Skip to main content
Log in

Electrogalvanization using Zn-graphene oxide composite coatings with enhanced corrosion resistance performance

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

Zn-based coatings are extensively used for the protection of steel structures. Efforts toward further enhancement in the corrosion resistance performance of Zn coatings are therefore an area of continued interest. In this work, Zn-graphene oxide (Zn-GO) composite coatings containing different volume fractions of GO were electrodeposited on mild steel substrates using an electrolyte bath with different concentrations of dispersed graphene oxide. The electrodeposition parameters used yielded compact and crack-free morphology for all the coatings. Incorporation of GO led to a refinement of the Zn crystallites in the coating matrix. Potentiodynamic polarization measurements clearly showed that all the Zn-GO composite coatings exhibited higher corrosion resistance performance when compared to the pristine Zn coatings, and further, the corrosion rate decreased with the increase in the volume fraction of the GO in the composite coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Marder, AR, “The Metallurgy of Zinc-Coated Steel.” Prog. Mater. Sci., 45 191–271 (2000)

    Article  CAS  Google Scholar 

  2. Musiani, M, “Electrodeposition of Composites: An Expanding Subject in Electrochemical Materials Science.” Electrochim. Acta, 45 3397–3402 (2000)

    Article  CAS  Google Scholar 

  3. Vereecken, PM, Shao, I, Searson, PC, “Particle Codeposition in Nanocomposite Films.” J. Electrochem. Soc., 147 (7) 2572–2575 (2000)

    Article  CAS  Google Scholar 

  4. Vlasa, A, Varvara, S, Pop, A, Bulea, C, Muresan, LM, “Electrodeposited Zn–TiO2 Nanocomposite Coatings and Their Corrosion Behavior.” J. Appl. Electrochem., 40 1519–1527 (2010)

    Article  CAS  Google Scholar 

  5. Ranganatha, S, Venkatesha, V, Vathsala, K, Kumar, MKP, “Electrochemical Studies on Zn/nano-CeO2 Electrodeposited Composite Coatings.” Surf. Coat. Technol., 208 64–72 (2012)

    Article  CAS  Google Scholar 

  6. Kanagalasara, V, Venkatesha, TV, “Studies on Electrodeposition of Zn–MoS2 Nanocomposite Coatings on Mild Steel and Its Properties.” J. Solid State Electrochem., 16 993–1001 (2012)

    Article  CAS  Google Scholar 

  7. Kumar, MKP, Singh, MP, Srivastava, C, “Electrochemical Behavior of Zn–Graphene Composite Coatings.” RSC Adv., 5 25603–25608 (2015)

    Article  Google Scholar 

  8. Berlia, R, Kumar, MKP, Srivastava, C, “Electrochemical Behavior of Sn–Graphene Composite Coating.” RSC Adv., 5 71413–71418 (2015)

    Article  CAS  Google Scholar 

  9. Rekha, MY, Kumar, MKP, Srivastava, C, “Electrochemical Behaviour of Chromium–Graphene Composite Coating.” RSC Adv., 6 62083–62090 (2016)

    Article  Google Scholar 

  10. Rekha, MY, Srivastava, C, “High Corrosion Resistance of Metal-Graphene Oxide-Metal Multilayer Coatings.” Philos. Mag., 100 18–31 (2020)

    Article  CAS  Google Scholar 

  11. Arora, S, Srivastava, C, “Microstructure and Corrosion Properties of NiCo-Graphene Oxide Composite Coatings.” Thin Solid Films, 677 45–54 (2019)

    Article  CAS  Google Scholar 

  12. Rekha, MY, Kamboj, A, Srivastava, C, “Electrochemical Behavior of SnNi-Graphene Oxide Composite Coatings.” Thin Solid Films, 653 82–92 (2018)

    Article  CAS  Google Scholar 

  13. Rekha, MY, Srivastava, C, “Microstructure and Corrosion Properties of Zinc–Graphene Oxide Composite Coatings.” Corros. Sci., 152 234–248 (2019)

    Article  Google Scholar 

  14. Stern, M, Geary, AL, “Electrochemical Polarization: I. A Theoretical Analysis of the Shape of Polarization Curves.” J. Electrochem. Soc., 104 (1) 56–63 (1957)

    Article  CAS  Google Scholar 

  15. Liu, Y, Li, H, Li, Z, “EIS Investigation and Structural Characterization of Different Hot-Dipped Zinc-Based Coatings in 3.5% NaCl Solution.” Int. J. Electrochem. Sci., 8 7753–7767 (2013)

    CAS  Google Scholar 

  16. Oriti, T, “A Comparative Study of Gamma-Phase Zinc-Nickel Deposits Electroplated from Various Alkaline and Acid Systems.” NASF Surf. Technol. White Pap., 79 (1) 1–16 (2014)

    Google Scholar 

  17. Kamboj, A, Raghupathy, Y, Rekha, MY, Srivastava, C, “Morphology, Texture and Corrosion Behavior of Nanocrystalline Copper–Graphene Composite Coatings.” JOM, 69 (7) 1149–1154 (2017)

    Article  CAS  Google Scholar 

  18. Mouanga, M, Bercot, P, Rauch, JY, “Comparison of Corrosion Behaviour of Zinc in NaCl and in NaOH Solutions. Part I: Corrosion Layer Characterization.” Corros. Sci., 52 3984–3992 (2010)

    Article  CAS  Google Scholar 

  19. Neto, PDL, Correia, AN, Colares, RP, Araujo, WS, “Corrosion Study of Electrodeposited Zn and Zn-Co Coatings in Chloride Medium.” J. Braz. Chem. Soc., 18 (6) 1164–1175 (2007)

    Article  Google Scholar 

  20. Touri, F, Sahari, A, Zouaoui, A, Deflorian, F, “Detection and Characterization of ZnO on a Passive Film of Pure Zinc.” Int. J. Electrochem. Sci., 12 10813–10823 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the research grant received from the CSIR Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Y. Rekha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rekha, M.Y., Srivastava, C. Electrogalvanization using Zn-graphene oxide composite coatings with enhanced corrosion resistance performance. J Coat Technol Res 18, 753–760 (2021). https://doi.org/10.1007/s11998-020-00439-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-020-00439-9

Keywords

Navigation