Skip to main content

Advertisement

Log in

Multi-objective genetic algorithm (MOGA) based optimization of high-pressure coolant assisted hard turning of 42CrMo4 steel

  • Technical Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

This study aims at finding a set of optimum solutions of cutting conditions for the machining responses of cutting temperature and surface roughness in hard turning of 42CrMo4 alloy steel at high-pressure coolant (HPC) condition. Comparative experimental investigations between dry and HPC cutting environments were performed to evaluate the stated responses concerning the factors of cutting speed, feed, and work-piece hardness. The full factorial method was employed for the experimental design. The measured value of cutting temperature and surface roughness was found in a reduced amount for HPC condition compared to dry cut for all of the machining runs. Empirical models were developed by response surface methodology for the responses of HPC-assisted machining. The ANOVA result indicated that cutting speed and hardness has the greatest effect on cutting temperature and surface roughness, respectively. Design of experiment (DoE) based optimization was carried out that results in the best optimum settings of 147 m/min cutting speed, 0.12 mm/rev feed rate and 42HRC work-piece hardness. Genetic algorithm based multi-objective optimization was then performed that simultaneously minimizes both of the response models. Within the constraints of experimental design, the optimal set resulted at the range of 86–165 m/min cutting speed, 0.12–0.13 mm/rev feed rate and HRC 42–44 work-piece hardness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Senthil Kumar, A., Raja Durai, A., Sornakumar, T.: Machinability of hardened steel using alumina based ceramic cutting tools. Int. J. Refract. Metals Hard Mater. 21(3–4), 109–117 (2003). https://doi.org/10.1016/S0263-4368(03)00004-0

    Article  Google Scholar 

  2. Umbrello, D., Rizzuti, S., Outeiro, J.C., Shivpuri, R., M’Saoubi, R.: Hardness-based flow stress for numerical simulation of hard machining AISI H13 tool steel. J. Mater. Process. Technol. 199(1–3), 64–73 (2008). https://doi.org/10.1016/j.jmatprotec.2007.08.018

    Article  Google Scholar 

  3. Bogdan, A., Gavrilă, C.: The economic efficiency of replacing grinding with hard turning. Recent 18(2), 71–76 (2017)

    Google Scholar 

  4. Thamizhmanii, S., Hasan, S.: Measurement of surface roughness and flank wear on hard martensitic stainless steel by CBN and PCBN cutting tools. J. Achiev. Mater. Manuf. Eng. 31(2), 415–421 (2008)

    Google Scholar 

  5. List, G., Nouari, M., Géhin, D., Gomez, S., Manaud, J.P., Le Petitcorps, Y., Girot, F.: Wear behaviour of cemented carbide tools in dry machining of aluminium alloy. Wear 259(7–12), 1177–1189 (2005). https://doi.org/10.1016/j.wear.2005.02.056

    Article  Google Scholar 

  6. Totten, G.: Handbook of Residual Stress and Deformation of Steel. ASM International, Materials Park, Ohio (2002)

    Google Scholar 

  7. Matsumoto, Y., Barash, M.M., Liu, C.R.: Residual stress in the machined surface of hardened steel. In: High Speed Machining Conference, ASME WAM. pp.193–204. (1984)

  8. Outeiro, J.C., Umbrello, D., M’Saoubi, R.: Experimental and numerical modelling of the residual stresses induced in orthogonal cutting of AISI 316L steel. Int. J. Mach. Tools Manuf. 46(14), 1786–1794 (2006). https://doi.org/10.1016/j.ijmachtools.2005.11.013

    Article  Google Scholar 

  9. Ulutan, D., Erdem Alaca, B., Lazoglu, I.: Analytical modelling of residual stresses in machining. J. Mater. Process. Technol. 183(1), 77–87 (2007). https://doi.org/10.1016/j.jmatprotec.2006.09.032

    Article  Google Scholar 

  10. Nasr, M.N.A., Ng, E.-G., Elbestawi, M.A.: A modified time-efficient FE approach for predicting machining-induced residual stresses. Finite Elem. Anal. Des. 44(4), 149–161 (2008). https://doi.org/10.1016/j.finel.2007.11.005

    Article  Google Scholar 

  11. Kramar, D., Kopač, J.: High pressure cooling in the machining of hard-to-machine materials. J. Mech. Eng. 55(11), 685–694 (2009)

    Google Scholar 

  12. Kamruzzaman, M., Rahman, S.S., Ashraf, Md.Z.I., Dhar, N.R.: Modeling of chip–tool interface temperature using response surface methodology and artificial neural network in HPC-assisted turning and tool life investigation. Int. J. Adv. Manuf. Technol. 90, 1547–1568 (2017). https://doi.org/10.1007/s00170-016-9467-6

    Article  Google Scholar 

  13. Machado, A.R., Wallbank, J., Pashby, I.R., Ezugwu, E.O.: Tool performance and chip control when machining tI6Al4v and inconel 901 using high pressure coolant supply. Mach. Sci. Technol. 2(1), 1–12 (1998). https://doi.org/10.1080/10940349808945655

    Article  Google Scholar 

  14. Kaminski, J., Alvelid, B.: Temperature reduction in the cutting zone in water-jet assisted turning. J. Mater. Process. Technol. 106(1–3), 68–73 (2000). https://doi.org/10.1016/S0924-0136(00)00640-3

    Article  Google Scholar 

  15. Senthil Kumar, A., Rahman, M., Ng, S.L.: Effect of high-pressure coolant on machining performance. Int. J. Adv. Manuf. Technol. 20(2), 83–91 (2002). https://doi.org/10.1007/s001700200128

    Article  Google Scholar 

  16. Ezugwu, E.O.: Key improvements in the machining of difficult-to-cut aerospace superalloys. Int. J. Mach. Tools Manuf. 45(12–13), 1353–1367 (2005). https://doi.org/10.1016/j.ijmachtools.2005.02.003

    Article  Google Scholar 

  17. Globočki-Lakić, G., Sredanović, B., Kramar, D., Kopač, J.: Machinability of C45e steel - application of minimum quantity lubrication and high pressure jet assisted machining techniques. T FAMENA 40(2), 45–58 (2016). https://doi.org/10.21278/TOF.40204

    Article  Google Scholar 

  18. Mia, M., Khan, M.A., Dhar, N.R.: High-pressure coolant on flank and rake surfaces of tool in turning of Ti-6Al-4V: investigations on surface roughness and tool wear. Int. J. Adv. Manuf. Technol. 90(5–8), 1825–1834 (2017). https://doi.org/10.1007/s00170-016-9512-5

    Article  Google Scholar 

  19. Umbrello, D., Filice, L.: Improving surface integrity in orthogonal machining of hardened AISI 52100 steel by modeling white and dark layers formation. CIRP Ann. 58(1), 73–76 (2009). https://doi.org/10.1016/j.cirp.2009.03.106

    Article  Google Scholar 

  20. Rao, C.J., Rao, D.N., Srihari, P.: Influence of cutting parameters on cutting force and surface finish in turning operation. Procedia Eng. 64, 1405–1415 (2013). https://doi.org/10.1016/j.proeng.2013.09.222

    Article  Google Scholar 

  21. Singla, A., Singh, T.: Optimization of process parameters on CNC turning. Int. J. Curr. Eng. Technol. 6(2), 657–661 (2016)

    Google Scholar 

  22. Özel, T., Karpat, Y., Figueira, L., Davim, J.P.: Modelling of surface finish and tool flank wear in turning of AISI D2 steel with ceramic wiper inserts. J. Mater. Process. Technol. 189(1–3), 192–198 (2007). https://doi.org/10.1016/j.jmatprotec.2007.01.021

    Article  Google Scholar 

  23. Suresh, R., Basavarajappa, S.: Effect of process parameters on tool wear and surface roughness during turning of hardened steel with coated ceramic tool. Procedia Mater. Sci. 5, 1450–1459 (2014). https://doi.org/10.1016/j.mspro.2014.07.464

    Article  Google Scholar 

  24. Bartarya, G., Choudhury, S.K.: Effect of cutting parameters on cutting force and surface roughness during finish hard turning AISI52100 grade steel. Procedia CIRP 1, 651–656 (2012). https://doi.org/10.1016/j.procir.2012.05.016

    Article  Google Scholar 

  25. Kant, G., Rao, V.V., Sangwan, K.S.: Predictive modeling of turning operations using response surface methodology. AMM 307, 170–173 (2013). https://doi.org/10.4028/www.scientific.net/AMM.307.170

    Article  Google Scholar 

  26. Mia, M., Dhar, N.R.: Effectof high pressure coolant jet on cutting temperature, tool wear and surface finish in turning hardened (HRC 48) steel. J. Mech. Eng. 45(1), 1–6 (2015). https://doi.org/10.3329/jme.v45i1.24376

    Article  Google Scholar 

  27. Zahia, H., Athmane, Y.M., Lakhdar, B., Tarek, M.: On the application of response surface methodology for predicting and optimizing surface roughness and cutting forces in hard turning by PVD coated insert. Int. J. Ind. Eng. Comput. 6(2), 267–284 (2015). https://doi.org/10.5267/j.ijiec.2014.10.003

    Article  Google Scholar 

  28. Veldhuizen, D.A.V., Lamont, G.B.: Multiobjective evolutionary algorithms: analyzing the state-of-the-art. Evol. Comput. 8(2), 125–147 (2000). https://doi.org/10.1162/106365600568158

    Article  Google Scholar 

  29. Amouzgar, K., Bandaru, S., Andersson, T., Ng, A.H.C.: Metamodel-based multi-objective optimization of a turning process by using finite element simulation. Eng. Optim. (2019). https://doi.org/10.1080/0305215X.2019.1639050

    Article  Google Scholar 

  30. Mishra, A., Gangele, D.A.: Multi-objective optimization in turning of cylindrical bars of AISI 1045 steel through Taguchi’s method and utility concept. Int. J. Sci. 12(1), 28–36 (2013)

    Google Scholar 

  31. Zerti, A., Yallese, M.A., Meddour, I., Belhadi, S., Haddad, A., Mabrouki, T.: Modeling and multi-objective optimization for minimizing surface roughness, cutting force, and power, and maximizing productivity for tempered stainless steel AISI 420 in turning operations. Int. J. Adv. Manuf. Technol. 102(1–4), 135–157 (2019). https://doi.org/10.1007/s00170-018-2984-8

    Article  Google Scholar 

  32. Janahiraman, T.V., Ahmad, N.: Multi objective optimization for turning operation using hybrid extreme learning machine and multi objective genetic algorithm. IJET 7(4.35), 876–879 (2018). https://doi.org/10.14419/ijet.v7i4.35.26273

    Article  Google Scholar 

  33. Konak, A., Coit, D.W., Smith, A.E.: Multi-objective optimization using genetic algorithms: a tutorial. Reliab. Eng. Syst. Saf. 91(9), 992–1007 (2006). https://doi.org/10.1016/j.ress.2005.11.018

    Article  Google Scholar 

  34. Srinath, R.N., Tirumalaa, D., Gajjelaa, R., Das, R.: ANN and RSM approach for modelling and multi objective optimization of abrasive water jet machining process. Decis. Sci. Lett. 7, 535–548 (2018)

    Google Scholar 

  35. Ameur, T.: Multi-objective particle swarm algorithm for the posterior selection of machining parameters in multi-pass turning. J King Saud Univ Eng Sci. 33, 259–265 (2021)

    Google Scholar 

  36. Öztürk, O., Kalyoncu, M., Ünüvar, A.: Multi objective optimization of cutting parameters in a single pass turning operation using the bees algorithm. In: 1st International Conference on Advances in Mechanical and Mechatronics Engineering, (2018)

  37. Pawar, P.J., Khalkar, M.Y.: Multi-objective optimization of wire-electric discharge machining process using multi-objective artificial bee colony algorithm. Adv. Eng. Optim. Intell. Tech. 949, 39–46 (2020)

    Google Scholar 

  38. Yang, S.H., Natarajan, U.: Multi-objective optimization of cutting parameters in turning process using differential evolution and non-dominated sorting genetic algorithm-II approaches. Int. J. Adv. Manuf. Technol. 49, 773–784 (2010)

    Article  Google Scholar 

  39. Deb, K., Goel, T.: Controlled elitist non-dominated sorting genetic algorithms for better convergence. In: Zitzler, E., Thiele, L., Deb, K., Coello Coello, C.A., Corne, D. (eds.) Evolutionary Multi-Criterion Optimization, pp. 67–81. Springer, Berlin, Heidelberg (2001)

    Chapter  Google Scholar 

  40. Onwubolu, G.C., Kumalo, T.: Optimization of multipass turning operations with genetic algorithms. Int. J. Prod. Res. 39(16), 3727–3745 (2001). https://doi.org/10.1080/00207540110056153

    Article  MATH  Google Scholar 

  41. Quiza Sardiñas, R., Rivas Santana, M., Alfonso Brindis, E.: Genetic algorithm-based multi-objective optimization of cutting parameters in turning processes. Eng. Appl. Artif. Intell. 19(2), 127–133 (2006). https://doi.org/10.1016/j.engappai.2005.06.007

    Article  Google Scholar 

  42. Petkovic, D., Radovanovic, M.: Using genetic algorithms for optimization of turning machining process. JESR. 19(1), 47–55 (2016). https://doi.org/10.29081/jesr.v19i1.139

    Article  Google Scholar 

  43. Gjelaj, A., Berisha, B., Smaili, F.: Optimization of turning process and cutting force using multiobjective genetic algorithm. Univ. J. Mech. Eng. 7(2), 64–70 (2019)

    Article  Google Scholar 

  44. Khan, A.: Effect of high pressure coolant jets in turning TI-6AL-4V alloy with specialized designed nozzle. http://lib.buet.ac.bd:8080/xmlui/handle/123456789/3763 (2015)

  45. Pencheva, T., Atanassov, S.A.: Modelling of a roulette wheel selection operator in genetic algorithms using generalized nets. Bioautomation 13(4), 257–264 (2009)

    Google Scholar 

  46. Wahde, M.: Biologically Inspired Optimization Methods: An Introduction. WIT Press, Southampton, UK, Boston, MA (2008)

    MATH  Google Scholar 

  47. Cao, Y.J., Wu, Q.H.: Teaching genetic algorithm using MATLAB. Int. J. Elect. Enging. Educ. 36(2), 139–153 (1999)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support of the Directorate of Advisory Extension and Research Services (DAERS), BUET, Bangladesh for allowing laboratory facilities in the central Machine Shop, BUET to perform the research work.

Funding

This study did not receive any grant from any of the funding agencies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prianka B. Zaman.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, S., Zaman, P.B., Tusar, M.I.H. et al. Multi-objective genetic algorithm (MOGA) based optimization of high-pressure coolant assisted hard turning of 42CrMo4 steel. Int J Interact Des Manuf 16, 1253–1272 (2022). https://doi.org/10.1007/s12008-022-00848-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-022-00848-7

Keywords

Navigation