Skip to main content

Advertisement

Log in

Application of 3D printing for engineering and bio-medicals: recent trends and development

  • Review
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

Manufacturing, industrial design, decorations, footwear, design, architecture, engineering and construction, car, aviation, dentistry and clinical enterprises, education, geographic data frameworks, structural designing, and a variety of other fields have all seen 3D printing as beneficial. In every area of application, additive manufacturing has been seen as a speedy and cost-effective solution. The applications of 3D printing are rapidly developing, and it is quickly becoming a genuinely remarkable breakthrough worth paying close attention to. In this article, we’ll look at how 3D printing works, as well as existing and prospective applications in engineering and biomedicine. Scarcity of organ transplant recipients is a serious clinical concern all around the globe. Older procedures had a number of drawbacks, including complications, future injuries, and a scarcity of donors. Tissue engineering scaffolds, cell healing, and direct tissue printing are all potential for overcoming these limitations using 3D printing technology. This article provides an overview of 3D printing advancements, materials, applications, advantages, limitations, challenges, financial considerations, and 3D metal printing applications. An introduction to biomedical materials, a discussion of material-related 3D printing challenges, and a discussion of the future potential uses for medical applications has been discussed in present article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alvarez-Puebla, R.A., Liz-Marzán, L.M.: SERS detection of small inorganic molecules and ions. Angewandte Chemie International Edition 51(45), 11214–11223 (2012)

    Article  Google Scholar 

  • Beese, A.M., Carroll, B.E.: Review of mechanical properties of Ti-6Al-4V made by laser-based additive manufacturing using powder feedstock. Jom. 68(3), 724–734 (2016)

    Article  Google Scholar 

  • Bertlein, S., Brown, G., Lim, K.S., Jungst, T., Boeck, T., Blunk, T., Tessmar, J., Hooper, G.J., Woodfieldand, T.B.F., Groll, J.: Adv. Mater 29, 1703404 (2017)

    Article  Google Scholar 

  • Bosque, C.: What are you printing? Ambivalent emancipation by 3D printing. Rapid Prototyp. J. 21(5), 572–581 (2015)

    Article  Google Scholar 

  • Chen, Y., Zhou, C., Lao, J.A.C.N.C.: Rapid Prototyp. J 17(3), 218–227 (2011)

    Article  Google Scholar 

  • Chivel, Y.: Ablation phenomena and instabilities under laser melting of powder layers. In: 8th International Conference on Photonic Technologies LANE, pp. 1–7 (2014)

  • Choi, J., Kwon, O.C., Jo, W., Lee, H.J.: Moon, 3D print. Addit. Manuf. 2, 159–167 (2015)

    Google Scholar 

  • Dadbakhsh, S., Hao, L., Kong, C.Y.: Surface finish improvement of LMD samples using laser polishing. Virtual Phys. Prototyp. 5(4), 215–221 (2010)

    Article  Google Scholar 

  • Dadbakhsh, S., Verbelen, L., Vandeputte, T., Strobbe, D., Van Puyvelde, P., Kruth, J.P.: Effect of powder size and shape on the SLS processability and mechanical properties of a TPU elastomer. Phys. Procedia. 83, 971–980 (2016)

    Article  Google Scholar 

  • Denlinger, E.R., Heigel, J.C., Michaleris, P.: Residual stress and distortion modeling of electron beam direct manufacturing Ti-6Al-4V. Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 229(10), 1803–1813 (2015)

    Article  Google Scholar 

  • Drummer, D., Wudy, K., Drexler, M.: Influence of energy input on degradation behavior of plastic components manufactured by selective laser melting. Phys. Procedia 56, 176–183 (2014)

    Article  Google Scholar 

  • Duttaluru, G., Singh, P., Ansu, A.K., kumar, A., Sharma, R., Mishra, S.: Methods to enhance the thermal properties of organic phase change materials: A review. Materials Today: Proceedings. May 24. (2022)

  • Farayibi, P.K., Abioye, T.E., Murray, J.W., Kinnell, P.K., Clare, A.T.: Surface improvement of laser clad Ti–6Al–4V using plain waterjet and pulsed electron beam irradiation. J. Mater. Process. Technol. 218, 1–11 (2015)

    Article  Google Scholar 

  • Gao, W., Zhang, Y., Ramanujan, D., Ramani, K., Chen, Y., Williams, C.B., Wang, C.C., Shin, Y.C., Zhang, S., Zavattieri, P.D.: The status, challenges, and future of additive manufacturing in engineering. Comput. Aided Des. 1, 69:65–89 (2015)

    Article  Google Scholar 

  • German, R.M.: Powder metallurgy and rarticulate materials processing: the processes, materials, products, properties, and applications, pp. 231–232. Metal powder industries federation, Princeton (2005)

    Google Scholar 

  • Guo, N., Leu, M.C.: Additive manufacturing: technology, applications and research needs. Front. Mech. Eng. 8(3), 215–243 (2013)

    Article  Google Scholar 

  • Gupta, A.K., Maity, T., Anandakumar, H., Chauhan, Y.K.: An electromagnetic strategy to improve the performance of PV panel under partial shading. Comput. Electr. Eng. 90, 106896 (2021)

    Article  Google Scholar 

  • Hamzah, H.H., Shafiee, S.A., Abdalla, A., Patel, B.A.: 3D printable conductive materials for the fabrication of electrochemical sensors: a mini review. Electrochem. Commun 1, 27–31 (2018)

    Article  Google Scholar 

  • Hardin, R.A., Beckermann, C.: Effect of porosity on the stiffness of cast steel. Metall. Mater. Trans. A. 38(12), 2992–3006 (2007)

    Article  Google Scholar 

  • Hart, L.R., Li, S., Sturgess, C., Wildman, R., Hayes: ACS Appl. Mater. Interfaces. 8, 3115–3122 (2016)

    Article  Google Scholar 

  • Hüller, A.: Rotational tunnelling at finite temperatures: substitution by an equivalent harmonic system. Zeitschrift für Physik B Condensed Matter 78(1), 125–129 (1990)

    Article  Google Scholar 

  • Kang, H.W., Lee, S.J., Ko, I.K., Kengla, C., Yoo, J.J., Atala, A.: A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat. Biotechnol 34(3), 312–319 (2016)

    Article  Google Scholar 

  • Karalekas, D., Aggelopoulos, A.: Study of shrinkage strains in a stereolithography cured acrylic photopolymer resin. J. Mater. Process. Technol. 136(1–3), 146–150 (2003)

    Article  Google Scholar 

  • Kruth, J.P., Dadbakhsh, S., Vrancken, B., Kempen, K., Vleugels, J., Van Humbeeck, J.: Additive manufacturing of metals via selective laser melting: process aspects and material developments. In: Additive Manufacturing, pp. 83–113. CRC Press (2015)

    Google Scholar 

  • Lee, K.S., Kim, R.H., Yang, D.Y., Park, S.H.: Advancesin3Dnano/microfabricationusingtwo-photon initiated polymerization. Progressin Polym. Sci. 33(6), 631–681 (2008)

    Article  Google Scholar 

  • Leigh, D.K.: A comparison of polyamide 11 mechanical properties between laser sintering and traditional molding. In: Proceedings of the 24th solid freeform fabrication symposium, The University of Texas at Austin, Austin, TX, USA, pp. 6–8.  (2012)

  • Leigh, D.K., Bourell, D.L., Beaman, J.J.: Effect of in-plane voiding on the fracture behavior of laser sintered polyamide. In: ASME/ISCIE 2012 International Symposium on Flexible Automation, pp. 411–417 (2012)

  • Libonati, F., Gu, G.X., Qin, Z., Vergani, L., Buehler, M.J.: Bone-inspired materials by design: toughness amplification observed using 3D printing and testing. Adv. Eng. Mater. 18(8), 1354–1363 (2016)

    Article  Google Scholar 

  • Lie, K.A., Krogstad, S., Ligaarden, I.S., Natvig, J.R., Nilsen, H.M., Skaflestad, B.: Open-source MATLAB implementation of consistent discretisations on complex grids. Comput. Geosci. 16(2), 297–322 (2012)

    Article  MATH  Google Scholar 

  • Lu, Y., Mapili, G., Suhali, G., Chen, S., Roy, K.: A digital micro-mirror device-based system for the microfabrication of complex, spatially patterned tissue engineering scaffolds. J. Biomed. Mater. Res. Part A Off. J. Soc. Biomater. Jpn. Soc. Biomater. Aust. Soc. Biomater. Korean Soc. Biomater. 77(2), 396–405 (2006)

    Google Scholar 

  • Mercelis, P., &Kruth, J.P.: Residual stresses in selective laser sintering and selective laser melting. Rapid Prototyp. J. 12(5), 254–265 (2006)

    Article  Google Scholar 

  • Pandey, P.M., Reddy, N.V., Dhande, S.G.: Improvement of surface finish by staircase machining in fused deposition modeling. J. Mater. Process. Technol. 132(1–3), 323–331 (2003)

    Article  Google Scholar 

  • Park, S.H., Yang, D.Y., Lee, K.S.: Two-photon stereolithography for realizing ultraprecise three‐dimensional nano/microdevices. Laser Photonics Rev. 3(12), 1–11 (2009)

    Article  Google Scholar 

  • Petrovic, V., Vicente Haro Gonzalez, J., JordáFerrando, O., Delgado Gordillo, J., Ramón BlascoPuchades, J., PortolésGriñan, L.: Additive layered manufacturing: sectors of industrial application shown through case studies. Int. J. Prod. Res. 15(4), 1061–1079 (2011)

    Article  Google Scholar 

  • Piller, M., Gilch, G., Scherer, G., Scherer, M.: Simple, fast and sensitive LC–MS/MS analysis for the simultaneous quantification of nicotine and 10 of its major metabolites. J. Chromatogr. B. 951, 7–15 (2014)

    Article  Google Scholar 

  • Poomathi, N., Singh, S., Prakash, C., Subramanian, A., Sahay, R., Cinappan, A., Ramakrishna, S.: 3D printing in tissue engineering: a state of the art review of technologies and biomaterials. Rapid Prototyp. J. (2020)

  • Schmid, M., Amado, A., Wegener, K.: Materials perspective of polymers for additive manufacturing with selective laser sintering. J. Mater. Res. 29(17), 1824–1832 (2014)

    Article  Google Scholar 

  • Singh, R., Gehlot, A., Akram, S.V., Gupta, L.R., Jena, M.K., Prakash, C., Singh, S., Kumar, R.: Cloud manufacturing, internet of things-assisted manufacturing and 3D printing technology: reliable tools for sustainable construction. Sustainability 13(13), 7327 (2021)

    Article  Google Scholar 

  • Singh, G., Singh, S., Kumar, R., Parkash, C., Pruncu, C., Ramakrishna, S.: Tissues and organ printing: An evolution of technology and materials. In: Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, p. 09544119221125084. (2022)

  • Strano, G., Hao, L., Everson, R.M., Evans, K.E.: Surface roughness analysis, modelling and prediction in selective laser melting. J. Mater. Process. Technol. 213(4), 589–597 (2013)

    Article  Google Scholar 

  • Tolochko, O.V., Choi, C.J., Nasibulin, A.G., Vasilieva, K.S., Lee, D.W., Kim, D.: Thermal behavior of iron nanoparticles synthesized by chemical vapor condensation. Mater. Phys. Mech. 13(1), 57–63 (2012)

    Google Scholar 

  • Vrancken, B., Wauthlé, R., Kruth, J.P., Van Humbeeck, J.: Study of the influence of material properties on residual stress in selective laser melting. In: Proceedings of the solid freeform fabrication symposium, pp. 393–407 (2013)

  • Vu, M., Pramanik, A., Basak, A.K., Prakash, C., Shankar, S.: Progress and challenges on extrusion based three dimensional (3D) printing of biomaterials. Bioprinting (2022). https://doi.org/10.1016/j.bprint.2022.e00223

    Article  Google Scholar 

  • Wang, T.M., Xi, J.T., Jin, Y.: A model research for prototype warp deformation in the FDM process. Int. J. Adv. Manuf. Technol. 33(11–12), 1087–1096 (2007)

    Article  Google Scholar 

  • West, J., Kuk, G.: The complementarity of openness: how MakerBot leveraged thing verse in 3D printing. Technol. Forecast. Soc. Chang. 102, 169–181 (2016)

    Article  Google Scholar 

  • Wilkes, J., Hagedorn, Y.C., Meiners, W., Wissenbach, K.: Additive manufacturing of ZrO2-Al2O3 ceramic components by selective laser melting. Rapid Prototyp. J. 19(1), 51–57 (2013)

    Article  Google Scholar 

  • Wudy, K., Drummer, D., Kühnlein, F., Drexler, M.: Influence of degradation behavior of polyamide 12 powders in laser sintering process on produced parts. AIP Conf. Proc. 1593(1), 691–695 (2014)

    Article  Google Scholar 

  • Zhang, W., Han, L.-H., Chen, S.: Integrated two-photon polymerization with nanoimprinting for direct digital nanomanufacturing. 030907 (2010)

  • Zhang, L., Forgham, H., Shen, A., Wang, J., Zhu, J., Huang, X., Tang, S.-Y., Xu, C., Davis, T.P., Qiao, R.: Nanomaterial integrated 3D printing for biomedical applications. J. Mater. Chem. B 10(37), 7473–7490 (2022)

    Article  Google Scholar 

  • Ziemian, C.W., Cipolletti, D.E., Ziemian, S.N., Okwara, M.N., Haile, K.V.: Monotonic and cyclic tensile properties of ABS components fabricated by additive manufacturing. In: Proceedings of 25th International Solid Freeform Fabrication Symposium, Austin, Texas, August, pp. 4–6. (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alok kumar Ansu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Kumar, D., Choudhury, R. et al. Application of 3D printing for engineering and bio-medicals: recent trends and development. Int J Interact Des Manuf 17, 2127–2136 (2023). https://doi.org/10.1007/s12008-022-01145-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-022-01145-z

Keywords

Navigation