I., Ammarullah, M.I., Akbar, I., et al.: The Effect of Tortuosity on Permeability of Porous Scaffold. Biomedicines. 11(2) (2023). https://doi.org/10.3390/biomedicines11020427

  3. Kumar, A., Kumar, D., Choudhury, R., Ansu, A., Goyal, A., Oza, A.D., et al.: Application of 3D printing for engineering and bio-medicals: Recent trends and development. Int. J. Interact. Des. Manuf. (2022). https://doi.org/10.1007/s12008-022-01145-z

    Article  Google Scholar 

  4. Bertolini, M., Luraghi, G., Belicchi, I., Migliavacca, F., Colombo, G.: Evaluation of segmentation accuracy and its impact on patient-specific CFD analysis. Int. J. Interact. Des. Manuf. 16(2), 545–556 (2022). https://doi.org/10.1007/s12008-021-00802-z

    Article  Google Scholar 

  5. Shick, T.M., Abdul Kadir, A.Z., Ngadiman, N.H.A., Ma’aram, A.: A review of biomaterials scaffold fabrication in additive manufacturing for tissue engineering. J. Bioactive Compatible Polym. 34(6), 415–435 (2019). https://doi.org/10.1177/0883911519877426

    Article  Google Scholar 

  6. Qu, H.: Additive manufacturing for bone tissue engineering scaffolds. Mater. Today Commun. 24, 101024 (2020). https://doi.org/10.1016/j.mtcomm.2020.101024

    Article  Google Scholar 

  7. Moreno Madrid, A.P., Vrech, S.M., Sanchez, M.A., Rodriguez, A.P.: Advances in additive manufacturing for bone tissue engineering scaffolds. Mater. Sci. Engineering: C. 100, 631–644 (2019). https://doi.org/10.1016/j.msec.2019.03.037

    Article  Google Scholar 

  8. Anand, P.B., Nagaraja, S., Jayaram, N., Sreenivasa, S.P., Almakayeel, N., Khan, T.M.Y., et al.: Kenaf Fiber and Hemp Fiber multi-walled Carbon Nanotube Filler-Reinforced Epoxy-based hybrid composites for Biomedical Applications: Morphological and mechanical characterization. J. Compos. Sci. 7(8) (2023). https://doi.org/10.3390/jcs7080324

  9. Tauviqirrahman, M., Ammarullah, M.I., Jamari, J., Saputra, E., Winarni, T.I., Kurniawan, F.D., et al.: Analysis of contact pressure in a 3D model of dual-mobility hip joint prosthesis under a gait cycle. Sci. Rep. 13(1) (2023). https://doi.org/10.1038/s41598-023-30725-6

  10. Tytgat, L., Van Damme, L., Van Hoorick, J., Declercq, H., Thienpont, H., Ottevaere, H., et al.: Additive manufacturing of photo-crosslinked gelatin scaffolds for adipose tissue engineering. Acta Biomater. 94, 340–350 (2019). https://doi.org/10.1016/j.actbio.2019.05.062

    Article  Google Scholar 

  11. Cockerill, I., Su, Y., Sinha, S., Qin, Y.-X., Zheng, Y., Young, M.L., et al.: Porous zinc scaffolds for bone tissue engineering applications: A novel additive manufacturing and casting approach. Mater. Sci. Engineering: C. 110, 110738 (2020). https://doi.org/10.1016/j.msec.2020.110738

    Article  Google Scholar 

  12. Meng, Z., He, J., Cai, Z., Wang, F., Zhang, J., Wang, L., et al.: Design and additive manufacturing of flexible polycaprolactone scaffolds with highly-tunable mechanical properties for soft tissue engineering. Mater. Design. 189, 108508 (2020). https://doi.org/10.1016/j.matdes.2020.108508

    Article  Google Scholar 

  13. Bégin-Drolet, A., Dussault, M.-A., Fernandez, S.A., Larose-Dutil, J., Leask, R.L., Hoesli, C.A., et al.: Design of a 3D printer head for additive manufacturing of sugar glass for tissue engineering applications. Additive Manuf. 15, 29–39 (2017). https://doi.org/10.1016/j.addma.2017.03.006

    Article  Google Scholar 

  14. Camarero-Espinosa, S., Calore, A., Wilbers, A., Harings, J., Moroni, L.: Additive manufacturing of an elastic poly(ester)urethane for cartilage tissue engineering. Acta Biomater. 102, 192–204 (2020). https://doi.org/10.1016/j.actbio.2019.11.041

    Article  Google Scholar 

  15. Lei, H., Yi, T., Fan, H., Pei, X., Wu, L., Xing, F., et al.: Customized additive manufacturing of porous Ti6Al4V scaffold with micro-topological structures to regulate cell behavior in bone tissue engineering. Mater. Sci. Engineering: C. 120, 111789 (2021). https://doi.org/10.1016/j.msec.2020.111789

    Article  Google Scholar 

  16. Pecci, R., Baiguera, S., Ioppolo, P., Bedini, R., Del Gaudio, C.: 3D printed scaffolds with random microarchitecture for bone tissue engineering applications: Manufacturing and characterization. J. Mech. Behav. Biomed. Mater. 103, 103583 (2020). https://doi.org/10.1016/j.jmbbm.2019.103583

    Article  Google Scholar 

  17. Yu, G.Z., Chou, D.-T., Hong, D., Roy, A., Kumta, P.N.: Biomimetic rotated Lamellar Plywood motifs by Additive Manufacturing of Metal Alloy Scaffolds for bone tissue Engineering. ACS Biomaterials Sci. Eng. 3(4), 648–657 (2017). https://doi.org/10.1021/acsbiomaterials.7b00043

    Article  Google Scholar 

  18. Mondal, D., Srinivasan, A., Comeau, P., Toh, Y.-C., Willett, T.L.: Acrylated epoxidized soybean oil/hydroxyapatite-based nanocomposite scaffolds prepared by additive manufacturing for bone tissue engineering. Mater. Sci. Engineering: C. 118, 111400 (2021). https://doi.org/10.1016/j.msec.2020.111400

    Article  Google Scholar 

  19. Zafeiris, K., Brasinika, D., Karatza, A., Koumoulos, E., Karoussis, I.K., Kyriakidou, K., et al.: Additive manufacturing of hydroxyapatite–chitosan–genipin composite scaffolds for bone tissue engineering applications. Mater. Sci. Engineering: C. 119, 111639 (2021). https://doi.org/10.1016/j.msec.2020.111639

    Article  Google Scholar 

  20. Mallikarjuna, B., Bhargav, P., Hiremath, S., Jayachristiyan, K.G., Jayanth, N.: A review on the melt extrusion-based fused deposition modeling (FDM): Background, materials, process parameters and military applications. Int. J. Interact. Des. Manuf. (2023). https://doi.org/10.1007/s12008-023-01354-0

    Article  Google Scholar 

  21. Thakur, V., Singh, R., Kumar, R., Gehlot, A.: 4D printing of thermoresponsive materials: A state-of-the-art review and prospective applications. Int. J. Interact. Des. Manuf. (2022). https://doi.org/10.1007/s12008-022-01018-5

    Article  Google Scholar 

  22. Prashar, G., Vasudev, H., Bhuddhi, D.: Additive manufacturing: Expanding 3D printing horizon in industry 4.0. Int. J. Interact. Des. Manuf. (2022). https://doi.org/10.1007/s12008-022-00956-4

    Article  Google Scholar 

  23. Huang, T.Q., Qu, X., Liu, J., Chen, S.: 3D printing of biomimetic microstructures for cancer cell migration. Biomed. Microdevices. 16(1), 127–132 (2014). https://doi.org/10.1007/s10544-013-9812-6

    Article  Google Scholar 

  24. Lei, D., Yang, Y., Liu, Z., Yang, B., Gong, W., Chen, S., et al.: 3D printing of biomimetic vasculature for tissue regeneration. Mater. Horiz. 6(6), 1197–1206 (2019). https://doi.org/10.1039/C9MH00174C

    Article  Google Scholar 

  25. Portillo-Lara, R., Spencer, A.R., Walker, B.W., Shirzaei Sani, E., Annabi, N.: Biomimetic cardiovascular platforms for in vitro disease modeling and therapeutic validation. Biomaterials. 198, 78–94 (2019). https://doi.org/10.1016/j.biomaterials.2018.08.010

    Article  Google Scholar 

  26. Koffler, J., Zhu, W., Qu, X., Platoshyn, O., Dulin, J.N., Brock, J., et al.: Biomimetic 3D-printed scaffolds for spinal cord injury repair. Nat. Med. 25(2), 263–269 (2019). https://doi.org/10.1038/s41591-018-0296-z

    Article  Google Scholar 

  27. Chang, Y., Jiang, J., Chen, W., Yang, W., Chen, L., Chen, P., et al.: Biomimetic metal-organic nanoparticles prepared with a 3D-printed microfluidic device as a novel formulation for disulfiram-based therapy against breast cancer. Appl. Mater. Today. 18, 100492 (2020). https://doi.org/10.1016/j.apmt.2019.100492

    Article  Google Scholar 

  28. Cho, H., Jammalamadaka, U., Tappa, K., Egbulefu, C., Prior, J., Tang, R., et al.: 3D Printing of Poloxamer 407 Nanogel discs and their applications in adjuvant ovarian Cancer therapy. Mol. Pharm. 16(2), 552–560 (2019). https://doi.org/10.1021/acs.molpharmaceut.8b00836

    Article  Google Scholar 

  29. Ma, H., Li, T., Huan, Z., Zhang, M., Yang, Z., Wang, J., et al.: 3D printing of high-strength bioscaffolds for the synergistic treatment of bone cancer. NPG Asia Mater. 10(4), 31–44 (2018). https://doi.org/10.1038/s41427-018-0015-8

    Article  Google Scholar 

  30. Monshi, M., Esmaeili, S., Kolooshani, A., Moghadas, B.K., Saber-Samandari, S., Khandan, A.: A novel three-dimensional printing of electroconductive scaffolds for bone cancer therapy application %J. Nanomed. J. 7(2), 138–148 (2020). https://doi.org/10.22038/nmj.2020.07.007

    Article  Google Scholar 

  31. Rao, P.M., Dhoria, S.H., Patro, S.G.K., Gopidesi, R.K., Alkahtani, M.Q., Islam, S., et al.: Artificial intelligence based modelling and hybrid optimization of linseed oil biodiesel with graphene nanoparticles to stringent biomedical safety and environmental standards. Case Stud. Therm. Eng. 51 (2023). https://doi.org/10.1016/j.csite.2023.103554

  32. Nesaei, S., Song, Y., Wang, Y., Ruan, X., Du, D., Gozen, A., et al.: Micro additive manufacturing of glucose biosensors: A feasibility study. Anal. Chim. Acta. 1043, 142–149 (2018). https://doi.org/10.1016/j.aca.2018.09.012

    Article  Google Scholar 

  33. Roda, A., Guardigli, M., Calabria, D., Calabretta, M.M., Cevenini, L., Michelini, E.: A 3D-printed device for a smartphone-based chemiluminescence biosensor for lactate in oral fluid and sweat. Analyst. 139(24), 6494–6501 (2014). https://doi.org/10.1039/C4AN01612B

    Article  Google Scholar 

  34. López Marzo, A.M., Mayorga-Martinez, C.C., Pumera, M.: 3D-printed graphene direct electron transfer enzyme biosensors. Biosens. Bioelectron. 151, 111980 (2020). https://doi.org/10.1016/j.bios.2019.111980

    Article  Google Scholar 

  35. Damiati, S., Küpcü, S., Peacock, M., Eilenberger, C., Zamzami, M., Qadri, I., et al.: Acoustic and hybrid 3D-printed electrochemical biosensors for the real-time immunodetection of liver cancer cells (HepG2). Biosens. Bioelectron. 94, 500–506 (2017). https://doi.org/10.1016/j.bios.2017.03.045

    Article  Google Scholar 

  36. Mavrikou, S., Moschopoulou, G., Tsekouras, V., Kintzios, S.: Development of a Portable, ultra-rapid and ultra-sensitive cell-based Biosensor for the direct detection of the SARS-CoV-2 S1 spike protein Antigen. ;20(11):3121. (2020)

  37. Charles, P.T., Goldman, E.R., Rangasammy, J.G., Schauer, C.L., Chen, M.S., Taitt, C.R.: Fabrication and characterization of 3D hydrogel microarrays to measure antigenicity and antibody functionality for biosensor applications. Biosens. Bioelectron. 20(4), 753–764 (2004). https://doi.org/10.1016/j.bios.2004.04.007

    Article  Google Scholar 

  38. Cesewski, E., Johnson, B.N.: Electrochemical biosensors for pathogen detection. Biosens. Bioelectron. 159, 112214 (2020). https://doi.org/10.1016/j.bios.2020.112214

    Article  Google Scholar 

  39. Jamari, J., Ammarullah, M.I., Santoso, G., Sugiharto, S., Supriyono, T., van der Heide, E.: Silico Contact Pressure of Metal-on-Metal Total Hip Implant with different materials subjected to Gait Loading. Metals. 12(8) (2022). https://doi.org/10.3390/met12081241

  40. Jamari, J., Ammarullah, M.I., Santoso, G., Sugiharto, S., Supriyono, T., Permana, M.S., et al.: Adopted walking condition for computational simulation approach on bearing of hip joint prosthesis: Review over the past 30 years. Heliyon. 8(12) (2022). https://doi.org/10.1016/j.heliyon.2022.e12050

  41. Won, J.Y., Kim, J., Gao, G., Kim, J., Jang, J., Park, Y.-H., et al.: 3D printing of drug-loaded multi-shell rods for local delivery of bevacizumab and dexamethasone: A synergetic therapy for retinal vascular diseases. Acta Biomater. 116, 174–185 (2020). https://doi.org/10.1016/j.actbio.2020.09.015

    Article  Google Scholar 

  42. Reddy Dumpa, N., Bandari, S.: Novel gastroretentive floating Pulsatile Drug Delivery System Produced via Hot-Melt Extrusion and fused deposition modeling 3D Printing. Pharmaceutics. 12(1) (2020). https://doi.org/10.3390/pharmaceutics12010052

  43. Shi, K., Aviles-Espinosa, R., Rendon-Morales, E., Woodbine, L., Maniruzzaman, M., Nokhodchi, A.: Novel 3D printed device with integrated macroscale magnetic field triggerable anti-cancer drug delivery system. Colloids Surf., B. 192, 111068 (2020). https://doi.org/10.1016/j.colsurfb.2020.111068

    Article  Google Scholar 

  44. Wang, Y., Sun, L., Mei, Z., Zhang, F., He, M., Fletcher, C., et al.: 3D printed biodegradable implants as an individualized drug delivery system for local chemotherapy of osteosarcoma. Mater. Design. 186, 108336 (2020). https://doi.org/10.1016/j.matdes.2019.108336

    Article  Google Scholar 

  45. Rohani Shirvan, A., Bashari, A., Hemmatinejad, N.: New insight into the fabrication of smart mucoadhesive buccal patches as a novel controlled-drug delivery system. Eur. Polymer J. 119, 541–550 (2019). https://doi.org/10.1016/j.eurpolymj.2019.07.010

    Article  Google Scholar 

  46. Xu, X., Goyanes, A., Trenfield, S.J., Diaz-Gomez, L., Alvarez-Lorenzo, C., Gaisford, S., et al.: Stereolithography (SLA) 3D printing of a bladder device for intravesical drug delivery. Mater. Sci. Engineering: C. 120, 111773 (2021). https://doi.org/10.1016/j.msec.2020.111773

    Article  Google Scholar 

  47. Dawood, A., Marti, B.M., Sauret-Jackson, V., Darwood, A.: 3D printing in dentistry. Br. Dent. J. 219(11), 521–529 (2015). https://doi.org/10.1038/sj.bdj.2015.914

    Article  Google Scholar 

  48. Ishida, Y., Miyasaka, T.: Dimensional accuracy of dental casting patterns created by 3D printers. Dent. Mater. J. 35(2), 250–256 (2016). https://doi.org/10.4012/dmj.2015-278

    Article  Google Scholar 

  49. Mai, H.N., Lee, K.B., Lee, D.H.: Fit of interim crowns fabricated using photopolymer-jetting 3D printing. J. Prosthet. Dent. 118(2), 208–215 (2017). https://doi.org/10.1016/j.prosdent.2016.10.030

    Article  Google Scholar 

  50. Lopez, C.D., Witek, L., Torroni, A., Flores, R.L., Demissie, D.B., Young, S., et al.: The role of 3D printing in treating craniomaxillofacial congenital anomalies. Birth Defects Res. 110(13), 1055–1064 (2018). https://doi.org/10.1002/bdr2.1345

    Article  Google Scholar 

  51. Yan, L., Lim, J.L., Lee, J.W., Tia, C.S.H., O’Neill, G.K., Chong, D.Y.R.: Finite element analysis of bone and implant stresses for customized 3D-printed orthopaedic implants in fracture fixation. Med. Biol. Eng. Comput. 58(5), 921–931 (2020). https://doi.org/10.1007/s11517-019-02104-9

    Article  Google Scholar 

  52. Sa, L., Kaiwu, L., Shenggui, C., Junzhong, Y., Yongguang, J., Lin, W., et al.: 3D printing dental composite resins with sustaining antibacterial ability. J. Mater. Sci. 54(4), 3309–3318 (2019). https://doi.org/10.1007/s10853-018-2801-7

    Article  Google Scholar 

  53. Arnesano, A., Kunjalukkal Padmanabhan, S., Notarangelo, A., Montagna, F., Licciulli, A.: Fused deposition modeling shaping of glass infiltrated alumina for dental restoration. Ceram. Int. 46(2), 2206–2212 (2020). https://doi.org/10.1016/j.ceramint.2019.09.205

    Article  Google Scholar 

  54. Mai, H.N., Hyun, D.C., Park, J.H., Kim, D.Y., Lee, S.M., Lee, D.H.: Antibacterial Drug-Release Polydimethylsiloxane Coating for 3D-Printing Dental Polymer: Surface alterations and Antimicrobial effects. Pharmaceuticals (Basel). 13(10) (2020). https://doi.org/10.3390/ph13100304

  55. Trevisan, F., Calignano, F., Aversa, A., Marchese, G., Lombardi, M., Biamino, S., et al.: Additive manufacturing of titanium alloys in the biomedical field: Processes, properties and applications. J. Appl. Biomater. Funct. Mater. 16(2), 57–67 (2018). https://doi.org/10.5301/jabfm.5000371

    Article  Google Scholar 

  56. https://rockhealth.com/visual-wednesdays-state-3d-printing-medicine/, 2014

  57. Hao, Y.L., Li, S.J., Yang, R.: Biomedical titanium alloys and their additive manufacturing. Rare Met. 35(9), 661–671 (2016). https://doi.org/10.1007/s12598-016-0793-5

    Article  Google Scholar 

  58. Harun, W.S.W., Kamariah, M.S.I.N., Muhamad, N., Ghani, S.A.C., Ahmad, F., Mohamed, Z.: A review of powder additive manufacturing processes for metallic biomaterials. Powder Technol. 327, 128–151 (2018). https://doi.org/10.1016/j.powtec.2017.12.058

    Article  Google Scholar 

  59. Harun, W.S.W., Manam, N.S., Kamariah, M.S.I.N., Sharif, S., Zulkifly, A.H., Ahmad, I., et al.: A review of powdered additive manufacturing techniques for Ti-6al-4v biomedical applications. Powder Technol. 331, 74–97 (2018). https://doi.org/10.1016/j.powtec.2018.03.010

    Article  Google Scholar 

  60. Savio, G., Rosso, S., Meneghello, R., Concheri, G.: Geometric modeling of cellular materials for additive manufacturing in biomedical field: A review. Appl. Bionics Biomech. 2018 (2018). https://doi.org/10.1155/2018/1654782

  61. Calignano, F., Galati, M., Iuliano, L., Minetola, P.: Design of Additively Manufactured structures for Biomedical Applications: A review of the Additive Manufacturing processes Applied to the Biomedical Sector. J. Healthc. Eng. 2019 (2019). https://doi.org/10.1155/2019/9748212

  62. González-Henríquez, C.M., Sarabia-Vallejos, M.A., Rodriguez-Hernandez, J.: Polymers for additive manufacturing and 4D-printing: Materials, methodologies, and biomedical applications. Prog Polym. Sci. 94, 57–116 (2019). https://doi.org/10.1016/j.progpolymsci.2019.03.001

    Article  Google Scholar 

  63. Jang, T.S., Kim, D.E., Han, G., Yoon, C.B., Jung, H.D.: Powder based additive manufacturing for biomedical application of titanium and its alloys: A review. Biomed. Eng. Lett. 10(4), 505–516 (2020). https://doi.org/10.1007/s13534-020-00177-2

    Article  Google Scholar 

  64. Sabahi, N., Chen, W., Wang, C.H., Kruzic, J.J., Li, X.: A review on Additive Manufacturing of shape-memory materials for Biomedical Applications. JOM. 72(3), 1229–1253 (2020). https://doi.org/10.1007/s11837-020-04013-x

    Article  Google Scholar 

  65. Szymczyk-Ziółkowska, P., Łabowska, M.B., Detyna, J., Michalak, I., Gruber, P.: A review of fabrication polymer scaffolds for biomedical applications using additive manufacturing techniques. Biocybern Biomed. Eng. 40(2), 624–638 (2020). https://doi.org/10.1016/j.bbe.2020.01.015

    Article  Google Scholar 

  66. Kumar, R., Kumar, M., Chohan, J.S.: The role of additive manufacturing for biomedical applications: A critical review. J. Manuf. Processes. 64, 828–850 (2021). https://doi.org/10.1016/j.jmapro.2021.02.022

    Article  Google Scholar 

  67. Sheoran, A.J., Chandra, A., Kumar, H.: Biomedical Applications of Additive Manufacturing. In: Muzammil M, Chandra A, Kankar PK, Kumar H, editors. 1st International Conference on Innovative Technologies in Mechanical Engineering, ITME 2019: Springer Science and Business Media Deutschland GmbH; pp. 553 – 66. (2021)

  68. Zhu, J.N., Zhu, W., Borisov, E., Yao, X., Riemslag, T., Goulas, C., et al.: Effect of heat treatment on microstructure and functional properties of additively manufactured NiTi shape memory alloys. J. Alloys Compd. 967 (2023). https://doi.org/10.1016/j.jallcom.2023.171740

  69. Sui, S., Guo, S., Ma, D., Guo, C., Wu, X., Zhang, Z., et al.: Additive manufacturing of magnesium and its alloys: Process-formability-microstructure-performance relationship and underlying mechanism. Int. J. Extreme Manuf. 5(4) (2023). https://doi.org/10.1088/2631-7990/acf254

  70. Sharma, A., Faber, H., Khosla, A., Anthopoulos, T.D.: 3D printed electrochemical devices for bio-chemical sensing: A review. Mater. Sci. Eng. R: Rep. 156 (2023). https://doi.org/10.1016/j.mser.2023.100754

  71. Marin, E.: Forged to heal: The role of metallic cellular solids in bone tissue engineering. Mater. Today Bio. 23 (2023). https://doi.org/10.1016/j.mtbio.2023.100777

  72. Al Rashid, A., Koç, M.: Additive manufacturing for sustainability and circular economy: Needs, challenges, and opportunities for 3D printing of recycled polymeric waste. Mater. Today Sustain. 24 (2023). https://doi.org/10.1016/j.mtsust.2023.100529

  73. Sangwan, K.S., Mittal, V.K.: A bibliometric analysis of green manufacturing and similar frameworks. Manage. Environ. Quality: Int. J. 26(4), 566–587 (2015). https://doi.org/10.1108/MEQ-02-2014-0020

    Article  Google Scholar 

  74. Zhu, J., Hua, W.: Visualizing the knowledge domain of sustainable development research between 1987 and 2015: A bibliometric analysis. Scientometrics. 110(2), 893–914 (2017). https://doi.org/10.1007/s11192-016-2187-8

    Article  Google Scholar 

  75. Johnson, A.G., Samakovlis, I.: A bibliometric analysis of knowledge development in smart tourism research. J. Hospitality Tourism Technol. 10(4), 600–623 (2019). https://doi.org/10.1108/JHTT-07-2018-0065

    Article  Google Scholar 

  76. Yue, T., Liu, H., Long, R., Chen, H., Gan, X., Liu, J.: Research trends and hotspots related to global carbon footprint based on bibliometric analysis: 2007–2018. Environ. Sci. Pollut. Res. 27(15), 17671–17691 (2020). https://doi.org/10.1007/s11356-020-08158-9

    Article  Google Scholar 

  77. Di Vaio, A., Syriopoulos, T., Alvino, F., Palladino, R.: Integrated thinking and reporting towards sustainable business models: A concise bibliometric analysis. Meditari Account. Res. (2020). https://doi.org/10.1108/MEDAR-12-2019-0641

    Article  Google Scholar 

  78. Lamboglia, R., Lavorato, D., Scornavacca, E., Za, S.: Exploring the relationship between audit and technology. A bibliometric analysis. Meditari Account. Res. (2020). https://doi.org/10.1108/MEDAR-03-2020-0836

    Article  Google Scholar 

  79. Ali, I., Aboelmaged, M.: A bibliometric analysis of academic misconduct research in higher education: Current status and future research opportunities. Account. Res. (2020). https://doi.org/10.1080/08989621.2020.1836620

    Article  Google Scholar 

  80. Minhas, M.R., Potdar, V.: Decision support systems in construction: A bibliometric analysis. Buildings. 10(6) (2020). https://doi.org/10.3390/BUILDINGS10060108

  81. Li, Y., Rong, Y., Ahmad, U.M., Wang, X., Zuo, J., Mao, G.: A comprehensive review on green buildings research: Bibliometric analysis during 1998–2018. Environ. Sci. Pollut. Res. (2021). https://doi.org/10.1007/s11356-021-12739-7

    Article  Google Scholar 

  82. Goyal, K., Kumar, S.: Financial literacy: A systematic review and bibliometric analysis. Int. J. Consumer Stud. 45(1), 80–105 (2021). https://doi.org/10.1111/ijcs.12605

    Article  Google Scholar 

  83. Bigliardi, B., Casella, G., Bottani, E.: Industry 4.0 in the logistics field: A bibliometric analysis. IET Collaborative Intell. Manuf. 3(1), 4–12 (2021). https://doi.org/10.1049/cim2.12015

    Article  Google Scholar 

  84. Garcia-Buendia, N., Moyano-Fuentes, J., Maqueira-Marín, J.M., Cobo, M.J.: 22 years of lean supply Chain Management: A science mapping-based bibliometric analysis. Int. J. Prod. Res. 59(6), 1901–1921 (2021). https://doi.org/10.1080/00207543.2020.1794076

    Article  Google Scholar 

  85. Tavares-Lehmann, A.T., Varum, C.: Industry 4.0 and Sustainability: A Bibliometric Literature Review. ;13(6):3493. (2021)

  86. Singh, H., Kumar, R., Prakash, C., Singh, S.: HA-based coating by plasma spray techniques on titanium alloy for orthopedic applications. Materials Today: Proceedings. (2021). https://doi.org/10.1016/j.matpr.2021.03.165

  87. Hallinger, P.: A Meta-synthesis of Bibliometric Reviews of Research on managing for sustainability, 1982–2019. ;13(6):3469. (2021)

  88. Kumar, R., Singh, S., Sidhu, A.S., Pruncu, C.I.: Bibliometric Analysis of Specific Energy Consumption (SEC) in Machining operations: A sustainable response. Sustainability. 13(10) (2021). https://doi.org/10.3390/su13105617

  89. Cavalieri, A., Reis, J., Amorim, M.: Circular economy and internet of things: Mapping Science of Case studies in Manufacturing Industry. Sustainability. 13(6) (2021). https://doi.org/10.3390/su13063299

  90. Jamwal, A., Agrawal, R., Sharma, M., Dangayach, G.S., Gupta, S.: Application of optimization techniques in metal cutting operations: A bibliometric analysis. Materials Today: Proceedings. ;38:365 – 70. (2021). https://doi.org/10.1016/j.matpr.2020.07.425

  91. Kumar, R., Goel, P.: Exploring the domain of interpretive structural modelling (ISM) for sustainable Future Panorama: A bibliometric and content analysis. Arch. Comput. Methods Eng. (2021). https://doi.org/10.1007/s11831-021-09675-7

    Article  Google Scholar 

  92. van Eck, N.J., Waltman, L.: Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics. 84, 523–538 (2010). https://doi.org/10.1007/s11192-009-0146-3

    Article  Google Scholar 

  93. Aria, M., bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetrics. 11, 959–975 (2017). https://doi.org/10.1016/j.joi.2017.08.007

    Article  Google Scholar 

  94. Ge, Q., Sakhaei, A.H., Lee, H., Dunn, C.K., Fang, N.X., Dunn, M.L.: Multimaterial 4D Printing with Tailorable shape memory polymers. Sci. Rep. 6(1), 31110 (2016). https://doi.org/10.1038/srep31110

    Article  Google Scholar 

  95. Matsuzaki, R., Ueda, M., Namiki, M., Jeong, T.-K., Asahara, H., Horiguchi, K., et al.: Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation. Sci. Rep. 6(1), 23058 (2016). https://doi.org/10.1038/srep23058

    Article  Google Scholar 

  96. Kumar, M., Farwaha, H.S., Kumar, R., Khan, T.Y., Javed, S., Sachdeva, A.K., et al.: Thermal performance evaluation of solar collector with rice husk Graphene-PCM: Bioengineering approach. Case Stud. Therm. Eng. :103773. (2023)

  97. Raviv, D., Zhao, W., McKnelly, C., Papadopoulou, A., Kadambi, A., Shi, B., et al.: Active printed materials for Complex Self-Evolving deformations. Sci. Rep. 4(1), 7422 (2014). https://doi.org/10.1038/srep07422

    Article  Google Scholar 

  98. McMenamin, P.G., Quayle, M.R., McHenry, C.R., Adams, J.W.: The production of anatomical teaching resources using three-dimensional (3D) printing technology. Anat. Sci. Educ. 7(6), 479–486 (2014). https://doi.org/10.1002/ase.1475

    Article  Google Scholar 

  99. Wei, X., Li, D., Jiang, W., Gu, Z., Wang, X., Zhang, Z., et al.: 3D printable Graphene Composite. Sci. Rep. 5(1), 11181 (2015). https://doi.org/10.1038/srep11181

    Article  Google Scholar 

  100. Ding, Z., Yuan, C., Peng, X., Wang, T., Qi, H.J., Dunn, M.L.: Direct 4D printing via active composite materials. Sci. Adv. 3(4) (2017). https://doi.org/10.1126/sciadv.1602890

  101. Zhao, C., Fezzaa, K., Cunningham, R.W., Wen, H., De Carlo, F., Chen, L., et al.: Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction. Sci. Rep. 7(1) (2017). https://doi.org/10.1038/s41598-017-03761-2

  102. Wen, L., Weaver, J.C., Lauder, G.V.: Biomimetic shark skin: Design, fabrication and hydrodynamic function. J. Exp. Biol. 217(10), 1656–1666 (2014). https://doi.org/10.1242/jeb.097097

    Article  Google Scholar 

  103. Wu, J., Yuan, C., Ding, Z., Isakov, M., Mao, Y., Wang, T., et al.: Multi-shape active composites by 3D printing of digital shape memory polymers. Sci. Rep. 6 (2016). https://doi.org/10.1038/srep24224

  104. Wei, H.L., Mazumder, J., DebRoy, T.: Evolution of solidification texture during additive manufacturing. Sci. Rep. 5(1), 16446 (2015). https://doi.org/10.1038/srep16446

    Article  Google Scholar 

  105. Lotka, A.J.: The frequency distribution of scientific productivity. J. Wash. Acad. Sci. 16(12), 317–323 (1926)

    Google Scholar 

  106. Egghe, L.: Relations between the continuous and the discrete Lotka power function. J. Am. Soc. Inform. Sci. Technol. 56(7), 664–668 (2005)

    Article  Google Scholar 

  107. Sidhu, A.S., Singh, S., Kumar, R.: Bibliometric analysis of entropy weights method for multi-objective optimization in machining operations. Mater. Today: Proc. 50, 1248–1255 (2022). https://doi.org/10.1016/j.matpr.2021.08.132

    Article  Google Scholar 

  108. van Eck, N.J., Waltman, L.: Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics. 84(2), 523–538 (2010). https://doi.org/10.1007/s11192-009-0146-3

    Article  Google Scholar 

  109. Kumar, R., Kaur, S.: Biocompatible and Bioactive Ceramics for Biomedical Applications: Content Analysis. Additive Manufacturing of Polymers for Tissue Engineering, pp. 61–78. CRC (2022)

  110. Mehmood, K., Bao, Y., Saifullah, Cheng, W., Khan, M.A., Siddique, N., et al.: Predicting the quality of air with machine learning approaches: Current research priorities and future perspectives. J. Clean. Prod. 379, 134656 (2022). https://doi.org/10.1016/j.jclepro.2022.134656

    Article  Google Scholar 

  111. Mehmood, K., Saifullah, Qiu, X., Abrar, M.M.: Unearthing research trends in emissions and sustainable development: Potential implications for future directions. Gondwana Res. 119, 227–245 (2023). https://doi.org/10.1016/j.gr.2023.02.009

    Article  Google Scholar 

  112. Van Eck, N.J.W.: Text mining and visualization using VOSviewer. ISSI Newsl. 7(3), 50–54 (2011). https://arxiv.org/ftp/arxiv/papers/1109/1109.2058.pdf

    Google Scholar 

  113. Riehmann, P., Hanfler, M., Froehlich, B.: Interactive Sankey diagrams. IEEE Symposium on Information Visualization, 2005 INFOVIS 20052005. pp. 233 – 40

  114. Song, Y., Chen, X., Hao, T., Liu, Z., Lan, Z.: Exploring two decades of research on classroom dialogue by using bibliometric analysis. Comput. Educ. 137, 12–31 (2019). https://doi.org/10.1016/j.compedu.2019.04.002

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge their institutes for support in research work.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raman Kumar.

Ethics declarations

Institutional Review Board Statement

Not applicable.

Informed consent Statement

Not applicable.

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Singh, S., Sushant et al. Application of additive manufacturing in biomedical domain: a bibliometric review, thematic evolution and content analysis. Int J Interact Des Manuf (2024). https://doi.org/10.1007/s12008-024-01830-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12008-024-01830-1

Keywords

Navigation