Skip to main content
Log in

Early chatter detection in gear grinding process using servo feed motor current

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Monitoring and early detection of chatter are the key techniques to avoid the harmful effects caused by chatter in manufacturing process. The key for early chatter detection is to capture the feature signatures. A convenient and reliable technique is presented in this study to detect chatter in gear grinding process based on servo feed motor current and wavelet packet transform. Wavelet packet transform was used to monitor the energy change in the frequency domain and to identify the feature frequency band with respect to chatter, the result of which was confirmed by the impact hammer test. Standard deviation and energy ratio of the feature frequency band signal were chosen as the indexes of chatter monitoring. Combining these two chatter features, the state of the grinding process could be classified and chatter could be detected reliably in industrial application with proper thresholds. Acceleration signals of the machine tool were used as a reference to compare with the results from current signals. In every stage of the grinding process, the feature frequency band signals of current and vibration signal have shown very coincident variation trend. Both theoretical analysis and experimental results manifested the feasibility and efficiency of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Quintana G, Ciurana J (2011) Chatter in machining processes: a review. Int J Mach Tools Manuf 51(5):363–376

    Article  Google Scholar 

  2. Kuljanic E, Sortino M, Totis G (2008) Multisensor approaches for chatter detection in milling. J Sound Vib 312(4–5):672–693. doi:10.1016/j.jsv.2007.11.006

    Article  Google Scholar 

  3. Weingaertner WL, Schroeter RB, Polli ML, de Oliveira Gomes J (2006) Evaluation of high-speed end-milling dynamic stability through audio signal measurements. J Mater Process Technol 179(1–3):133–138. doi:10.1016/j.jmatprotec.2006.03.075

    Article  Google Scholar 

  4. Jeong Y-H, Cho D-W (2002) Estimating cutting force from rotating and stationary feed motor currents on a milling machine. Int J Mach Tools Manuf 42(14):1559–1566. doi:10.1016/S0890-6955(02)00082-2

    Article  Google Scholar 

  5. Kim GD, Chu CN (1999) Indirect cutting force measurement considering frictional behaviour in a machining centre using feed motor current. Int J Adv Manuf Technol 15(7):478–484. doi:10.1007/s001700050092

    Article  Google Scholar 

  6. Oh YT, Kwon WT, Chu CN (2004) Drilling torque control using spindle motor current and its effect on tool wear. Int J Adv Manuf Technol 24(5):327–334. doi:10.1007/s00170-002-1490-0

    Article  Google Scholar 

  7. Sevilla-Camacho PY, Herrera-Ruiz G, Robles-Ocampo JB, Jáuregui-Correa JC (2011) Tool breakage detection in CNC high-speed milling based in feed-motor current signals. Int J Adv Manuf Technol 53(9):1141–1148. doi:10.1007/s00170-010-2907-9

    Article  Google Scholar 

  8. Hun Jeong Y, Min B-K, Cho D-W (2006) Estimation of machine tool feed drive inclination from current measurements and a mathematical model. Int J Mach Tools Manuf 46(12–13):1343–1349. doi:10.1016/j.ijmachtools.2005.10.015

    Article  Google Scholar 

  9. Soliman E, Ismail F (1997) Chatter detection by monitoring spindle drive current. Int J Adv Manuf Technol 13(1):27–34

    Article  Google Scholar 

  10. Liu H, Chen Q, Li B, Mao X, Mao K, Peng F (2011) On-line chatter detection using servo motor current signal in turning. Sci China Technol Sci 54(12):3119–3129

    Article  MATH  Google Scholar 

  11. Lange JH, Abu-Zahra NH (2002) Tool chatter monitoring in turning operations using wavelet analysis of ultrasound waves. Int J Adv Manuf Technol 20(4):248–254. doi:10.1007/s001700200149

    Article  Google Scholar 

  12. Wu Y, Du R (1996) Feature extraction and assessment using wavelet packets for monitoring of machining processes. Mech Syst Signal Process 10(1):29–53. doi:10.1006/mssp.1996.0003

    Article  MathSciNet  Google Scholar 

  13. Gonzalez-Brambila O, Rubio E, Jauregui JC, Herrera-Ruiz G (2006) Chattering detection in cylindrical grinding processes using the wavelet transform. Int J Mach Tools Manuf 46(15):1934–1938. doi:10.1016/j.ijmachtools.2006.01.021

    Article  Google Scholar 

  14. Choi T, Shin YC (2003) On-line chatter detection using wavelet-based parameter estimation. Journal of Manufacturing Science and Engineering-transactions of The Asme 125 (1). doi:10.1115/1.1531113

  15. Yao Z, Mei D, Chen Z (2010) On-line chatter detection and identification based on wavelet and support vector machine. J Mater Process Technol 210(5):713–719

    Article  Google Scholar 

  16. Cao H, Lei Y, He Z (2013) Chatter identification in end milling process using wavelet packets and Hilbert–Huang transform. Int J Mach Tools Manuf 69(0):11–19. doi:10.1016/j.ijmachtools.2013.02.007

    Article  Google Scholar 

  17. Insperger T, Stépán G, Bayly PV, Mann BP (2003) Multiple chatter frequencies in milling processes. J Sound Vib 262(2):333–345. doi:10.1016/S0022-460X(02)01131-8

    Article  Google Scholar 

  18. Hashimoto F, Kanai A, Miyashita M, Okamura K (1984) Growing mechanism of chatter vibrations in grinding processes and chatter stabilization index of grinding wheel. CIRP Ann Manuf Technol 33(1):259–263. doi:10.1016/S0007-8506(07)61421-8

    Article  Google Scholar 

  19. Inasaki I, Karpuschewski B, Lee HS (2001) Grinding chatter—origin and suppression. Cirp Annals-Manuf Technol 50(2):515–534

    Article  Google Scholar 

  20. Altintas Y, Weck M (2004) Chatter stability of metal cutting and grinding. Cirp Annals Manuf Technol 53(2):619–642. doi:10.1016/S0007-8506(07)60032-8

    Article  Google Scholar 

  21. Li H, Shin YC (2007) A study on chatter boundaries of cylindrical plunge grinding with process condition-dependent dynamics. Int J Mach Tools Manuf 47(10):1563–1572. doi:10.1016/j.ijmachtools.2006.11.009

    Article  Google Scholar 

  22. Karpuschewski B, Wehmeier M, Inasaki I (2000) Grinding monitoring system based on power and acoustic emission sensors. CIRP Ann Manuf Technol 49(1):235–240. doi:10.1016/S0007-8506(07)62936-9

    Article  Google Scholar 

  23. Govekar E, Baus A, Gradisek J, Klocke F, Grabec I (2002) A new method for chatter detection in grinding. Cirp Annals Manuf Technol 51(1):267–270. doi:10.1016/S0007-8506(07)61514-5

    Article  Google Scholar 

  24. Gradiek J, Baus A, Govekar E, Klocke F, Grabec I (2003) Automatic chatter detection in grinding. Int J Mach Tools Manuf 43(14):1397–1403. doi:10.1016/S0890-6955(03)00184-6

    Article  Google Scholar 

  25. Tansel IN, Li M, Demetgul M, Bickraj K, Kaya B, Ozcelik B (2012) Detecting chatter and estimating wear from the torque of end milling signals by using index based reasoner (IBR). Int J Adv Manuf Technol 58(1–4):109–118. doi:10.1007/s00170-010-2838-5

    Article  Google Scholar 

  26. Altintas Y, Ko JH (2006) Chatter stability of plunge milling. CIRP Annals Manuf Technol 55(1):361–364. doi:10.1016/s0007-8506(07)60435-1

    Article  Google Scholar 

  27. Karpuschewski B, Knoche HJ, Hipke M (2008) Gear finishing by abrasive processes. Cirp Annals Manuf Technol 57(2):621–640

    Article  Google Scholar 

  28. Zhijian M, Shuzi, Y.,Hanmin,S. (1988) Early detection and online monitoring of machine tool chatter. Journal of Vibration Engineering 1 (3)

  29. Wickerhauser MV (1991) Lectures on wavelet packet algorithms.

  30. Mallat SG (1989) A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans Pattern Anal Mach Intell 11(7):674–693. doi:10.1109/34.192463

    Article  MATH  Google Scholar 

  31. Zhengjia H, Jiyuan Z, Yibin H, Qingfeng M (1996) Wavelet transform and multiresolution signal decomposition for machinery monitoring and diagnosis. doi:10.1109/icit.1996.601690

  32. Yang J, Park ST (2003) An anti-aliasing algorithm for discrete wavelet transform. Mech Syst Signal Process 17(5):945–954. doi:10.1006/mssp.2002.1524

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiufeng Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Wang, X., Lin, J. et al. Early chatter detection in gear grinding process using servo feed motor current. Int J Adv Manuf Technol 83, 1801–1810 (2016). https://doi.org/10.1007/s00170-015-7687-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-015-7687-9

Keywords

Navigation