Skip to main content
Log in

Dissipative particle dynamics simulations of centrifugal melt electrospinning

  • Polymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The fibers obtained by centrifugal melt electrospinning exhibit high production efficiency, controllable morphology, and excellent mechanical properties. Therefore, centrifugal electrospinning technology is in alignment with the industrial development trend of superfine fiber preparation. However, during the rapid development of this new spin method, some fundamental understanding of the relationships between the fiber performance and centrifugal force, electric field force, and gravity is unclear. In this study, the effect of the spin factors on the fiber properties (diameter, yield, and molecular chain formation) is investigated by dissipative particle dynamics simulation. The results show that in an electrostatic field, if the rotating speed, temperature, and electric field intensity increases, the fiber diameter decreases, and fiber productivity and chain length increase. In a pulsed electric field, the fiber diameter is very small when the duty ratio is 70% and the chain length is long when the duty ratio is 100%. However, as the frequency increases, the fiber diameter decreases sharply, whereas the chain length increases gradually. When the fiber drops rapidly, the chain length generally becomes longer with increasing steps. The above knowledge of the fiber performance and spin factors will contribute significantly to obtain high-quality fibers using centrifugal melt electrospinning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Wu S, Peng H, Li X, Streubel PN, Liu Y, Duan B (2017) Effect of scaffold morphology and cell co-culture on tenogenic differentiation of HADMSC on centrifugal melt electrospun poly (L-lactic acid) fibrous meshes. Biofabrication 9:0441064

    Article  Google Scholar 

  2. Wang L, Wang B, Ahmad Z, Li J, Chang M (2019) Dual rotation centrifugal electrospinning: a novel approach to engineer multi-directional and layered fiber composite matrices. Drug Deliv Transl Res 9:204–214

    Article  Google Scholar 

  3. Wang L, Ahmad Z, Huang J, Li J, Chang M (2017) Multi-compartment centrifugal electrospinning based composite fibers. J Chem Eng 330:541–549

    Article  Google Scholar 

  4. Erickson AE, Edmondson D, Chang FC, Wood D, Gong A, Levengood SL, Zhang MQ (2015) High-throughput and high-yield fabrication of uniaxially-aligned chitosan-based nanofibers by centrifugal electrospinning. Carbohydr Polym 134:467–474

    Article  Google Scholar 

  5. Larrondo L, St. John Manley R (1981) Electrostatic fiber spinning from polymer melts. I. Experimental observations on fiber formation and properties. J Polym Sci Pol Phys 6:909–920

    Article  Google Scholar 

  6. Visser J, Melchels FPW, Jeon JE et al (2015) Reinforcement of hydrogels using three-dimensionally printed microfibres. Nat Commun 6:6933

    Article  Google Scholar 

  7. Castilho M, Hochleitner G, Wilson W, Van Rietbergen B, Dalton PD, Groll Jürgen, Groll JM, Keita I (2018) Mechanical behavior of a soft hydrogel reinforced with three-dimensional printed microfibre scaffolds. Sci Rep 8:1245

    Article  Google Scholar 

  8. Martine LC, Holzapfel BM, McGovern JA et al (2017) Engineering a humanized bone organ model in mice to study bone metastases. Nat Protoc 12:639–663

    Article  Google Scholar 

  9. Li T, Jiang Z, Yan D, Nies E (2010) A polyethylene chain investigated with replica exchange molecular dynamics simulation: equilibrium lamellar thickness and melting point, ordering and free energy. Polymer 51:5612–5622

    Article  Google Scholar 

  10. Chudoba R, Heyda J, Dzubiella J (2017) Temperature-dependent implicit-solvent model of polyethylene glycol in aqueous solution. J Chem Theory Comput 13:6317–6327

    Article  Google Scholar 

  11. Español P, Warren PB (2017) Perspective: dissipative particle dynamics. J Chem Phys 146:150901

    Article  Google Scholar 

  12. Groot RD, Warren PB (1997) Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation. J Chem Phys 11:4423–4435

    Article  Google Scholar 

  13. Zhou B, Luo W, Yang J, Duan XB, Wen YW, Zhou HM, Chen R, Shan B (2017) Simulation of dispersion and alignment of carbon nanotubes in polymer flow using dissipative particle dynamics. Comput Mater Sci 126:35–42

    Article  Google Scholar 

  14. Hu J, Zhang C, Li X, Han J, Ji F (2017) Architectural evolution of phase domains in shape memory polyurethanes by dissipative particle dynamics simulations. Polym Chem 8:260–271

    Article  Google Scholar 

  15. Marson RL, Huang Y, Huang M, Fu T, Larson RG (2018) Inertio-capillary cross-streamline drift of droplets in Poiseuille flow using dissipative particle dynamics simulations. Soft Matter 14:2267–2280

    Article  Google Scholar 

  16. Liu H, Cavaliere S, Jones DJ, Roziere J, Paddison SJ (2018) Morphology of hydrated nafion through a quantitative cluster analysis: a case study based on dissipative particle dynamics simulations. J Phys Chem C 122:13130–13139

    Article  Google Scholar 

  17. Du CM, Ji YJ, Xue JW, Hou TJ, Tang JX, Lee ST, Li YY (2015) Morphology and performance of polymer solar cell characterized by DPD simulation and graph theory. Sci Rep 5:16854

    Article  Google Scholar 

  18. Lu T, Guo H (2018) Phase behavior of lipid bilayers: a dissipative particle dynamics simulation study. Adv Theory Simul 5:1–13

    Google Scholar 

  19. Liu Y, Wang X, Yan H, Guan C, Yang W (2011) Dissipative particle dynamics simulation on the fiber dropping process of melt electrospinning. J Mater Sci 46:7877–7882. https://doi.org/10.1007/s10853-011-5769-0

    Article  Google Scholar 

  20. Song Q, Zhang J, Liu Y (2017) Mesoscale simulation of a melt electrospinning jet in a periodically changing electric field. Chem J Chin Univ 38:966–974

    Google Scholar 

  21. Wang X, Liu Y, Zhang C, An Y, He X, Yang W (2013) Simulation on electrical field distribution and fiber falls in melt electrospinning. J Nanosci Nanotechnol 13:4680–4685

    Article  Google Scholar 

  22. Liu Y, Kong B, Yang X (2005) Studies on some factors influencing the interfacial tension measurement of polymers. Polymer 46:2811–2816

    Article  Google Scholar 

  23. Liu Y, Yang X, Yang M, Li T (2004) Mesoscale simulation on the shape evolution of polymer drop and initial geometry influence. Polymer 45:6985–6991

    Article  Google Scholar 

  24. Lísal M, Šindelka K, Suchá L, Limpouchová Z, Procházka K (2017) Dissipative particle dynamics simulations of polyelectrolyte self-assemblies. methods with explicit electrostatics. Polym Sci Ser C 59:77–101

    Article  Google Scholar 

  25. Alizadehrad D, Fedosov DA (2018) Static and dynamic properties of smoothed dissipative particle dynamics. J Comput Phys 356:303–318

    Article  Google Scholar 

  26. Wang Z, Quik JTK, Song L, Wouterse M, Peijnenburg WJGM (2018) Dissipative particle dynamic simulation and experimental assessment of the impacts of humic substances on aqueous aggregation and dispersion of engineered nanoparticles. Environ Toxicol Chem 37:1024–1031

    Article  Google Scholar 

  27. Ketkaew R, Tantirungrotechai Y (2018) Dissipative particle dynamics study of SWCNT reinforced natural rubber composite system: an important role of self-avoiding model on mechanical properties. Macromol Theor Simul 27:1700093

    Article  Google Scholar 

  28. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19

    Article  Google Scholar 

  29. Liu SL, Long YZ, Zhang ZH, Zhang HD, Sun B, Zhang JC, Han WP (2013) Assembly of oriented ultrafine polymer fibers by centrifugal electrospinning. J Nanomater 2013:713275

    Google Scholar 

  30. Erickson AE, Edmondson D, Chang FC, Wood D, Gong A, Levengood SL, Zhang MQ (2015) High-throughput and high-yield fabrication of uniaxially-aligned chitosan-based nanofibers by centrifugal electrospinning. Carbohydr Polym 134:467–474

    Article  Google Scholar 

  31. Liu SL, Sun B, Yin HX, Zhang ZH, Tang CC, Long YZ, Han YM (2013) Fabrication of fluorescent polymer crossbar arrays and microropes via centrifugal electrospinning. Adv Mater Res 517:785–786

    Article  Google Scholar 

  32. Li Z, Yuan Y, Chen B, Liu Y, Nie J, Ma G (2017) Photo and thermal cured silicon-containing diethynylbenzene fibers via melt electrospinning with enhanced thermal stability. J Polym Sci Pol Chem 55:2815–2823

    Article  Google Scholar 

  33. Peng H (2017) The experiment and simulation exploration of centrifugal melt electrospinning. Master Thesis, Beijing University of Chemical Technology

  34. Luo C, Kröger M, Sommer J (2017) Molecular dynamics simulations of polymer crystallization under confinement: entanglement effect. Polymer 109:71–84

    Article  Google Scholar 

  35. Hagita K, Morita H, Takano H (2016) Molecular dynamics simulation study of a fracture of filler-filled polymer nanocomposites. Polymer 99:368–375

    Article  Google Scholar 

  36. Sliozberg YR, Mrozek RA, Schieber JD, Kröger M, Lenhart JL, Andzelm JW (2013) Effect of polymer solvent on the mechanical properties of entangled polymer gels: coarse-grained molecular simulation. Polymer 54:2555–2564

    Article  Google Scholar 

  37. Kröger M (2005) Shortest multiple disconnected path for the analysis of entanglements in two- and three-dimensional polymeric systems. Comput Phys Commun 168:209–232

    Article  Google Scholar 

  38. Xie G, Wang Y, Han XT, Gong Y, Wang JP, Zhang JM, Deng DP, Liu Y (2016) Pulsed electric fields on poly-l-(lactic acid) melt electrospun fibers. Ind Eng Chem Res 55:7116–7123

    Article  Google Scholar 

  39. Li K, Wang Y, Xie G, Kang JX, He H, Wang KJ, Liu Y (2018) Solution electrospinning with a pulsed electric field. J Appl Polym Sci 135:46130

    Article  Google Scholar 

  40. Xie J, Jiang J, Davoodi P, Srinivasan MP, Wang C (2015) Electrohydrodynamic atomization: a two-decade effort to produce and process micro-/nanoparticulate materials. Chem Eng Sci 125:32–57

    Article  Google Scholar 

  41. Sarkar S, Deevi S, Tepper G (2007) Biased AC electrospinning of aligned polymer nanofibers. Macromol Rapid Commun 28:1034–1039

    Article  Google Scholar 

  42. Pokorny P, Kostakova E, Sanetrnik F (2014) Effective AC needleless and collectorless electrospinning for yarn production. Phys Chem Chem Phys 16:26816–26822

    Article  Google Scholar 

Download references

Acknowledgements

The paper was financially supported by the National Natural Science Foundations of China (Grant Number 21374008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Liu.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, K., Xu, Y., Liu, Y. et al. Dissipative particle dynamics simulations of centrifugal melt electrospinning. J Mater Sci 54, 9958–9968 (2019). https://doi.org/10.1007/s10853-019-03603-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03603-8

Navigation