Skip to main content
Log in

Microwave-assisted polyol synthesis of V–ZrSiO4 nanoparticles and its use as a blue ceramic pigment

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

In this study, a microwave-assisted polyol technique was used to synthesize vanadium-containing nanopigments of ZrSiO4. The influence of microwave power (300–900 W) and irradiation time (60–120 s) on the purity, crystallinity, and particle size of the synthesized nanoparticles was studied. The resulting powder (synthesized and calcined) was investigated by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM). XRD analysis shows that the 300 W synthesized powder is composed of solid amorphous particles. The microwave power was increased to 900 W to convert all particles to crystalline nano-ZrSiO4. The experiment revealed the critical influence of irradiation time and microwave power on purity and crystallinity. The microwave effect can accelerate the reaction and the nucleation rate of ZrSiO4 at a lower reaction temperature. The nanoparticles obtained were tested as ceramic pigments, and the colorimetric parameters of CIELab were measured. Structure and colorimetric studies have confirmed that a fully crystalline zircon phase can be obtained at 1100°C and can be used as a blue pigment.

Highlights

  • V–ZrSiO4 nanoparticles were prepared via a microwave–assisted polyol synthetic method.

  • Completely crystalline and pure zircon phases were obtained at 1100°C.

  • 900 W microwave power and 60 s irradiation time was proven to be the optimal microwave heating condition.

  • Particle size of nanoparticles has a direct relationship with microwave power and an inverse relationship with irradiation time.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Buxbaum, G, Industrial Inorganic Pigments. John Wiley & Sons, USA (1998)

    Book  Google Scholar 

  2. Ozel, E, Turan, S, “Production of Coloured Zircon Pigments from Zircon.” J. Eur. Ceram. Soc., 27 1751–1757 (2007)

    Article  CAS  Google Scholar 

  3. Chen, T, Zhang, X, Jiang, W, Liu, J, Jiang, W, Xie, Z, “Synthesis and Application of C@ZrSiO4 Inclusion Ceramic Pigment from Cotton Cellulose as a Colorant.” J. Eur. Ceram. Soc., 36 1811–1820 (2016)

    Article  CAS  Google Scholar 

  4. Chen, T, Zha, J, Zhang, X, Hu, X, Jiang, W, Xie, Z, Jiang, W, “Synthesis and Characterization of PrxZr1-xSiO4(x =0-0.08) Yellow Pigments via Non-Hydrolytic Sol-Gel Method.” J. Eur. Ceram. Soc., 38 4568–4575 (2018)

    Article  CAS  Google Scholar 

  5. Guo, D, Yang, Q, Chen, P, Chu, Y, Zhang, Y, Rao, P, “The Influence of Micronization on the Properties of Pr-ZrSiO4 Pigment.” Dye. Pigment., 153 74–83 (2018)

    Article  CAS  Google Scholar 

  6. Raj, A, Prabhakar, R, Divya, S, Ajuthara, R, “Terbium Doped Sr2MO4 [M =Sn and Zr] Yellow Pigments with High Infrared Reflectance for Energy Saving Applications.” Powder. Technol., 311 52–58 (2017)

    Article  CAS  Google Scholar 

  7. Menon, G, Hendrik, S, “Microwave-Assisted Synthesis of Blue-Green NiAl2O4 Nanoparticle Pigments with High Near-Infrared Reflectance for Indoor Cooling.” J. Alloys. Compd., 819 152991 (2020)

    Article  CAS  Google Scholar 

  8. Lili, L, Aijun, H, Mingquan, Y, Minchun, Z, “Synthesis and Characterization of Al3+ Doped LaFeO3 Compounds: A Novel Inorganic Pigments with High Near-Infrared Reflectanc.” Sol. Energy Mater Sol. Cells., 132 377–384 (2015)

    Article  Google Scholar 

  9. Zhao, F, Li, W, Luo, H, “Sol–Gel Modified Method for Obtention of Gray and Pink Ceramic Pigments in Zircon Matrix.” J. Sol-Gel Sci. Technol., 49 247–252 (2009)

    Article  CAS  Google Scholar 

  10. Garcia, A, Llusar, M, Badenes, J, Tena, MA, Monros, G, “Encapsulation of Hematite in Zircon by Microemulsion and Sol-Gel Methods.” J. Sol-Gel Sci. Technol., 27 267–275 (2003)

    Article  CAS  Google Scholar 

  11. Zhao, F, Gao, Y, Luo, H, “Controlled Preparation and Mechanism Study of Zirconia-Coated Hematite Particles by Hydrolysis of Zirconium Sulfates.” Langmuir., 25 6940–6946 (2009)

    Article  CAS  Google Scholar 

  12. Liu, F, Dai, B, Wang, H, Zeng, K, Wang, M, “Study on the Preparation of the CdSxSe1-x@ZrSiO4 Red Ceramic Pigments and Its Properties.” J. Sol-Gel Sci. Technol., 75 198–205 (2015)

    Article  CAS  Google Scholar 

  13. Dondi, M, Blosi, M, Gardini, D, “Ceramic Pigments for Digital Decoration links: an Overview.” Proc. CFI-Ceramic Forum International, Castellon, Spain, January (2012)

  14. Güngör, GL, Kara, A, Blosi, M, Gardini, D, Guarini, G, Zanelli, C, Dondi, M, “Micronizing Ceramic Pigments for Inkjet Printing: Part I. Grindability and Particle Size Distribution.” Ceram. Int., 41 6498–6506 (2015)

    Article  Google Scholar 

  15. Zanelli, C, Güngör, GL, Kara, A, Blosi, M, Gardini, D, Guarini, G, Dondi, M, “Micronizing Ceramic Pigments for Inkjet Printing: Part II. Effect on Phase Composition and Color.” Ceram. Int., 41 6507–6517 (2015)

    Article  CAS  Google Scholar 

  16. Calatayud, JM, Pardo, P, Alarcón, J, “V-Containing ZrO2 Inorganic Yellow Nano-Pigments.” RSC Adv., 5 58669–58678 (2015)

    Article  CAS  Google Scholar 

  17. Moudir, N, Moulaï-Mostefa, N, Boukennous, Y, “Silver Micro-and Nano-Particles Obtained Using Different Glycols as Reducing Agents and Measurement of Their Conductivity.” Chem. Ind. Chem. Eng. Q., 22 227–234 (2016)

    Article  CAS  Google Scholar 

  18. Ben Tahar, L, Basti, H, Herbst, F, Smiri, LS, Quisefit, JP, Yaacoub, JM, Ammar, S, “Co1-xZnxFe2O4 (0≤x≤ 1) Nanocrystalline Solid Solution Prepared by the Polyol Method: Characterization and Magnetic Properties.” Mater. Res. Bull., 47 2590–2598 (2012)

    Article  Google Scholar 

  19. Shen, M, Jia, W, You, Y, Hu, Y, Li, F, Tian, S, Li, J, Jin, Y, Han, D, “Luminescent Properties of CdTe Quantum Dots Synthesized Using 3-Mercaptopropionic Acid Reduction of Tellurium Dioxide Directly.” Nanoscale Res. Lett., 8 253 (2013)

    Article  Google Scholar 

  20. Khattab, RM, Sadek, EH, Gaber, AA, “Synthesis of CoxMg1−xAl2O4 Nanospinel Pigments by Microwave Combustion Method.” Ceram. Int., 43 234–243 (2017)

    Article  CAS  Google Scholar 

  21. Horikoshi, S, Schiffmann, RF, Fukushima, J, Serpone, N, Horikoshi, S, Schiffmann, RF, Fukushima, J, Serpone, N, Materials Processing by Microwave Heating. Springer Nature, Singapore (2018)

    Book  Google Scholar 

  22. Dzido, G, Markowski, P, Małachowska-Jutsz, A, Prusik, K, Jarzębski, AB, “Rapid Continuous Microwave-Assisted Synthesis of Silver Nanoparticles to Achieve Very High Productivity and Full Yield: From Mechanistic Study to Optimal Fabrication Strategy.” J. Nanoparticle Res., 17 11–15 (2015)

    Article  Google Scholar 

  23. Zhu, YJ, Chen, F, “Microwave-Assisted Preparation of Inorganic Nanostructures in Liquid Phase.” Chem. Rev., 114 6462–6555 (2014)

    Article  CAS  Google Scholar 

  24. Heydari, H, Yousefpour, M, Emadoddin, E, Zori, MH, Aminian, MK, “Effect of Solvents and Dispersants on Polyol Synthesis of V-ZrSiO4 Nanopigment Stable Suspension for Ink Application.” J. Coat. Technol. Res., 17 1243–1253 (2020)

    Article  CAS  Google Scholar 

  25. Ragupathy, P, Shivakumara, S, Vasan, HN, Munichandraiah, N, “Preparation of Nanostrip V2O5 by the Polyol Method and its Electrochemical Characterization as Cathode Material for Rechargeable Lithium Batteries.” J. Phys. Chem. C., 112 16700–16707 (2008)

    Article  CAS  Google Scholar 

  26. Mjejri, I, Rougier, A, Gaudon, M, “Low-Cost and Facile Synthesis of the Vanadium Oxides V2O3, VO2, and V2O5 and Their Magnetic, Thermochromic and Electrochromic Properties.” Inorg. Chem., 56 1734–1741 (2017)

    Article  CAS  Google Scholar 

  27. Uchaker, E, Zhou, N, Li, Y, Cao, G, “Polyol-Mediated Solvothermal Synthesis and Electrochemical Performance of Nanostructured V2O5 Hollow Microspheres.” J. Phys. Chem. C., 117 1621–1626 (2013)

    Article  CAS  Google Scholar 

  28. Bondioli, F, Leonelli, C, Manfredini, T, Ferrari, AM, Caracoche, MC, Rivas, PC, Rodríguez, AM, “Microwave-Hydrothermal Synthesis and Hyperfine Characterization of Praseodymium-Doped Nanometric Zirconia Powders.” J. Am. Ceram. Soc., 88 633–638 (2005)

    Article  CAS  Google Scholar 

  29. Stefanescu, M, Stoia, M, Stefanescu, O, Popa, A, “The Interaction Between TEOS and Some Polyols - Thermal Analysis and FTIR.” J. Therm. Anal. Calorim., 88 19–26 (2007)

    Article  CAS  Google Scholar 

  30. He, Y, Lu, H, Sai, L, Lai, W, Fan, Q, Wang, L, “Microwave-Assisted Growth and Characterization of Water-Dispersed CdTe / CdS Core-Shell Nanocrystals with High Photoluminescence.” J. Phys. Chem. B., 110 13370–13374 (2006)

    Article  CAS  Google Scholar 

  31. Xizhao, W, Junsheng, Z, Rong, FU, Jianxin, MA, “Effect of Microwave Power and Irradiation Time on the Performance of Pt / C Catalysts Synthesized by Pulse-microwave Assisted Chemical Reduction.” Chinese J. Catal., 32 599–605 (2011)

    Article  Google Scholar 

  32. Akdemir, S, Özel, E, Suvaci, E, Suvacı, E, “Stability of Zircon Pigments in Water and Diethylene Glycol Media: The Case of Turquoise V-ZrSiO4.” Ceram. Int., 39 1909–1915 (2013)

    Article  CAS  Google Scholar 

  33. Caselli, C, Lusvardi, G, Malavasi, G, Menabue, L, Miselli, P, “Multitechnique Approach to V-ZrSiO4 Pigment Characterization and Synthesis Optimization.” J. Eur. Ceram. Soc., 27 1743–1750 (2007)

    Article  CAS  Google Scholar 

  34. Torres, FJ, Tena, MA, Alarcón, J, “Rietveld Refinement Study of Vanadium Distribution in V+4-ZrSiO4 Solid Solutions Obtained From Gels.” J. Eur. Ceram. Soc., 22 1991–1994 (2002)

    Article  CAS  Google Scholar 

  35. Yu, XT, Liu, HX, Shen, Y, Xu, JY, Cai, FY, Li, T, Lü, J, Cao, W, “Microwave-Assisted Synthesis of Nanoscale Tungsten Trioxide Hydrate with Excellent Photocatalytic Activity Under Visible Irradiation.” Inorg. Chem. Commun., 120 108–147 (2020)

    Article  Google Scholar 

  36. Rashmi, B, Harlapur, SF, Avinash, B, Ravikumar, C, Nagaswarupa, H, Anil Kumar, M, Gurushantha, K, Santosh, M, “Facile Green Synthesis of Silver Oxide Nanoparticles and Their Electrochemical, Photocatalytic and Biological Studies.” Inorg. Chem. Commun., 111 1075–1080 (2020)

    Article  Google Scholar 

  37. Trojan, M, “Synthesis of a Yellow Zircon Pigment.” Dye. Pigment., 9 261–273 (1988)

    Article  CAS  Google Scholar 

  38. Nurdin, M, Ramadhan, AN, Darmawati, D, Maulidiyah, M, Wibowo, D, “Synthesis of Ni, N Co-doped TiO2 Using Microwave-Assisted Method for Sodium Lauryl Sulfate Degradation by Photocatalyst.” J. Coat. Technol. Res., 152 395–402 (2017)

    Google Scholar 

  39. Wang, X, Zheng, J, Fu, R, Ma, J, “Effect of Microwave Power and Irradiation Time on the Performance of Pt/C Catalysts Synthesized by Pulse-Microwave Assisted Chemical Reduction.” Chinese J. Catal., 32 599–605 (2011)

    Article  CAS  Google Scholar 

  40. Hamanaka, Y, Kuzuya, T, Sofue, T, Kino, T, Ito, K, Sumiyama, K, “Defect-Induced Photoluminescence and Third-Order Nonlinear Optical Response of Chemically Synthesized Chalcopyrite CuInS2 Nanoparticles.” Chem. Phys. Lett., 466 176–180 (2008)

    Article  CAS  Google Scholar 

  41. Peng, J, Peng, Z, Zhu, Z, Augustine, R, Mahmoud, MM, Tang, H, Rao, M, Zhang, Y, Li, G, Jiang, T, “Achieving Ultra-High Electromagnetic Wave Absorption by Anchoring Co0.33Ni0.33Mn0.33Fe2O4 Nanoparticles on Graphene Sheets Using Microwave-Assisted Polyol Method.” Ceram. Int., 44 21015–21026 (2018)

    Article  CAS  Google Scholar 

  42. Li, H, Zhang, S, Yan, S, Lin, Y, Ren, Y, “Pd/C Catalysts Synthesized by Microwave Assisted Polyol Method for Methanol Electro-Oxidation.” Int. J. Electrochem. Sci., 8 2996–3011 (2013)

    CAS  Google Scholar 

  43. Chu, Y, Wang, B, Gu, DM, Yin, GP, “Performance of Pt/C Catalysts Prepared by Microwave-Assisted Polyol Process for Methanol Electrooxidation.” J. Power Sources., 195 1799–1804 (2010)

    Article  CAS  Google Scholar 

  44. Calatayud, JM, Alarcón, J, “V-Containing ZrO2 Inorganic Yellow Nano-Pigments Prepared by Hydrothermal Approach.” Dye. Pigment., 146 178–188 (2017)

    Article  CAS  Google Scholar 

  45. Ardizzone, S, Cappelletti, G, Fermo, P, Oliva, C, Scavini, M, Scimè, F, “Structural and Spectroscopic Investigations of Blue, Vanadium-doped ZrSiO4 Pigments Prepared by a Sol-Gel Route.” J. Phys. Chem. B., 109 22112–22119 (2005)

    Article  CAS  Google Scholar 

  46. Valentín, C, Muñoz, MC, Alarcón, J, “Synthesis and Characterization of Vanadium-Containing ZrSiO4 Solid Solutions from Gels.” J. Sol-Gel. Sci. Technol., 15 221–230 (1999)

    Article  Google Scholar 

  47. Monrós, G, Carda, J, Tena, A, Escribano, P, Sales, M, Alarcón, J, “Different Kinds of Solid Solutions in the V2O5-ZrSiO4-NaF System by Sol-Gel Processes and Their Characterization.” J. Eur. Ceram. Soc., 11 77–86 (1993)

    Article  Google Scholar 

  48. Belgin, T, “V-ZrSiO4 Ceramic Pigments Synthesis from m-ZrO2 and Different Amorphous Silica Sources.” J. Aust. Ceram. Soc., 57 1351–1357 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mardali Yousefpour.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heydari, H., Yousefpour, M., Emadoddin, E. et al. Microwave-assisted polyol synthesis of V–ZrSiO4 nanoparticles and its use as a blue ceramic pigment. J Coat Technol Res 19, 1595–1607 (2022). https://doi.org/10.1007/s11998-022-00632-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-022-00632-y

Keywords

Navigation